Dr. Nirav Vyas numerical method 4.pdf

download Dr. Nirav Vyas numerical method 4.pdf

of 64

Transcript of Dr. Nirav Vyas numerical method 4.pdf

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    1/156

    Numerical Methods - Interpolation

    Unequal Intervals

    Dr. N. B. Vyas

    Department of Mathematics,Atmiya Institute of Tech. and Science, Rajkot (Guj.)

    [email protected]

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    2/156

    Interpolation

    To find the value of  y   for an  x  between different  x  - valuesx0, x1, . . . , xn  is called problem of   interpolation.

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    3/156

    Interpolation

    To find the value of  y   for an  x  between different  x  - values

    x0, x1, . . . , xn  is called problem of   interpolation.

    To find the value of  y   for an  x  which falls outside the range of  x(x < x0  or  x > xn) is called the problem of   extrapolation.

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    4/156

    Interpolation

    To find the value of  y   for an  x  between different  x  - values

    x0, x1, . . . , xn  is called problem of   interpolation.

    To find the value of  y   for an  x  which falls outside the range of  x(x < x0  or  x > xn) is called the problem of   extrapolation.

    Theorem by   Weierstrass   in 1885, “Every continuous

    function in an interval (a,b) can be represented in thatinterval to any desired accuracy by a polynomial.   ”

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    5/156

    Interpolation

    To find the value of  y   for an  x  between different  x  - values

    x0, x1, . . . , xn  is called problem of   interpolation.

    To find the value of  y   for an  x  which falls outside the range of  x(x < x0  or  x > xn) is called the problem of   extrapolation.

    Theorem by   Weierstrass   in 1885, “Every continuous

    function in an interval (a,b) can be represented in thatinterval to any desired accuracy by a polynomial.   ”

    Let us assign polynomial  P n  of degree  n  (or less) that assumesthe given data values

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    6/156

    Interpolation

    To find the value of  y   for an  x  between different  x  - values

    x0, x1, . . . , xn  is called problem of   interpolation.

    To find the value of  y   for an  x  which falls outside the range of  x(x < x0  or  x > xn) is called the problem of   extrapolation.

    Theorem by   Weierstrass   in 1885, “Every continuous

    function in an interval (a,b) can be represented in thatinterval to any desired accuracy by a polynomial.   ”

    Let us assign polynomial  P n  of degree  n  (or less) that assumesthe given data values

    P n(x0) = y0,  P n(x1) = y1,   . . .,  P n(xn) = yn

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    7/156

    Interpolation

    To find the value of  y   for an  x  between different  x  - values

    x0, x1, . . . , xn  is called problem of   interpolation.

    To find the value of  y   for an  x  which falls outside the range of  x(x < x0  or  x > xn) is called the problem of   extrapolation.

    Theorem by   Weierstrass   in 1885, “Every continuous

    function in an interval (a,b) can be represented in thatinterval to any desired accuracy by a polynomial.   ”

    Let us assign polynomial  P n  of degree  n  (or less) that assumesthe given data values

    P n(x0) = y0,  P n(x1) = y1,   . . .,  P n(xn) = ynThis polynomial  P n   is called  interpolation polynomial.

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    8/156

    Interpolation

    To find the value of  y   for an  x  between different  x  - values

    x0, x1, . . . , xn  is called problem of   interpolation.

    To find the value of  y   for an  x  which falls outside the range of  x(x < x0  or  x > xn) is called the problem of   extrapolation.

    Theorem by   Weierstrass   in 1885, “Every continuous

    function in an interval (a,b) can be represented in thatinterval to any desired accuracy by a polynomial.   ”

    Let us assign polynomial  P n  of degree  n  (or less) that assumesthe given data values

    P n(x0) = y0,  P n(x1) = y1,   . . .,  P n(xn) = ynThis polynomial  P n   is called  interpolation polynomial.

    x0, x1, . . . , xn  is called the  nodes  (  tabular points,  pivotalpoints  or  arguments).

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    9/156

    Interpolation with unequal intervals

    Lagrange’s interpolation formula with unequal intervals:

    Let  y = f (x) be continuous and differentiable in the interval(a, b).

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    10/156

    Interpolation with unequal intervals

    Lagrange’s interpolation formula with unequal intervals:

    Let  y = f (x) be continuous and differentiable in the interval(a, b).

    Given the set of  n + 1 values (x0, y0), (x1, y1), . . . , (xn, yn) of  xand  y, where the values of  x  need not necessarily be equallyspaced.

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    11/156

    Interpolation with unequal intervals

    Lagrange’s interpolation formula with unequal intervals:

    Let  y = f (x) be continuous and differentiable in the interval(a, b).

    Given the set of  n + 1 values (x0, y0), (x1, y1), . . . , (xn, yn) of  xand  y, where the values of  x  need not necessarily be equallyspaced.

    It is required to find  P n(x), a polynomial of degree  n  such that  y

    and P 

    n(x

    ) agree at the tabulated points.

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    12/156

    Interpolation with unequal intervals

    Lagrange’s interpolation formula with unequal intervals:

    Let  y = f (x) be continuous and differentiable in the interval(a, b).

    Given the set of  n + 1 values (x0, y0), (x1, y1), . . . , (xn, yn) of  xand  y, where the values of  x  need not necessarily be equallyspaced.

    It is required to find  P n(x), a polynomial of degree  n  such that  yand  P 

    n(x) agree at the tabulated points.

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    13/156

    Lagrange’s Interpolation

    This polynomial is given by the following formula:

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    14/156

    Lagrange’s Interpolation

    This polynomial is given by the following formula:

    y = f (x) ≈ P n(x) =   (x − x1)(x − x2) . . . (x − xn)(x0 − x1)(x0 − x2) . . . (x0 − xn) y0

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    15/156

    Lagrange’s Interpolation

    This polynomial is given by the following formula:

    y = f (x) ≈ P n(x) =   (x − x1)(x − x2) . . . (x − xn)(x0 − x1)(x0 − x2) . . . (x0 − xn) y0

    +

      (x

    −x0)(x

    −x2) . . . (x

    −xn)

    (x1 − x0)(x1 − x2) . . . (x1 − xn) y1 +  . . .

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    16/156

    Lagrange’s Interpolation

    This polynomial is given by the following formula:

    y = f (x) ≈ P n(x) =   (x − x1)(x − x2) . . . (x − xn)(x0 − x1)(x0 − x2) . . . (x0 − xn) y0

    +

      (x

    −x0)(x

    −x2) . . . (x

    −xn)

    (x1 − x0)(x1 − x2) . . . (x1 − xn) y1 +  . . .+

      (x − x0)(x − x1) . . . (x − xn−1)(xn − x0)(xn − x1) . . . (xn − xn−1) yn

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    17/156

    Lagrange’s Interpolation

    This polynomial is given by the following formula:

    y = f (x) ≈ P n(x) =   (x − x1)(x − x2) . . . (x − xn)(x0 − x1)(x0 − x2) . . . (x0 − xn) y0

    +

      (x

    −x0)(x

    −x2) . . . (x

    −xn)

    (x1 − x0)(x1 − x2) . . . (x1 − xn) y1 +  . . .+

      (x − x0)(x − x1) . . . (x − xn−1)(xn − x0)(xn − x1) . . . (xn − xn−1) yn

    NOTE:

    The above formula can be used irrespective of whether the valuesx0, x1, . . . , xn  are equally spaced or not.

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

    L ’ I I

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    18/156

    Lagrange’s Inverse Interpolation

    In the Lagrange’s interpolation formula  y  is treated as dependentvariable and expressed as function of independent variable  x.

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

    L ’ I I

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    19/156

    Lagrange’s Inverse Interpolation

    In the Lagrange’s interpolation formula  y  is treated as dependentvariable and expressed as function of independent variable  x.

    Instead if  x   is treated as dependent variable and expressed as thefunction of independent variable  y, then Lagrange’s interpolationformula becomes

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

    L ’ I I

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    20/156

    Lagrange’s Inverse Interpolation

    In the Lagrange’s interpolation formula  y  is treated as dependentvariable and expressed as function of independent variable  x.

    Instead if  x   is treated as dependent variable and expressed as thefunction of independent variable  y, then Lagrange’s interpolationformula becomes

    x =  g(y) ≈ P n(y) =   (y − y1)(y − y2) . . . (y − yn)(y0 − y1)(y0 − y2) . . . (y0 − yn) x0

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

    Lagrange’s Inverse Interpolation

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    21/156

    Lagrange’s Inverse Interpolation

    In the Lagrange’s interpolation formula  y  is treated as dependentvariable and expressed as function of independent variable  x.

    Instead if  x   is treated as dependent variable and expressed as thefunction of independent variable  y, then Lagrange’s interpolationformula becomes

    x =  g(y) ≈ P n(y) =   (y − y1)(y − y2) . . . (y − yn)(y0 − y1)(y0 − y2) . . . (y0 − yn) x0

    +  (y − y0)(y − y2) . . . (y − yn)(y1 − y0)(y1 − y2) . . . (y1 − yn) x1 +  . . .

