DOCTORAL TRAINING CENTRE PHOTONIC … · 4 hour interactive computer simulation on aspects of solid...

33
DOCTORAL TRAINING CENTRE PHOTONIC SYSTEMS DEVELOPMENT COURSES HANDBOOK

Transcript of DOCTORAL TRAINING CENTRE PHOTONIC … · 4 hour interactive computer simulation on aspects of solid...

              

DOCTORAL TRAINING CENTRE PHOTONIC SYSTEMS DEVELOPMENT

COURSES HANDBOOK

Module 4B5 - Nanotechnology

Leader: Dr C Durkan (cd229@eng) Timing: Michaelmas Term

Prerequisites: 3B5 and 3B6 useful

Structure: 12 lectures (including examples classes) + coursework

Assessment: Material / Format / Timing / Marks Lecture Syllabus / Written exam (1.5 hours) / Start of Easter Term / 75 % Simulation study / Report / End of Michaelmas Term / 25 %

AIMS The aim of this module is to introduce the basic quantum mechanical principles which underpin the design and operation of modern electronic devices. Mathematical formalism is kept to the minimum required for quantitative analysis of solid state devices. No previous knowledge of quantum phenomena is assumed. LECTURE SYLLABUS (Dr C. Durkan 12L) Nanotechnology & quantum phenomena

Lecture 1. Introduction to Nanotechnology. The orgins of Quantum Mechanics (QM). Lecture 2. Wave-particle duality, wave equation, momentum, energy and Schrodinger's equation, probability density and normalisation. Lectures 3 & 4. QM expression for electron current, solutions to Schrodinger's equation (finite potential well, infinite barrier-tunnelling). Atoms & molecules. Approximate methods in QM - example, Field Emission. Lecture 5. Atomic vibrations in materials - the simple harmonic oscillator as seen by QM - application to understanding the thermal & electrical properties of materials Lecture 6. Electrons in crystals, Kronig Penney model, energy bands, effective mass and carrier transport, density of states, Conductors Vs insulators. Lecture 7. The future of the transistor & Nanotechnology. Molecular electronics. Lectures 8 & 9. Visulising the nanoworld - scanning probe microscopy. Lectures 10 & 11. Basic device concepts utilizing particle and wave nature of electrons: Quantum wells, 2-D electron gas and high electron mobility transistors (HEMT), resonant tunnelling, ballistic, transistors, optically absorbing and radiating devices. COURSEWORK 4 hour interactive computer simulation on aspects of solid state and quantum electronics. A formal report of the simulation is required (approximately six hours' work).

OBJECTIVES

On completion of the module students should:

Be able to explain basic principles of quantum mechanics; Understand how wave phenomena of electrons can be predicted; Understand the origin of band structure in solids; Appreciate how nanoscale engineering allows for wave based electronic devices to be realised; Prepare for design and research in solid state electronic/opto-electronic devices.

Module 4G1 - Systems Biology

Leader: Dr G Vinnicombe Timing: Lent Term

Prerequisites: None

Structure: 16 lectures (including 2 examples classes and 1 seminar

Assessment: Material / Format / Timing / Marks Lecture Syllabus / Coursework 100 %

AIMS The course covers topics in machine learning and Markov proceses with application to examples from biology. No background in biology is assumed. The aims of this modules are to:

Illustrate the approaches which are taken to decipher the genetic information encoded in genomes

Demonstrate how evolutionary origin can be inferred from genome analysis

Consider the advantages and limitations of the use of aray technology to study gene expression

Illustrate how mathematical approaches can be used to study regulatory networks At the end of the course students will:

Have developed an understanding of methodologies currently used for genome sequence analysis

Understand the application of array techologies to study differential gene expression

Appreciate how regulatory networks can be analysed mathematically Further details and online resources TOPICS Introduction to genomics (2L, Dr G. Micklem)

Concepts of genes and genomes

Organisation of genetic material in cells Gene Expression Analysis (4L,Dr N. Barbosa-Morais- Course material for Dr Barbosa)

Introduction to microarray technology

Exploratory analysis and pre-processing of microarray data

Experimental design

Finding candidate genes for differential expression

Downstream analysis of gene expression data Systems biology: The regulation of gene expression (4L, Dr J. Goncalves and Dr I. Lestas)

Deterministic modelling. Notes for this part

Notes for this part. Examples paper Regulatory networks will be described dynamically using sensitivity analyses and estimates for random fluctuations.