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

    Lagrange’s Inverse Interpolation

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    22/156

    Lagrange’s Inverse Interpolation

    In the Lagrange’s interpolation formula  y  is treated as dependentvariable and expressed as function of independent variable  x.

    Instead if  x   is treated as dependent variable and expressed as thefunction of independent variable  y, then Lagrange’s interpolationformula becomes

    x =  g(y) ≈ P n(y) =   (y − y1)(y − y2) . . . (y − yn)(y0 − y1)(y0 − y2) . . . (y0 − yn) x0

    +  (y − y0)(y − y2) . . . (y − yn)(y1 − y0)(y1 − y2) . . . (y1 − yn) x1 +  . . .

    +  (y

    −y

    0)(y

    −y

    1) . . . (y

    −yn−1

    )

    (yn − y0)(yn − y1) . . . (yn − yn−1) xn

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

    Lagrange’s Inverse Interpolation

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    23/156

    Lagrange’s Inverse Interpolation

    In the Lagrange’s interpolation formula  y  is treated as dependentvariable and expressed as function of independent variable  x.

    Instead if  x   is treated as dependent variable and expressed as thefunction of independent variable  y, then Lagrange’s interpolationformula becomes

    x =  g(y) ≈ P n(y) =   (y − y1)(y − y2) . . . (y − yn)(y0 − y1)(y0 − y2) . . . (y0 − yn) x0

    +  (y − y0)(y − y2) . . . (y − yn)(y1 − y0)(y1 − y2) . . . (y1 − yn) x1 +  . . .

    +  (y

    −y

    0)(y

    −y

    1) . . . (y

    −yn−1

    )

    (yn − y0)(yn − y1) . . . (yn − yn−1) xnThis relation is referred as   Lagrange’s inverse interpolationformula.

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

    Example

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    24/156

    Example

    Ex.  Given the table of values:

    x   150 152 154 156y = √ x   12.247 12.329 12.410 12.490

    Evaluate√ 

    155 using Lagrange’s interpolation formula.

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

    Example

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    25/156

    Example

    Sol.:   Here  x0 = 150,  x1 = 152,  x2 = 154 and  x3 = 156

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

    Example

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    26/156

    Example

    Sol.:   Here  x0 = 150,  x1 = 152,  x2 = 154 and  x3 = 156

    y0 = 12

    .247,

     y1 = 12

    .329,

     y2 = 12

    .410 and

     y3 = 12

    .490

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

    Example

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    27/156

    Example

    Sol.:   Here  x0 = 150,  x1 = 152,  x2 = 154 and  x3 = 156

    y0 = 12

    .247,

     y1 = 12

    .329,

     y2 = 12

    .410 and

     y3 = 12

    .490By Lagrange’s interpolation formula,

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

    Example

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    28/156

    Example

    Sol.:   Here  x0 = 150,  x1 = 152,  x2 = 154 and  x3 = 156

    y0 = 12

    .247,

     y1 = 12

    .329,

     y2 = 12

    .410 and

     y3 = 12

    .490By Lagrange’s interpolation formula,

    f (x) ≈ P n(x) =   (x − x1)(x − x2)(x − x3)(x0

    −x1)(x0

    −x2)(x0

    −x3)

    y0

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

    Example

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    29/156

    Example

    Sol.:   Here  x0 = 150,  x1 = 152,  x2 = 154 and  x3 = 156

    y0

     = 12.247,  y1

     = 12.329,  y2

     = 12.410 and  y3

     = 12.490

    By Lagrange’s interpolation formula,

    f (x) ≈ P n(x) =   (x − x1)(x − x2)(x − x3)(x0

    −x1)(x0

    −x2)(x0

    −x3)

    y0

    +   (x − x0)(x − x2)(x − x3)

    (x1 − x0)(x1 − x2)(x1 − x3) y1

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

    Example

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    30/156

    Example

    Sol.:   Here  x0 = 150,  x1 = 152,  x2 = 154 and  x3 = 156

    y0

     = 12.247,  y1

     = 12.329,  y2

     = 12.410 and  y3

     = 12.490

    By Lagrange’s interpolation formula,

    f (x) ≈ P n(x) =   (x − x1)(x − x2)(x − x3)(x0

    −x1)(x0

    −x2)(x0

    −x3)

    y0

    +   (x − x0)(x − x2)(x − x3)(x1 − x0)(x1 − x2)(x1 − x3) y1

    +  (x − x0)(x − x1)(x − x3)(x2 − x0)(x2 − x1)(x2 − x3) y2

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

    Example

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    31/156

    Example

    Sol.:   Here  x0 = 150,  x1 = 152,  x2 = 154 and  x3 = 156

    y0

     = 12.247,  y1

     = 12.329,  y2

     = 12.410 and  y3

     = 12.490

    By Lagrange’s interpolation formula,

    f (x) ≈ P n(x) =   (x − x1)(x − x2)(x − x3)(x0

    −x1)(x0

    −x2)(x0

    −x3)

    y0

    +   (x − x0)(x − x2)(x − x3)(x1 − x0)(x1 − x2)(x1 − x3) y1

    +  (x − x0)(x − x1)(x − x3)(x2 − x0)(x2 − x1)(x2 − x3) y2

    +   (x − x0)(x − x1)(x − x2)(x3 − x0)(x3 − x1)(x3 − x2) y3

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

    Example

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    32/156

    Sol.:   Here  x0 = 150,  x1 = 152,  x2 = 154 and  x3 = 156

    y0

     = 12.247,  y1

     = 12.329,  y2

     = 12.410 and  y3

     = 12.490

    By Lagrange’s interpolation formula,

    f (x) ≈ P n(x) =   (x − x1)(x − x2)(x − x3)(x0

    −x1)(x0

    −x2)(x0

    −x3)

    y0

    +   (x − x0)(x − x2)(x − x3)(x1 − x0)(x1 − x2)(x1 − x3) y1

    +  (x − x0)(x − x1)(x − x3)(x2 − x0)(x2 − x1)(x2 − x3) y2

    +   (x − x0)(x − x1)(x − x2)(x3 − x0)(x3 − x1)(x3 − x2) y3

    for  x = 155

    ∴ f (155) =

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

    Example

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    33/156

    Ex.   Compute  f (0.4) for the table below by the Lagrange’sinterpolation:

    x   0.3 0.5 0.6

    f (x) 0.61 0.69 0.72

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

    Example

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    34/156

    Ex.  Using Lagrange’s formula, find the form of  f (x) for the followingdata:

    x   0 1 2 5

    f (x) 2 3 12 147

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

    Example

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    35/156

    Ex.  Using Lagrange’s formula, find  x  for  y = 7 for the following data:

    x   1 3 4y   4 12 19

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

    Example

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    36/156

    Ex.  Using Lagrange’s formula, express the function

    3x2

    + x + 1(x − 1)(x − 2)(x − 3)

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

    Example

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    37/156

    Sol.:  Let us evaluate  y = 3x2

    + x + 1 for  x = 1,  x = 2 and  x = 3

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

    Example

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    38/156

    Sol.:  Let us evaluate  y = 3x2

    + x + 1 for  x = 1,  x = 2 and  x = 3These values are  x0 = 1,  x1 = 2 and  x2 = 3 and

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

    Example

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    39/156

    Sol.:  Let us evaluate  y = 3x2

    + x + 1 for  x = 1,  x = 2 and  x = 3These values are  x0 = 1,  x1 = 2 and  x2 = 3 and

    y0 = 5,

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

    Example

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    40/156

    Sol.:  Let us evaluate  y = 3x2

    + x + 1 for  x = 1,  x = 2 and  x = 3These values are  x0 = 1,  x1 = 2 and  x2 = 3 and

    y0 = 5,  y1 = 15 and  y2 = 31

    By Lagrange’s interpolation formula,

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

    Example

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    41/156

    Sol.:  Let us evaluate  y = 3x2

    + x + 1 for  x = 1,  x = 2 and  x = 3These values are  x0 = 1,  x1 = 2 and  x2 = 3 and

    y0 = 5,  y1 = 15 and  y2 = 31

    By Lagrange’s interpolation formula,

    y =  (x − x1)(x − x2)(x0 − x1)(x0 − x2) y0 +

      (x − x0)(x − x2)(x1 − x0)(x1 − x2) y1

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

    Example

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    42/156

    Sol.:  Let us evaluate  y = 3x2

    + x + 1 for  x = 1,  x = 2 and  x = 3These values are  x0 = 1,  x1 = 2 and  x2 = 3 and

    y0 = 5,  y1 = 15 and  y2 = 31

    By Lagrange’s interpolation formula,

    y =  (x − x1)(x − x2)(x0 − x1)(x0 − x2) y0 +

      (x − x0)(x − x2)(x1 − x0)(x1 − x2) y1

    +  (x − x0)(x − x1)(x2

    −x0)(x2

    −x1)

    y2

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

    Example

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    43/156

    Sol.:  Let us evaluate  y = 3x2

    + x + 1 for  x = 1,  x = 2 and  x = 3These values are  x0 = 1,  x1 = 2 and  x2 = 3 and

    y0 = 5,  y1 = 15 and  y2 = 31

    By Lagrange’s interpolation formula,

    y =  (x − x1)(x − x2)(x0 − x1)(x0 − x2) y0 +

      (x − x0)(x − x2)(x1 − x0)(x1 − x2) y1

    +  (x − x0)(x − x1)(x2

    −x0)(x2

    −x1)

    y2

    substituting above values, we get

    y = 2.5(x − 2)(x − 3) − 15(x − 1)(x − 3) + 15.5(x − 1)(x − 2)

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

    Example

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    44/156

    Sol.:  Let us evaluate  y = 3x2

    + x + 1 for  x = 1,  x = 2 and  x = 3These values are  x0 = 1,  x1 = 2 and  x2 = 3 and

    y0 = 5,  y1 = 15 and  y2 = 31

    By Lagrange’s interpolation formula,

    y =  (x − x1)(x − x2)(x0 − x1)(x0 − x2) y0 +

      (x − x0)(x − x2)(x1 − x0)(x1 − x2) y1

    +  (x − x0)(x − x1)(x2

    −x0)(x2

    −x1)

    y2

    substituting above values, we get

    y = 2.5(x − 2)(x − 3) − 15(x − 1)(x − 3) + 15.5(x − 1)(x − 2)

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

    Example

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    45/156

    Thus3x2 + x + 1

    (x − 1)(x − 2)(x − 3)

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

    Example

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    46/156

    Thus3x2 + x + 1

    (x − 1)(x − 2)(x − 3)

    =   2.5(x − 2)(x − 3) − 15(x − 1)(x − 3) + 15.5(x − 1)(x − 2)(x − 1)(x − 2)(x − 3)

    =  2.5

    (x

    −1)

      -  15

    (x

    −2)

      +  15.5

    (x

    −3)

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

    Error in Interpolation

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    47/156

    Error in Interpolation:

    We assume that  f (x) has continuous derivatives of order upton + 1 for all  x ∈ (a, b). Since,  f (x) is approximated by  P n(x), theresults contains errors. We define the error of interpolation ortruncation error as

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

    Error in Interpolation

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    48/156

    Error in Interpolation:

    We assume that  f (x) has continuous derivatives of order upton + 1 for all  x ∈ (a, b). Since,  f (x) is approximated by  P n(x), theresults contains errors. We define the error of interpolation ortruncation error as

    E (f, x) = f (x) − P n(x) = (x

    −x0)(x

    −x1) . . . (x

    −xn)

    (n + 1)!   f (n+1)

    (ξ )

    where  min(x0, x1, . . . , xn, x) < ξ < min(x0, x1, . . . , xn, x)

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

    Error in Interpolation

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    49/156

    Error in Interpolation:

    We assume that  f (x) has continuous derivatives of order upton + 1 for all  x ∈ (a, b). Since,  f (x) is approximated by  P n(x), theresults contains errors. We define the error of interpolation ortruncation error as

    E (f, x) = f (x) − P n(x) = (x

    −x0)(x

    −x1) . . . (x

    −xn)

    (n + 1)!   f (n+1)

    (ξ )

    where  min(x0, x1, . . . , xn, x) < ξ < min(x0, x1, . . . , xn, x)

    since,  ξ  is an unknown, it is difficult to find the value of error.However, we can find a bound of the error. The bound of the

    error is obtained as

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

    Error in Interpolation

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    50/156

    Error in Interpolation:

    We assume that  f (x) has continuous derivatives of order upton + 1 for all  x ∈ (a, b). Since,  f (x) is approximated by  P n(x), theresults contains errors. We define the error of interpolation ortruncation error as

    E (f, x) = f (x) − P n(x) = (x

    −x0)(x

    −x1) . . . (x

    −xn)

    (n + 1)!   f (n+1)

    (ξ )

    where  min(x0, x1, . . . , xn, x) < ξ < min(x0, x1, . . . , xn, x)

    since,  ξ  is an unknown, it is difficult to find the value of error.However, we can find a bound of the error. The bound of the

    error is obtained as

    |E (f, x)| ≤ |(x − x0)(x − x1) . . . (x − xn)|(n + 1)!

      maxa≤ξ≤b

    |f (n+1)(ξ )|

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

    Example

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    51/156

    Ex.   Using the data  sin(0.1) = 0.09983 and  sin(0.2) = 0.19867, find

    an approximate value of  sin(0.15) by Lagrange interpolation.Obtain a bound on the error at  x = 0.15.

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

    Lagrange’s Interpolation

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    52/156

    Disadvantages:In practice, we often do not know the degree of the interpolationpolynomial that will give the required accuracy, so we should beprepared to increase the degree if necessary.

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

    Lagrange’s Interpolation

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    53/156

    Disadvantages:In practice, we often do not know the degree of the interpolationpolynomial that will give the required accuracy, so we should beprepared to increase the degree if necessary.

    To increase the degree the addition of another interpolation pointleads to re-computation.

    i.e. no previous work is useful.

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

    Lagrange’s Interpolation

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    54/156

    Disadvantages:In practice, we often do not know the degree of the interpolationpolynomial that will give the required accuracy, so we should beprepared to increase the degree if necessary.

    To increase the degree the addition of another interpolation pointleads to re-computation.

    i.e. no previous work is useful.

    E.g: In calculating  P k(x), no obvious advantage can be taken of the fact that one already has calculated  P k−1(x).

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

    Lagrange’s Interpolation

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    55/156

    Disadvantages:In practice, we often do not know the degree of the interpolationpolynomial that will give the required accuracy, so we should beprepared to increase the degree if necessary.

    To increase the degree the addition of another interpolation pointleads to re-computation.

    i.e. no previous work is useful.

    E.g: In calculating  P k(x), no obvious advantage can be taken of the fact that one already has calculated  P k−1(x).

    That means we need to calculate entirely new polynomial.

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

    Divided Difference

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    56/156

    Let f 

    (x

    0), f 

    (x

    1), . . . , f  

    (xn) be the values of a function

     f 

    corresponding to the arguments  x0, x1, . . . , xn  where the intervalsx1 − x0, x2 − x1, . . . , xn − xn−1  are not necessarily equally spaced.

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

    Divided Difference

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    57/156

    Let f 

    (x

    0), f 

    (x

    1), . . . , f  

    (xn) be the values of a function

     f 

    corresponding to the arguments  x0, x1, . . . , xn  where the intervalsx1 − x0, x2 − x1, . . . , xn − xn−1  are not necessarily equally spaced.Then the  first divided difference  of  f   for the argumentsx0, x1, . . . , xn  are defined by ,

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

    Divided Difference

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    58/156

    Let f 

    (x

    0), f 

    (x

    1), . . . , f  

    (xn) be the values of a function

     f 

    corresponding to the arguments  x0, x1, . . . , xn  where the intervalsx1 − x0, x2 − x1, . . . , xn − xn−1  are not necessarily equally spaced.Then the  first divided difference  of  f   for the argumentsx0, x1, . . . , xn  are defined by ,

    f (x0, x1) =  f (x1) − f (x0)

    x1 − x0

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

    Divided Difference

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    59/156

    Let  f (x0

    ), f (x1

    ), . . . , f  (xn

    ) be the values of a function  f corresponding to the arguments  x0, x1, . . . , xn  where the intervalsx1 − x0, x2 − x1, . . . , xn − xn−1  are not necessarily equally spaced.Then the  first divided difference  of  f   for the argumentsx0, x1, . . . , xn  are defined by ,

    f (x0, x1) =  f (x1) − f (x0)

    x1 − x0

    f (x1, x2) =  f (x2) − f (x1)

    x2 − x1

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

    Divided Difference

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    60/156

    The  second divided difference  of  f   for three argumentsx0, x1, x2  is defined by

    f (x0, x1, x2) =  f (x1, x2) − f (x0, x1)

    x2

    −x0

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

    Divided Difference

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    61/156

    The  second divided difference  of  f   for three argumentsx0, x1, x2  is defined by

    f (x0, x1, x2) =  f (x1, x2) − f (x0, x1)

    x2

    −x0

    and similarly the divided difference of order  n  is defined by

    f (x0, x1, . . . , xn) =

      f (x1, x2, . . . , xn)

    −f (x0, x1, . . . , xn−1)

    xn − x0

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

    Divided Difference

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    62/156

    Properties:

    The divided differences are symmetrical in all their arguments;that is, the value of any divided difference is independent of the

    order of the arguments.