Processes studied include gene expression, anabolic reactions and replications Genome annotation, evolution and analysis (4L, Dr. P. Lio)

Identification of interesting features in a genome sequence

Models of genome evolution

Introduction of algorithms for genome analysis and phylogenetic inference

Module Name: Advanced Photonic Devices  Module Acronym: APD  Module Manager: Dr David R. Selviah  Course Summary:  To provide an in‐depth understanding of the design, operation and performance of advanced  photonic devices including light emitting diodes, LEDs, a range of semiconductor lasers,  photodetectors, liquid crystal devices, photovoltaic solar cells for a variety of applications including  optical communications.  Learning Outcomes:  At the end of the course, students should be able to:  To understand fundamental physical principles of light generation, detection  and modulation and to use this to understand the operation and evolution of  advanced phototonic devices.   To develop design skills including defining a problem and identifying the  constraints, understanding user needs and cost drivers, understanding how  creativity can be used to establish innovative solutions and designs for  components to fulfil new needs ensuring that the device performance meets  the required specifications.   To understand the characteristics of particular device materials and device  fabricatin and to appreciate recent new developments   To understand the applications in which the advanced photonic devices are  used, including fibre optic communications and solar energy generation.  Course Content:  Photonic materials and properties  Glass; Crystals; Rare Earth‐doping; Semiconductors; Bulk; Multiple Quantum Wells, MQW;  Quantum dots; Liquid Crystal   Photon absorption; Spontaneous emission; Stimulated emission; Non‐radiative decay;  Birefringence; Energy bands; Temperature Dependence; Density of states; Fermi level;  Quasi‐Fermi levels; Direct and Indirect Bandgaps   States in the gap; impurities and defects; Carrier recombination; Non‐Radiative  recombination; Radiative recombination; Radiative efficiencies; Lifetimes; Electro‐optic  refractive index modulation: CIE, Plasma effect, QCSE; Non‐linearities LEDs, lasers, amplifiers and optical filters  Gratings; Fabrication techniques (Fibre and Semiconductors); Photonic Band gap  structures  The rate equation model; spectral linewidth; LEDs; Amplifiers;   Lasers; Fabry Perot cavity; Ring cavity; Laser Noise, Laser examples: VCSEL, DFB, DBR  (including SG, SSG and DS‐DBR), External; Laser direct modulation;   Semiconductor laser fabrication (Waveguide, vertical cavity)   Photodetectors  PIN photodiode; Solar Cells; Photo‐multipliers; Fabrication Techniques (Mesa,  capacitance, waveguide or vertical structure)  Liquid Crystal Photonic Devices  Assessment:  A 2.5 hour unseen written examination is held under UCL MSc examination regulations at UCL.  Tutorials/Workshops:  An afternoon tutorial is held on the Friday afternoon of the week following the module  delivery or as specified by the timetable. 

Module Name: Ultra‐Fast Laser and non linear optics  Module Acronym: UFLNO Module Manager: Dr Angus Bain Course Summary:  Introduce the theory and operation of short pulse lasers and their implication in non-linear optics phenomenons

Learning Outcomes:  TBC Course Content:  TBC Assessment:  A 2.5 hour unseen written examination is held under UCL MSc examination regulations at UCL.  Tutorials/Workshops:  TBC 

Module 4B18 - Advanced electronic devices

Leader: Professor M J Kelly (mjk1@eng)

Timing: Lent Term

Prerequisites: unknown

Structure: 17 lectures

Assessment: Material / Format / Timing / Marks Lecture Syllabus / Written exam (1.5 hours) / Start of Easter Term / 100 %

AIMS

1. Introduce the ideas behind modern electronic devices as used in computing and communications (including microwave and radar applications)

2. Describe the relevant technologies for device fabrication 3. Describe the operation and limitations for the various devices 4. Introduce systems considerations leading to choice of devices 5. Describe some current ideas and research

LECTURE SYLLABUS

1. Introduction and Background Materials 2. Homojunctions and Heterojunctions 3. Key Fabrication Technologies 4. Physics of Heterojunctions 5. High-Field, High-Frequency Transport 6. The Deep Submicron Silicon Transistor and Circuits 7. Modern Field Effect Transistors

• (i) Deep Submicron Silicon FETs and GaAs MESFETs 8. Modern Field Effect Transistors

• (ii) Heterojunction Field Effect Transistors 9. Heterojunction Bipolar Transistors 10. Microwave Sources

• (i) Gunn diodes and IMPATT Diodes 11. Microwave Sources

• (ii) Tunnel diodes and tunnel transistor circuits 12. Microwave Detectors

• (i) Schottky and Planar-doped-barrier diodes 13. Microwave Detectors

• (ii) Tunnel detector diodes and others 14. Optoelectronic Device Analogues 15. Choice of Device against requirement 16. Current New Device Ideas 17. The Future

OBJECTIVES

Students should have a sound appreciation of the principles, fabrication, performance and applications of a

number of modern electronic devices.

Module Name: Photonic Sub‐Systems   Module Acronym: PSS  Module Manager: Dr Cyril Renaud   Course Summary:  The course covers the principles of Photonic sub‐systems including:  External optical modulators, optical amplifiers both semiconductor and fibre, Photonics Control loops and frequency  synthesis, Photonic Transmitters and Receivers including circuitry, noise considerations, Clock recovery and Automatic Gain  Control. It will also consider emerging topics such as Coherent systems and Sub‐system integration as well as using guest  lecture slots to cover state of the art research topics.  Learning Outcomes:  Through the understanding of key concepts and operator of Photonic subsystems the student will be able  to acquire the necessary skills to build and design complex photonic system. They will also learn what would  be the future development of the field being given on overview of some of the most recent progresses.  Course Content  Modulators,  EAM, AOM MZM  Amplifiers  ... SOA, EDFA, MOPA  Photonics Control loops and frequency synthesis OIL, OPLL, OIPLL, Comb  generation  Photonics Transmitters  Laser Drive Circuits, Forward error correction ,Laser driver examples, multiplexer/Demultiplexer  examples  Photonics Receivers  Receivers circuit ,Noise, Clock recovery, Automatic Gain Control  Coherent Systems  Master oscillator, Heterodyne/Homodyne, Coherent optical receiver  Sub‐system integration (DS & CR) (1.5 H each)  Optical interconnect and hybrid integration, monolithic semi‐conductor integration (evanescent  coupling, QWI, III‐V on silicon substrate)  Guest Lectures  Current UCL research example on Photonics sub‐systems (2 seminars) 

Assessment:  A two and half hour unseen written examination will be held under UCL MSc examination regulations at  UCL  Tutorials/Workshops:  Three hour tutorial 

Module Name: Broadband Technologies and Components  Module Acronym:  BTC  Module Manager: Dr John Mitchell  Module Type: Introductory  Course Summary:  This module introduces the technologies involved in the design and construction of transport  networks (wireless, copper and optical) and the applications areas in which they are used. It  covers the physical fundamentals of the generation, guided transmission, amplification and  reception of light, the design consideration and techniques used in radio networks, the  principles of digital transmission and the role of optics and wireless in both access and core  networks.  Learning Outcomes:  At the end of the course, students should be able to:  Describe the operation of optical components such as lasers, receivers, optical amplifiers  wavelength filters etc.  Describe the elements required for the construction of optical, wireless and copper links  in technical terms.  Perform basic system design calculations for both optical (in terms of power and/or  dispersion budget) and wireless systems (power budget) as well as consider to a first  approximation the impact of noise.  Appreciate the role of optical and wireless links in the construction of communications  networks.  Course Content  Principles of Digital Transmission  Optical Fibre Principles  Principles of Photon Generation and Reception  Optical Amplification and Wavelength Division Multiplexing  Design of Optical Links  Optical Networking  Radio Propagation  Radio System concepts  Microwave Transmission systems    Assessment:  A 2 and half hour unseen written examination will be held under UCL MSc examination  regulations at UCL.  Tutorials/Workshops:  A two hour tutorial will be held in the weeks following the course. 