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

    Divided Difference

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    63/156

    Properties:

    The divided differences are symmetrical in all their arguments;that is, the value of any divided difference is independent of the

    order of the arguments.The divided difference operator is linear.

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

    Divided Difference

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    64/156

    Properties:

    The divided differences are symmetrical in all their arguments;that is, the value of any divided difference is independent of the

    order of the arguments.The divided difference operator is linear.

    The  nth order divided differences of a polynomial of degree  n  areconstant, equal to the coefficient of  xn.

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

    Newton’s Divided Difference Interpolation

    A i t l ti f l hi h h th t th t

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    65/156

    An interpolation formula which has the property that apolynomial of higher degree may be derived from it by simply

    adding new terms.

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

    Newton’s Divided Difference Interpolation

    A i t l ti f l hi h h th t th t

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    66/156

    An interpolation formula which has the property that apolynomial of higher degree may be derived from it by simply

    adding new terms.Newton’s general interpolation formula is one such formula andterms in it are called divided differences.

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

    Newton’s Divided Difference Interpolation

    A i t l ti f l hi h h th t th t

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    67/156

    An interpolation formula which has the property that apolynomial of higher degree may be derived from it by simply

    adding new terms.Newton’s general interpolation formula is one such formula andterms in it are called divided differences.

    Let  f (x0), f (x1), . . . , f  (xn) be the values of a function  f 

    corresponding to the arguments  x0, x1, . . . , xn  where the intervalsx1 − x0, x2 − x1, . . . , xn − xn−1  are not necessarily equally spaced.By the definition of divided difference,

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

    Newton’s Divided Difference Interpolation

    An interpolation formula which has the property that a

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    68/156

    An interpolation formula which has the property that apolynomial of higher degree may be derived from it by simply

    adding new terms.Newton’s general interpolation formula is one such formula andterms in it are called divided differences.

    Let  f (x0), f (x1), . . . , f  (xn) be the values of a function  f 

    corresponding to the arguments  x0, x1, . . . , xn  where the intervalsx1 − x0, x2 − x1, . . . , xn − xn−1  are not necessarily equally spaced.By the definition of divided difference,

    f (x, x0) =

      f (x)

    −f (x0)

    x − x0

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

    Newton’s Divided Difference Interpolation

    An interpolation formula which has the property that a

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    69/156

    An interpolation formula which has the property that apolynomial of higher degree may be derived from it by simply

    adding new terms.Newton’s general interpolation formula is one such formula andterms in it are called divided differences.

    Let  f (x0), f (x1), . . . , f  (xn) be the values of a function  f 

    corresponding to the arguments  x0, x1, . . . , xn  where the intervalsx1 − x0, x2 − x1, . . . , xn − xn−1  are not necessarily equally spaced.By the definition of divided difference,

    f (x, x0) =

      f (x)

    −f (x0)

    x − x0

    f (x) = f (x0) + (x − x0)f (x, x0) −−(1)Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

    Newton’s Divided Difference Interpolation

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    70/156

    Further

    f (x, x0, x1) =

      f (x, x0)

    −f (x0, x1)

    x − x1

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

    Newton’s Divided Difference Interpolation

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    71/156

    Further

    f (x, x0, x1) =

      f (x, x0)

    −f (x0, x1)

    x − x1which yields

    f (x, x0) = f (x0, x1) + (x − x1)f (x, x0, x1) −−(2)

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

    Newton’s Divided Difference Interpolation

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    72/156

    Further

    f (x, x0, x1) =

      f (x, x0)

    −f (x0, x1)

    x − x1which yields

    f (x, x0) = f (x0, x1) + (x − x1)f (x, x0, x1) −−(2)

    Similarly

    f (x, x0, x1) = f (x0, x1, x2) + (x − x2)f (x, x0, x1, x2) −−(3)

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

    Newton’s Divided Difference Interpolation

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    73/156

    Further

    f (x, x0, x1) =

      f (x, x0)

    −f (x0, x1)

    x − x1which yields

    f (x, x0) = f (x0, x1) + (x − x1)f (x, x0, x1) −−(2)

    Similarly

    f (x, x0, x1) = f (x0, x1, x2) + (x − x2)f (x, x0, x1, x2) −−(3)

    and in general

    f (x, x0,...,xn−1) = f (x0, x1,...,xn) + (x−xn)f (x, x0, x1,...,xn)−−(4)

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

    Newton’s Divided Difference Interpolation

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    74/156

    multiplying equation (2) by (x − x0)

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

    Newton’s Divided Difference Interpolation

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    75/156

    multiplying equation (2) by (x − x0) , (3) by (x − x0) (x − x1)and so on,

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

    Newton’s Divided Difference Interpolation

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    76/156

    multiplying equation (2) by (x − x0) , (3) by (x − x0) (x − x1)and so on, and finally the last term (4) by(x − x0) (x − x1) ... (x − xn−1) and

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

    Newton’s Divided Difference Interpolation

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    77/156

    multiplying equation (2) by (x − x0) , (3) by (x − x0) (x − x1)and so on, and finally the last term (4) by(x − x0) (x − x1) ... (x − xn−1) and adding (1), (2) , (3) up to (4)we obtain

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

    Newton’s Divided Difference Interpolation

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    78/156

    multiplying equation (2) by (x − x0) , (3) by (x − x0) (x − x1)and so on, and finally the last term (4) by(x − x0) (x − x1) ... (x − xn−1) and adding (1), (2) , (3) up to (4)we obtain

    f (x) =f  (x0) + (x − x0) f  (x0, x1) + (x − x0) (x − x1) f  (x0, x1, x2) + ... +(x − x0) (x − x1) ... (x − xn−1) f  (x0, x1,...,xn)This formula is called  Newton’s divided difference   formula.

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

    Newton’s Divided Difference Interpolation

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    79/156

    The divided difference upto third order

    x y   1stdiv.diff. 2nddiv.diff. 3rddiv.diff.

    x0   y0

    [x0, x1]x1   y1   [x0, x1, x2][x1, x2] [x0, x1, x2, x3]

    x2   y2   [x1, x2, x3][x2, x3]

    x3   y3

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

    Example

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    80/156

    Ex.  Obtain the divided difference table for the data:

    x -1 0 2 3y -8 3 1 12

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

    Example

    S l W h th f ll i di id d diff t bl f th d t

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    81/156

    Sol.  We have the following divided difference table for the data:

    x y First d.d Second d.d Third d.d

    -1 -83 + 8

    0 + 1 = 11

    0 3   −1 − 112 + 1

      = −41 − 32 − 0 = −1

      4 + 4

    3 + 1 = 2

    2 1  11 + 1

    3−

    0  = 4

    12 − 13 − 2   = 11

    3 12

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

    Example

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    82/156

    Ex.   Find  f (x) as a polynomial in  x  for the following data by Newtonsdivided difference formula:

    x   -4 -1 0 2 5

    f (x) 1245 33 5 9 1335

    Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals

    Example

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    83/156

    Sol.  We have the following divided difference table for the data:

    x y 1st d.d 2nd d.d 3rd d.d 4th d.d

    -4 1245−404

    -1 33 94−28   −140 5 10 3

    2 132 9 88

    4425 1335

    Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals

    Example

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    84/156

    The Newtons divided difference formula gives:

    Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals

    Example

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    85/156

    The Newtons divided difference formula gives:

    f (x) = f (x0) +

    Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals

    Example

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    86/156

    The Newtons divided difference formula gives:

    f (x) = f (x0) + (x − x0)f [x0, x1] + (x − x0)(x − x1)f [x0, x1, x2]

    Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals

    Example

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    87/156

    The Newtons divided difference formula gives:

    f (x) = f (x0) + (x − x0)f [x0, x1] + (x − x0)(x − x1)f [x0, x1, x2]

    +

    Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals

    Example

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    88/156

    The Newtons divided difference formula gives:

    f (x) = f (x0) + (x − x0)f [x0, x1] + (x − x0)(x − x1)f [x0, x1, x2]

    + (x − x0)(x − x1)(x − x2)f [x0, x1, x2, x3]

    Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals

    Example

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    89/156

    The Newtons divided difference formula gives:

    f (x) = f (x0) + (x − x0)f [x0, x1] + (x − x0)(x − x1)f [x0, x1, x2]

    + (x − x0)(x − x1)(x − x2)f [x0, x1, x2, x3]+

    Dr N B Vyas Numerical Methods - Interpolation Unequal Intervals

    Example

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    90/156

    The Newtons divided difference formula gives:

    f (x) = f (x0) + (x − x0)f [x0, x1] + (x − x0)(x − x1)f [x0, x1, x2]

    + (x − x0)(x − x1)(x − x2)f [x0, x1, x2, x3]+ (x − x0)(x − x1)(x − x2)(x − x3)f [x0, x1, x2, x3, x4]

    Dr N B Vyas Numerical Methods - Interpolation Unequal Intervals

    Example

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    91/156

    The Newtons divided difference formula gives:

    f (x) = f (x0) + (x − x0)f [x0, x1] + (x − x0)(x − x1)f [x0, x1, x2]

    + (x − x0)(x − x1)(x − x2)f [x0, x1, x2, x3]+ (x − x0)(x − x1)(x − x2)(x − x3)f [x0, x1, x2, x3, x4]= ...