Module 4B14 - Solar Electronic Power: Generation and Distribution

Leader: (@eng)

Timing: Michaelmas Term

Prerequisites: 3B3 and 3B6 useful

Structure: 12 lectures + examples class + experimental design exercise

Assessment: Material / Format / Timing / Marks Lecture Syllabus / Written exam (1.5 hours) / Start of Easter Term / 75 % Experimental work and design exercise / coursework / End of Michaelmas / 25 %

AIMS

The aim of the module is to introduce solar electronic power for terrestrial use within a total system context. There are two distinct parts to the module. The first covers the main solar cell types suitable for terrestrial power generation and the underlying physical mechanisms utilised in photovoltaic solar energy conversion. The second examines the connection of solar cells to the power system.

LECTURE SYLLABUS (Professor G.A.J. Amaratunga, and Professor W.I. Milne)

• Lecture 1 - The role of solar energy in terrestrial power generation and the photovoltaic effect • Lectures 2,3 - Underlying physical principles of p-n junction solar cells • Lecture 4 - Semiconductor materials for solar cells • Lecture 5 - Solar power design study and cell demonstration • Lecture 6 - Equivalent circuit representation, efficiency calculation • Lecture 7 - Design of solar cells to maximise efficiency • Lectures 8,9 - Interfacing of solar cells to the mains electricity supply • Lecture 10 - Policy issues related to use of solar energy and current status • Lectures 11,12 - Seminars given by guest speakers from industry and a policy body.

COURSEWORK

Experimental work measuring two types of solar cells, crystalline Si and low-cost amorphous Si, and design exercise for application in a typical domestic consumer environment.

OBJECTIVES

On completion of the module, students should:

• Understand clearly the physical operating principles of solid state photovoltaic solar cells. • Be aware of the main engineering aspects of maximising energy conversion efficiency from solar

cells. • Know how connection of solar cells into power modules is achieved. • Understand how solar cells are connected to the grid electricity supply using power electronic systems. • Be up to date on the latest technical developments leading to enhanced photovoltaic energy

conversion. • Appreciate the interaction of environmental, social, economic and political factors which are rapidly

changing to promote the use of photovoltaic power generation.

Be aware of the benefits of using solar power generation for substantial economic development across

THe planet

Module 4B11 - Photonic Systems

Leader: Dr. T D Wilkinson

Timing: Michaelmas Term

Prerequisites: 3B6 useful but not essential

Structure: 16 lectures

Assessment: Material / Format / Timing / Marks Lecture Syllabus / Written exam (1.5 hours) / Start of Easter Term / 100 %

AIMS The aim of this module is to examine the advance of optical techniques into electronic systems for computation and communications. Two dimensional and three dimensional transmission, storage and processing of information using free space optics are discussed. Applications such as computer generated holography, optical correlation and optical switching are highlighted through the use of liquid crystal technology. LECTURE SYLLABUS Fourier Holograms and Correlation (6L, Dr T.D. Wilkinson)

• Fourier Transforms and Holography introduction and motivation; • Fourier transforms: theoretical and with lenses: resolution of optical systems; • Correlation and convolution of 2-dimensional signal patterns; • Dynamic and fixed phase holograms.

Electro-Optic Systems (6L, Dr T.D. Wilkinson) • Free space optical components; wave plates and Jones matrices • Spatial light modulation and optical systems; • Shadow routing crossbars and the perfect shuttle interconnect; Holographic crossbars; • Wavelength filters and routing systems • Smart pixels and optical processing; • The BPOMF and 1/f JTC correlators.