    = 3x4 − 5x3 + 6x2 − 14x + 5

    Dr N B Vyas Numerical Methods Interpolation Unequal Intervals

    Example

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    92/156

    Ex.   Find  f (x) as a polynomial in  x  for the following data by Newtonsdivided difference formula:

    x   -2 -1 0 1 3 4f (x) 9 16 17 18 44 81

    Hence, interpolate at  x = 0.5 and  x = 3.1.

    Dr N B Vyas Numerical Methods Interpolation Unequal Intervals

    Example

    Sol.  We form the divided difference table for the given data.

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    93/156

    x   f (x) 1st d.d 2nd d.d 3rd d.d 4th d.d

    −2 97

    −1 16   −31 1

    0 17 0 01 1

    1 18 4 013 1

    3 44 837

    4 81

    Dr N B Vyas Numerical Methods Interpolation Unequal Intervals

    Example

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    94/156

    Since, the fourth order differences are zeros, the data represents athird degree polynomial. Newtons divided difference formulagives the polynomial as

    f (x) = f (x0) +

    Dr N B Vyas Numerical Methods Interpolation Unequal Intervals

    Example

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    95/156

    Since, the fourth order differences are zeros, the data represents athird degree polynomial. Newtons divided difference formulagives the polynomial as

    f (x) = f (x0) + (x − x0)f [x0, x1] + (x − x0)(x − x1)f [x0, x1, x2]

    Dr N B Vyas Numerical Methods Interpolation Unequal Intervals

    Example

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    96/156

    Since, the fourth order differences are zeros, the data represents athird degree polynomial. Newtons divided difference formulagives the polynomial as

    f (x) = f (x0) + (x − x0)f [x0, x1] + (x − x0)(x − x1)f [x0, x1, x2]+

    Dr N B Vyas Numerical Methods Interpolation Unequal Intervals

    Example

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    97/156

    Since, the fourth order differences are zeros, the data represents athird degree polynomial. Newtons divided difference formulagives the polynomial as

    f (x) = f (x0) + (x − x0)f [x0, x1] + (x − x0)(x − x1)f [x0, x1, x2]+ (x − x0)(x − x1)(x − x2)f [x0, x1, x2, x3]

    Dr N B Vyas  Numerical Methods - Interpolation Unequal Intervals

    Example

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    98/156

    Since, the fourth order differences are zeros, the data represents athird degree polynomial. Newtons divided difference formulagives the polynomial as

    f (x) = f (x0) + (x − x0)f [x0, x1] + (x − x0)(x − x1)f [x0, x1, x2]+ (x − x0)(x − x1)(x − x2)f [x0, x1, x2, x3]= ...

    = x3 + 17

    Dr N B Vyas  Numerical Methods - Interpolation Unequal Intervals

    Example

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    99/156

    Ex.  Find the missing term in the following table:

    x 0 1 2 3 4y 1 3 9 - 81

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

    Example

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    100/156

    Sol.  Divided difference table:

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

    Example

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    101/156

    Sol.  Divided difference table:

    By Newton’s divided difference formula

    f (x) =f  (x0) + (x − x0) f  (x0, x1) + (x − x0) (x − x1) f  (x0, x1, x2) + ...

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

    Spline Interpolation

    Spline interpolation is a form of interpolation where the

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    102/156

    Spline interpolation is a form of interpolation where the

    interpolant is a special type of piecewise polynomial called aspline

    Consider the problem of interpolating between the data points(x0, y0), (x1, y1), . . . , (xn, yn) by means of spline fitting.

    Then the cubic spline  f (x) is such that(i)   f (x) is a linear polynomial outside the interval (x0, xn)

    (ii)   f (x) is a cubic polynomial in each of the subintervals,

    (iii)   f (x) and  f (x) are continuous at each point.

    Since  f (x) is cubic in each of the subintervals  f 

    (x) shall belinear.

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

    Spline Interpolation

    f (x) = (xi+1 − x)3M i

    6h  +

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    103/156

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

    Spline Interpolation

    f (x) = (xi+1 − x)3M i

    6h  +

    (x − xi)3M i+16h

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    104/156

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

    Spline Interpolation

    f (x) = (xi+1 − x)3M i

    6h  +

    (x − xi)3M i+16h

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    105/156

    +(xi+1 − x)

    h

    yi −  h

    2

    6 M i

    +

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

    Spline Interpolation

    f (x) = (xi+1 − x)3M i

    6h  +

    (x − xi)3M i+16h

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    106/156

    +(xi+1 − x)

    h

    yi −  h

    2

    6 M i

    +

    (x − xi)h

    yi+1 −  h

    2

    6 M i+1

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

    Spline Interpolation

    f (x) = (xi+1 − x)3M i

    6h  +

    (x − xi)3M i+16h

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    107/156

    +(xi+1 − x)

    h

    yi −  h

    2

    6 M i

    +

    (x − xi)h

    yi+1 −  h

    2

    6 M i+1

    where  M i−1 + 4M i + M i+1 =  6

    h2(yi−1 − 2yi + yi+1),

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

    Spline Interpolation

    f (x) = (xi+1 − x)3M i

    6h  +

    (x − xi)3M i+16h

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    108/156

    +(xi+1 − x)

    h

    yi −  h

    2

    6 M i

    +

    (x − xi)h

    yi+1 −  h

    2

    6 M i+1

    where  M i−1 + 4M i + M i+1 =  6

    h2(yi−1 − 2yi + yi+1),

    i = 1, 2, 3, ..., (n − 1)

    and  M 0 = 0,  M n = 0,  xi+1

    −xi = h.

    which gives  n + 1 equations in  n + 1 unknowns  M i(i = 0, 1,...,n)which can be solved. Substituting the value of  M i  gives theconcerned cubic spline.

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

    Example

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    109/156

    Ex.  Obtain cubic spline for the following data:

    x 0 1 2 3

    y 2 -6 -8 2

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

    Example

    Sol.  Since points are equispaced with  h = 1 and  n = 3,

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    110/156

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

    Example

    Sol.  Since points are equispaced with  h = 1 and  n = 3, the cubicspline can be determined from

      6

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    111/156

    M i−1 + 4M i +  M i+1 = h2 (yi−1 − 2yi +  yi+1), i = 1, 2

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

    Example

    Sol.  Since points are equispaced with  h = 1 and  n = 3, the cubicspline can be determined from

    M M M  6

    y y y i

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    112/156

    M i−1 + 4

    M i +

     M i+1 = h2 (

    yi−1 − 2

    yi +

     yi+1)

    , i = 1

    ,2

    also  M 0 = 0 ,  M 3 = 0

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

    Example

    Sol.  Since points are equispaced with  h = 1 and  n = 3, the cubicspline can be determined from

    M M M  6

    y y y i

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    113/156

    M i−1 + 4

    M i +

     M i+1 = h2 (

    yi−1 − 2

    yi +

     yi+1)

    , i = 1

    ,2

    also  M 0 = 0 ,  M 3 = 0

    ∴   for  i = 1,

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

    Example

    Sol.  Since points are equispaced with  h = 1 and  n = 3, the cubicspline can be determined from

    M M M  6

    y y y i

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    114/156

    M i−1 + 4

    M i +

     M i+1 = h2 (

    yi−1 − 2

    yi +

     yi+1)

    , i = 1

    ,2

    also  M 0 = 0 ,  M 3 = 0

    ∴   for  i = 1,  M 0 + 4M 1 +  M 2 = 6(y0 − 2y1 +  y2)therefore, 4M 1 + M 2 = 36; —(1)

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

    Example

    Sol.  Since points are equispaced with  h = 1 and  n = 3, the cubicspline can be determined from

    M + 4M + M =  6

    (y 2y + y ) i = 1 2

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    115/156

    M i−1

     + 4M i +  M 

    i+1 

    h2(y

    i−1 −2y

    i +  y

    i+1), i  1, 2

    also  M 0 = 0 ,  M 3 = 0

    ∴   for  i = 1,  M 0 + 4M 1 +  M 2 = 6(y0 − 2y1 +  y2)therefore, 4M 1 + M 2 = 36; —(1)

    for  i = 2,

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

    Example

    Sol.  Since points are equispaced with  h = 1 and  n = 3, the cubicspline can be determined from

    M + 4M + M =  6

    (y 2y + y ), i = 1, 2

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    116/156

    M i−1

     + 4M i +  M 

    i+1 

    h2(y

    i−1 −2y

    i +  y

    i+1), i  1, 2

    also  M 0 = 0 ,  M 3 = 0

    ∴   for  i = 1,  M 0 + 4M 1 +  M 2 = 6(y0 − 2y1 +  y2)therefore, 4M 1 + M 2 = 36; —(1)

    for  i = 2,  M 1 + 4M 2 +  M 3 = 6(y1−

    2y2 +  y3)

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

    Example

    Sol.  Since points are equispaced with  h = 1 and  n = 3, the cubicspline can be determined from

    M −  + 4M   +  M   =  6

    (y − 2y  +  y ), i = 1, 2

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    117/156

    i 1+

    i+

    i+1 h2(y

    i 1 −yi

    + yi+1

    ), i ,

    also  M 0 = 0 ,  M 3 = 0

    ∴   for  i = 1,  M 0 + 4M 1 +  M 2 = 6(y0 − 2y1 +  y2)therefore, 4M 1 + M 2 = 36; —(1)

    for  i = 2,  M 1 + 4M 2 +  M 3 = 6(y1−

    2y2 +  y3)

    M 1 + 4M 2 = 72 —(2)

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

    Example

    Sol.  Since points are equispaced with  h = 1 and  n = 3, the cubicspline can be determined from

    M i−  + 4M i +  M i  =  6

    (yi− 2yi +  yi ), i = 1, 2

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    118/156

    i1

    + i + i+1 h2

    (yi1 −

    yi + yi+1

    ), ,

    also  M 0 = 0 ,  M 3 = 0

    ∴   for  i = 1,  M 0 + 4M 1 +  M 2 = 6(y0 − 2y1 +  y2)therefore, 4M 1 + M 2 = 36; —(1)

    for  i = 2,  M 1 + 4M 2 +  M 3 = 6(y1−

    2y2 +  y3)

    M 1 + 4M 2 = 72 —(2)

    solving these, we get

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

    Example

    Sol.  Since points are equispaced with  h = 1 and  n = 3, the cubicspline can be determined from

    M i−  + 4M i +  M i  =  6

    (yi− 2yi +  yi ), i = 1, 2

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    119/156

    i1

    i i+1 h2

    (yi1 −

    yi yi+1

    ), ,

    also  M 0 = 0 ,  M 3 = 0

    ∴   for  i = 1,  M 0 + 4M 1 +  M 2 = 6(y0 − 2y1 +  y2)therefore, 4M 1 + M 2 = 36; —(1)

    for  i = 2,  M 1 + 4M 2 +  M 3 = 6(y1−

    2y2 +  y3)

    M 1 + 4M 2 = 72 —(2)

    solving these, we get  M 1 =

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

    Example

    Sol.  Since points are equispaced with  h = 1 and  n = 3, the cubicspline can be determined from

    M i−  + 4M i +  M i  =  6

    (yi− 2yi +  yi ), i = 1, 2

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    120/156

    1 +1 h2(y

    1 −y y

    +1)

    also  M 0 = 0 ,  M 3 = 0

    ∴   for  i = 1,  M 0 + 4M 1 +  M 2 = 6(y0 − 2y1 +  y2)therefore, 4M 1 + M 2 = 36; —(1)

    for  i = 2,  M 1 + 4M 2 +  M 3 = 6(y1−

    2y2 +  y3)

    M 1 + 4M 2 = 72 —(2)

    solving these, we get  M 1 =4.8 and  M 2 =

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

    Example

    Sol.  Since points are equispaced with  h = 1 and  n = 3, the cubicspline can be determined from

    M i−1 + 4M i +  M i+1 =  6

    (yi−1 2yi +  yi+1), i = 1, 2

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    121/156

    h2 −also  M 0 = 0 ,  M 3 = 0∴   for  i = 1,  M 0 + 4M 1 +  M 2 = 6(y0 − 2y1 +  y2)

    therefore, 4M 1 + M 2 = 36; —(1)

    for  i = 2,  M 1 + 4M 2 +  M 3 = 6(y1−

    2y2 +  y3)

    M 1 + 4M 2 = 72 —(2)

    solving these, we get  M 1 =4.8 and  M 2 =16.8

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

    Example

    Sol.  Since points are equispaced with  h = 1 and  n = 3, the cubicspline can be determined from

    M i−1 + 4M i +  M i+1 =  6

    (yi−1 2yi +  yi+1), i = 1, 2

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    122/156

    h2 −also  M 0 = 0 ,  M 3 = 0∴   for  i = 1,  M 0 + 4M 1 +  M 2 = 6(y0 − 2y1 +  y2)

    therefore, 4M 1 + M 2 = 36; —(1)

    for  i = 2,  M 1 + 4M 2 +  M 3 = 6(y1−

    2y2 +  y3)

    M 1 + 4M 2 = 72 —(2)

    solving these, we get  M 1 =4.8 and  M 2 =16.8

    Now the cubic spline in (xi ≤ x ≤ xi+1) is

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

    Example

    Sol.  Since points are equispaced with  h = 1 and  n = 3, the cubicspline can be determined from

    M i−1 + 4M i +  M i+1 =  6

    (yi−1 2yi +  yi+1), i = 1, 2

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    123/156

    h2 −also  M 0 = 0 ,  M 3 = 0∴   for  i = 1,  M 0 + 4M 1 +  M 2 = 6(y0 − 2y1 +  y2)

    therefore, 4M 1 + M 2 = 36; —(1)

    for  i = 2,  M 1 + 4M 2 +  M 3 = 6(y1−

    2y2 +  y3)

    M 1 + 4M 2 = 72 —(2)

    solving these, we get  M 1 =4.8 and  M 2 =16.8

    Now the cubic spline in (xi ≤ x ≤ xi+1) isf (x) =

     (xi+1 − x)3M i6h

      +

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

    Example

    Sol.  Since points are equispaced with  h = 1 and  n = 3, the cubicspline can be determined from

    M i−1 + 4M i +  M i+1 =  6

    h(yi−1 2yi +  yi+1), i = 1, 2

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    124/156

    h2 −also  M 0 = 0 ,  M 3 = 0∴   for  i = 1,  M 0 + 4M 1 +  M 2 = 6(y0 − 2y1 +  y2)

    therefore, 4M 1 + M 2 = 36; —(1)

    for  i = 2,  M 1 + 4M 2 +  M 3 = 6(y1−

    2y2 +  y3)

    M 1 + 4M 2 = 72 —(2)

    solving these, we get  M 1 =4.8 and  M 2 =16.8

    Now the cubic spline in (xi ≤ x ≤ xi+1) isf (x) =

     (xi+1 − x)3M i6h

      +(x − xi)3M i+1

    6h

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

    Example

    Sol.  Since points are equispaced with  h = 1 and  n = 3, the cubicspline can be determined from

    M i−1 + 4M i +  M i+1 =  6

    h2(yi−1 2yi +  yi+1), i = 1, 2

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    125/156

    h2 −also  M 0 = 0 ,  M 3 = 0∴   for  i = 1,  M 0 + 4M 1 +  M 2 = 6(y0 − 2y1 +  y2)

    therefore, 4M 1 + M 2 = 36; —(1)

    for  i = 2,  M 1 + 4M 2 +  M 3 = 6(y1−

    2y2 +  y3)

    M 1 + 4M 2 = 72 —(2)

    solving these, we get  M 1 =4.8 and  M 2 =16.8

    Now the cubic spline in (xi ≤ x ≤ xi+1) isf (x) =

     (xi+1 − x)3M i6h

      +(x − xi)3M i+1

    6h

    +(xi+1 − x)

    h

    yi −  h

    2

    6 M i

    +

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

    Example

    Sol.  Since points are equispaced with  h = 1 and  n = 3, the cubicspline can be determined from

    M i−1 + 4M i +  M i+1 =  6

    h2(yi−1 2yi +  yi+1), i = 1, 2

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    126/156

    h2 −also  M 0 = 0 ,  M 3 = 0∴   for  i = 1,  M 0 + 4M 1 +  M 2 = 6(y0 − 2y1 +  y2)

    therefore, 4M 1 + M 2 = 36; —(1)

    for  i = 2,  M 1 + 4M 2 +  M 3 = 6(y1

    −2y2 +  y3)

    M 1 + 4M 2 = 72 —(2)

    solving these, we get  M 1 =4.8 and  M 2 =16.8

    Now the cubic spline in (xi ≤ x ≤ xi+1) isf (x) =

     (xi+1 − x)3M i6h

      +(x − xi)3M i+1

    6h

    +(xi+1 − x)

    h

    yi −  h

    2

    6 M i

    +

    (x − xi)h

    yi+1 −  h

    2

    6 M i+1

     —(3)

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

    Example

    Sol.  Since points are equispaced with  h = 1 and  n = 3, the cubicspline can be determined from

    M i−1 + 4M i +  M i+1 =  6

    h2(yi−1 2yi +  yi+1), i = 1, 2

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    127/156

    h2 −also  M 0 = 0 ,  M 3 = 0∴   for  i = 1,  M 0 + 4M 1 +  M 2 = 6(y0 − 2y1 +  y2)

    therefore, 4M 1 + M 2 = 36; —(1)

    for  i = 2,  M 1 + 4M 2 +  M 3 = 6(y1

    −2y2 +  y3)

    M 1 + 4M 2 = 72 —(2)

    solving these, we get  M 1 =4.8 and  M 2 =16.8

    Now the cubic spline in (xi ≤ x ≤ xi+1) isf (x) =

     (xi+1 − x)3M i6h

      +(x − xi)3M i+1

    6h

    +(xi+1 − x)

    h

    yi −  h

    2

    6 M i

    +

    (x − xi)h

    yi+1 −  h

    2

    6 M i+1

     —(3)

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

    Example

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    128/156

    Ex.  The following values of  x  and  y  are given:

    x 1 2 3 4

    y 1 2 5 11

    Find the cubic splines and evaluate  y(1.5) and  y(3)

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

    Example

    Sol.  Since points are equispaced with  h = 1 and  n = 3,

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    129/156

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

    Example

    Sol.  Since points are equispaced with  h = 1 and  n = 3, the cubicspline can be determined from

    M i−1 + 4M i +  M i+1 =  6

    h2(yi−1 2yi +  yi+1), i = 1, 2

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    130/156

    h2 −

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

    Example

    Sol.  Since points are equispaced with  h = 1 and  n = 3, the cubicspline can be determined from

    M i−1 + 4M i +  M i+1 =  6

    h2(yi−1 2yi +  yi+1), i = 1, 2

    l M M

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    131/156

    h2 −also  M 0 = 0 ,  M 3 = 0

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

    Example

    Sol.  Since points are equispaced with  h = 1 and  n = 3, the cubicspline can be determined from

    M i−1 + 4M i +  M i+1 =  6

    h2(yi−1 2yi +  yi+1), i = 1, 2

    l M 0 M 0

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    132/156

    h2 −also  M 0 = 0 ,  M 3 = 0∴   for  i = 1,

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

    Example

    Sol.  Since points are equispaced with  h = 1 and  n = 3, the cubicspline can be determined from

    M i−1 + 4M i +  M i+1 =  6

    h2(yi−1

    −2yi +  yi+1), i = 1, 2

    l M 0 M 0

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    133/156

    h2 −also  M 0 = 0 ,  M 3 = 0∴   for  i = 1,  M 0 + 4M 1 +  M 2 = 6(y0 − 2y1 +  y2)

    therefore, 4M 1 + M 2 = 12; —(1)

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

    Example

    Sol.  Since points are equispaced with  h = 1 and  n = 3, the cubicspline can be determined from

    M i−1 + 4M i +  M i+1 =  6

    h2(yi−1

    −2yi +  yi+1), i = 1, 2

    l M 0 M 0

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    134/156

    h2also  M 0 = 0 ,  M 3 = 0

    ∴   for  i = 1,  M 0 + 4M 1 +  M 2 = 6(y0 − 2y1 +  y2)therefore, 4M 1 + M 2 = 12; —(1)

    for  i = 2,

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

    Example

    Sol.  Since points are equispaced with  h = 1 and  n = 3, the cubicspline can be determined from

    M i−1 + 4M i +  M i+1 =  6

    h2(yi−1

    −2yi +  yi+1), i = 1, 2

    also M 0 M 0

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    135/156

    halso  M 0 = 0 ,  M 3 = 0

    ∴   for  i = 1,  M 0 + 4M 1 +  M 2 = 6(y0 − 2y1 +  y2)therefore, 4M 1 + M 2 = 12; —(1)

    for  i = 2,  M 1 + 4M 2 +  M 3 = 6(y1

    −2y2 +  y3)

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

    Example

    Sol.  Since points are equispaced with  h = 1 and  n = 3, the cubicspline can be determined from

    M i−1 + 4M i +  M i+1 =  6

    h2(yi−1

    −2yi +  yi+1), i = 1, 2

    also M = 0 M = 0

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    136/156

    halso  M 0 = 0 ,  M 3 = 0

    ∴   for  i = 1,  M 0 + 4M 1 +  M 2 = 6(y0 − 2y1 +  y2)therefore, 4M 1 + M 2 = 12; —(1)

    for  i = 2,  M 1 + 4M 2 +  M 3 = 6(y1

    −2y2 +  y3)

    M 1 + 4M 2 = 18 —(2)

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

    Example

    Sol.  Since points are equispaced with  h = 1 and  n = 3, the cubicspline can be determined from

    M i−1 + 4M i +  M i+1 =  6

    h2

    (yi−1−

    2yi +  yi+1), i = 1, 2

    also M0 = 0 M3 = 0

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    137/156

    halso  M 0 = 0 ,  M 3 = 0

    ∴   for  i = 1,  M 0 + 4M 1 +  M 2 = 6(y0 − 2y1 +  y2)therefore, 4M 1 + M 2 = 12; —(1)

    for  i = 2,  M 1 + 4M 2 +  M 3 = 6(y1

    −2y2 +  y3)

    M 1 + 4M 2 = 18 —(2)solving these, we get

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

    Example

    Sol.  Since points are equispaced with  h = 1 and  n = 3, the cubicspline can be determined from

    M i−1 + 4M i +  M i+1 =  6

    h2

    (yi−1−

    2yi +  yi+1), i = 1, 2

    also M0 = 0 M3 = 0

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    138/156

    also  M 0 = 0 ,  M 3 = 0

    ∴   for  i = 1,  M 0 + 4M 1 +  M 2 = 6(y0 − 2y1 +  y2)therefore, 4M 1 + M 2 = 12; —(1)

    for  i = 2,  M 1 + 4M 2 +  M 3 = 6(y1

    −2y2 +  y3)

    M 1 + 4M 2 = 18 —(2)solving these, we get  M 1 =

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

    Example

    Sol.  Since points are equispaced with  h = 1 and  n = 3, the cubicspline can be determined from

    M i−1 + 4M i +  M i+1 =  6

    h2

    (yi−1−

    2yi +  yi+1), i = 1, 2

    also M0 = 0 M3 = 0

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    139/156

    also  M 0 = 0 ,  M 3 = 0

    ∴   for  i = 1,  M 0 + 4M 1 +  M 2 = 6(y0 − 2y1 +  y2)therefore, 4M 1 + M 2 = 12; —(1)

    for  i = 2,  M 1 + 4M 2 +  M 3 = 6(y1

    −2y2 +  y3)

    M 1 + 4M 2 = 18 —(2)solving these, we get  M 1 =2 and  M 2 =

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

    Example

    Sol.  Since points are equispaced with  h = 1 and  n = 3, the cubicspline can be determined from

    M i−1 + 4M i +  M i+1 =  6

    h2

    (yi−1−

    2yi +  yi+1), i = 1, 2

    also M0 = 0 M3 = 0

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    140/156

    also  M 0  0 ,  M 3  0

    ∴   for  i = 1,  M 0 + 4M 1 +  M 2 = 6(y0 − 2y1 +  y2)therefore, 4M 1 + M 2 = 12; —(1)

    for  i = 2,  M 1 + 4M 2 +  M 3 = 6(y1

    −2y2 +  y3)

    M 1 + 4M 2 = 18 —(2)solving these, we get  M 1 =2 and  M 2 =4

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

    Example

    Sol.  Since points are equispaced with  h = 1 and  n = 3, the cubicspline can be determined from

    M i−1 + 4M i +  M i+1 =  6

    h2

    (yi−1−

    2yi +  yi+1), i = 1, 2

    also M0 = 0 , M3 = 0

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    141/156

    also  M 0  0 ,  M 3  0

    ∴   for  i = 1,  M 0 + 4M 1 +  M 2 = 6(y0 − 2y1 +  y2)therefore, 4M 1 + M 2 = 12; —(1)

    for  i = 2,  M 1 + 4M 2 +  M 3 = 6(y1

    −2y2 +  y3)

    M 1 + 4M 2 = 18 —(2)solving these, we get  M 1 =2 and  M 2 =4

    Now the cubic spline in (xi ≤ x ≤ xi+1) is

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

    Example

    Sol.  Since points are equispaced with  h = 1 and  n = 3, the cubicspline can be determined from

    M i−1 + 4M i +  M i+1 =  6

    h2

    (yi−1

    −2yi +  yi+1), i = 1, 2

    also  M 0 = 0 ,  M 3 = 0

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    142/156

    0 0 , 3 0

    ∴   for  i = 1,  M 0 + 4M 1 +  M 2 = 6(y0 − 2y1 +  y2)therefore, 4M 1 + M 2 = 12; —(1)

    for  i = 2,  M 1 + 4M 2 +  M 3 = 6(y1

    −2y2 +  y3)

    M 1 + 4M 2 = 18 —(2)solving these, we get  M 1 =2 and  M 2 =4

    Now the cubic spline in (xi ≤ x ≤ xi+1) isf (x) =

     (xi+1 − x)3M i6h

      +

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

    Example

    Sol.  Since points are equispaced with  h = 1 and  n = 3, the cubicspline can be determined from

    M i−1 + 4M i +  M i+1 =  6

    h2

    (yi−1

    −2yi +  yi+1), i = 1, 2

    also  M 0 = 0 ,  M 3 = 0

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    143/156

    0 , 3∴   for  i = 1,  M 0 + 4M 1 +  M 2 = 6(y0 − 2y1 +  y2)

    therefore, 4M 1 + M 2 = 12; —(1)

    for  i = 2,  M 1 + 4M 2 +  M 3 = 6(y1

    −2y2 +  y3)

    M 1 + 4M 2 = 18 —(2)solving these, we get  M 1 =2 and  M 2 =4

    Now the cubic spline in (xi ≤ x ≤ xi+1) isf (x) =

     (xi+1 − x)3M i6h

      +(x − xi)3M i+1

    6h

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

    Example

    Sol.  Since points are equispaced with  h = 1 and  n = 3, the cubicspline can be determined from

    M i−1 + 4M i +  M i+1 =  6

    h2

    (yi−1

    −2yi +  yi+1), i = 1, 2

    also  M 0 = 0 ,  M 3 = 0

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    144/156

    0 , 3∴   for  i = 1,  M 0 + 4M 1 +  M 2 = 6(y0 − 2y1 +  y2)

    therefore, 4M 1 + M 2 = 12; —(1)

    for  i = 2,  M 1 + 4M 2 +  M 3 = 6(y1

    −2y2 +  y3)

    M 1 + 4M 2 = 18 —(2)solving these, we get  M 1 =2 and  M 2 =4

    Now the cubic spline in (xi ≤ x ≤ xi+1) isf (x) =

     (xi+1 − x)3M i6h

      +(x − xi)3M i+1

    6h

    +(xi+1 − x)

    h

    yi −  h

    2

    6 M i

    +

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

    Example

    Sol.  Since points are equispaced with  h = 1 and  n = 3, the cubicspline can be determined from

    M i−1 + 4M i +  M i+1 =  6

    h2

    (yi−1

    −2yi +  yi+1), i = 1, 2

    also  M 0 = 0 ,  M 3 = 0

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    145/156

    ∴   for  i = 1,  M 0 + 4M 1 +  M 2 = 6(y0 − 2y1 +  y2)therefore, 4M 1 + M 2 = 12; —(1)

    for  i = 2,  M 1 + 4M 2 +  M 3 = 6(y1

    −2y2 +  y3)

    M 1 + 4M 2 = 18 —(2)solving these, we get  M 1 =2 and  M 2 =4

    Now the cubic spline in (xi ≤ x ≤ xi+1) isf (x) =

     (xi+1 − x)3M i6h

      +(x − xi)3M i+1

    6h

    +(xi+1 − x)

    h

    yi −  h

    2

    6 M i

    +

    (x − xi)h

    yi+1 −  h

    2

    6 M i+1

     —(3)

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

    Example

    Sol.  Since points are equispaced with  h = 1 and  n = 3, the cubicspline can be determined from

    M i−1 + 4M i +  M i+1 =  6

    h2

    (yi−1

    −2yi +  yi+1), i = 1, 2

    also  M 0 = 0 ,  M 3 = 0

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    146/156

    ∴   for  i = 1,  M 0 + 4M 1 +  M 2 = 6(y0 − 2y1 +  y2)therefore, 4M 1 + M 2 = 12; —(1)

    for  i = 2,  M 1 + 4M 2 +  M 3 = 6(y1

    −2y2 +  y3)

    M 1 + 4M 2 = 18 —(2)solving these, we get  M 1 =2 and  M 2 =4

    Now the cubic spline in (xi ≤ x ≤ xi+1) isf (x) =

     (xi+1 − x)3M i6h

      +(x − xi)3M i+1

    6h

    +(xi+1 − x)

    h

    yi −  h

    2

    6 M i

    +

    (x − xi)h

    yi+1 −  h

    2

    6 M i+1

     —(3)

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

    Example

    Ex Find whether the following functions are cubic splines ?

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    147/156

    Ex.  Find whether the following functions are cubic splines ?

    1.  f (x) = 5x3 − 3x2, −1 ≤ x ≤ 0

    = −5x3 − 3x2, 0 ≤ x ≤ 1

    2.   f (x) = −2x3 − x2, −1 ≤ x ≤ 0= 2x3 + 3x2, 0 ≤ x ≤ 1

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

    Example

    Sol.  In both the examples,  f (x) is a cubic polynomial in bothintervals (1, 0) and (0, 1).

    1.   We have

    limx→0+

    f (x)

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    148/156

    x→0

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

    Example

    Sol.  In both the examples,  f (x) is a cubic polynomial in bothintervals (1, 0) and (0, 1).

    1.   We have

    limx→0+

    f (x) = 0

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    149/156

    x→0

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

    Example

    Sol.  In both the examples,  f (x) is a cubic polynomial in bothintervals (1, 0) and (0, 1).

    1.   We have

    limx→0+

    f (x) = 0 =   limx→0−

     f (x)

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    150/156

    x→0 x→0

    therefore, given function  f (x) is continuous on (−1, 1).

    Nowf (x)

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

    Example

    Sol.  In both the examples,  f (x) is a cubic polynomial in bothintervals (1, 0) and (0, 1).

    1.   We have

    limx→0+

    f (x) = 0 =   limx→0−

     f (x)

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    151/156

    therefore, given function  f (x) is continuous on (−1, 1).

    Nowf (x) = 15x2 − 6x, −1 ≤ x ≤ 0

    =

    −15x2

    −6x, 0

    ≤x

    ≤1

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

    Example

    Sol.  In both the examples,  f (x) is a cubic polynomial in bothintervals (1, 0) and (0, 1).

    1.   We have

    limx→0+

    f (x) = 0 =   limx→0−

     f (x)

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    152/156

    therefore, given function  f (x) is continuous on (−1, 1).

    Nowf (x) = 15x2 − 6x, −1 ≤ x ≤ 0

    =

    −15x2

    −6x, 0

    ≤x

    ≤1

    we have,

    limx→0+

    f (x)

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

    Example

    Sol.  In both the examples,  f (x) is a cubic polynomial in bothintervals (1, 0) and (0, 1).

    1.   We have

    limx→0+

    f (x) = 0 =   limx→0−

     f (x)

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    153/156

    therefore, given function  f (x) is continuous on (−1, 1).

    Nowf (x) = 15x2 − 6x, −1 ≤ x ≤ 0

    =

    −15x2

    −6x, 0

    ≤x

    ≤1

    we have,

    limx→0+

    f (x) = 0

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

    Example

    Sol.  In both the examples,  f (x) is a cubic polynomial in bothintervals (1, 0) and (0, 1).

    1.   We have

    limx→0+

    f (x) = 0 =   limx→0−

     f (x)

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    154/156

    therefore, given function  f (x) is continuous on (−1, 1).

    Nowf (x) = 15x2 − 6x, −1 ≤ x ≤ 0

    =

    −15x2

    −6x, 0

    ≤x

    ≤1

    we have,

    limx→0+

    f (x) = 0 =   limx→0−

     f (x)

    therefore, the function  f (x) is continuous on (

    −1, 1).

    f (x)

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

    Example

    Sol.  In both the examples,  f (x) is a cubic polynomial in bothintervals (1, 0) and (0, 1).

    1.   We have

    limx→0+

    f (x) = 0 =   limx→0−

     f (x)

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    155/156

    therefore, given function  f (x) is continuous on (−1, 1).

    Nowf (x) = 15x2 − 6x, −1 ≤ x ≤ 0

    =

    −15x2

    −6x, 0

    ≤x

    ≤1

    we have,

    limx→0+

    f (x) = 0 =   limx→0−

     f (x)

    therefore, the function  f (x) is continuous on (

    −1, 1).

    f (x) = 30x−6, −1 ≤ x ≤ 0= −30x − 6, 0 ≤ x ≤ 1

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals

    Example

    Sol.  In both the examples,  f (x) is a cubic polynomial in bothintervals (1, 0) and (0, 1).

    1.   We have

    limx→0+

    f (x) = 0 =   limx→0−

     f (x)

  • 8/20/2019 Dr. Nirav Vyas numerical method 4.pdf

    156/156

    therefore, given function  f (x) is continuous on (−1, 1).

    Nowf (x) = 15x2 − 6x, −1 ≤ x ≤ 0

    =

    −15x2

    −6x, 0

    ≤x

    ≤1

    we have,

    limx→0+

    f (x) = 0 =   limx→0−

     f (x)

    therefore, the function  f (x) is continuous on (

    −1, 1).

    f (x) = 30x−6, −1 ≤ x ≤ 0= −30x − 6, 0 ≤ x ≤ 1

    Dr. N. B. Vyas   Numerical Methods - Interpolation Unequal Intervals