Optical Waveguide Technology (4L Dr P. Hands) • What is an optical waveguide - a simple definition • Simple raytracing of waveguides • Maxwell and the wave equations - a 'light' introduction • Single mode and multimode structures • Slab and fibre waveguides • Key operational parameters for selected applications • Principle technologies in use today - glass, e/o crystals, polymers and photonic crystals

Demonstrations in the lectures will include: 1. 2D Fourier transform and diffraction patterns 2. Computer generated hologram for optical fan-out. 3. Optical beam steering with dynamic holograms on SLMs.

OBJECTIVES On completion of the module students should:

• Appreciate the derivation and application of diffraction and Fourier optics; • Be able to apply Fourier techniques to simple optical spatial patterns; • Understand the principles of optical correlation and holography; • Be able to explain the principles and construction of spatial light modulators (SLMs); • Appreciate the application of SLMs to parallel processing and the functionality of smart pixel devices; • To understand the operating principles and theory of optical waveguides • Explain what an optical mode is • Describe the applications and desired parameters of waveguides • Describe the basic technologies available in optical waveguides

Module 4B6 - Solid State Devices and Chemical/Biological Sensors

Leader: Dr. D. P. Chu (dpc31@eng)

Timing: Lent Term

Prerequisites: 3B5 and 3B6 useful

Structure: 14 lectures (including examples classes)

Assessment: Material / Format / Timing / Marks Lecture Syllabus / Written exam (1.5 hours) / Start of Easter Term / 100 %

4B6 Lecture Notes

AIMS The aim of this module is to introduce the student to the theory, and design of MOS Field-Effect Transistors (MOSFETs), based on both single crystal and thin-film materials. This will be followed by application examples, including chemical/biological sensors in sensor technologies,ferroelectric and magnetic random access memories (FRAM and MRAM) in non-volatile memory technologies, and active matrix liquid crystal displays and micromechanical displays in display technologies. Emphasis will be placed on both device physics and application technology. . LECTURE SYLLABUS

• MOS Devices Introduction (4L) Properties of MOS Capacitors, Capacitance - voltage characteristics; MOSFET structures and operation.

• MOS Devices & Thin Film Transistors (6L) Short channel and hot electron effects; Applications and future trends in miniaturising single crystal devices; Amorphous and polycrystalline silicon and other thin-film transistors. Organic thin-film transistors, Ion-sensitive thin, film trasistors and biosensors.

• Non-Volatile Memory Devices and Displays (5L) Ferroelectrics and ferroelectric random access memories; Giant magneto-resistance (GMR) and magnetic random access memories. Directly driven liquid crystal displays; Active matrix liquid crystal displays and projectors; Micromechanical projectors; Other types of displays and emerging technologies.

OBJECTIVES On completion of the module the student should:

• Understand MOSFET theory and standard approximations; • Be able to correlate material properties and conduction mechanisms with the MOSFET electrical

characteristics, for single crystal, amorphous and polycrystalline devices; • Understand the basic properties of ferroelectrics and its application for memory devices. • Understand the concept of giant magneto-resistance and its applications including non-volatile

memory devices • Understand the operation of liquid crystal displays; • Understand the construction and operation of micromechanical displays, and other emerging display

technologies. References

• Lecture Notes. • S M Sze;" Physics of Semiconductor", John Wiley,1981, Chapters 7 and 8.But note that there is rather

nore than covered in the lectures. • J Singh : Semiconductor Devices", John Wiley 2001 • Article "Thin -Film Transistors", by P Migliorato, in Encylopedia of Physical Science and

Technology, (Excluding the mathematical derivations), distributed at the lectures. • J F Scott: "Ferroelectric Memories", Springer, 2000.

Module 4G2 - Biosensors

Leader: Dr A Seshia (Engineering) and Prof E A H Hall (Chemical Engineering and Biotechnology)

Timing: Lent Term

Prerequisites: None

Structure: Lectures + coursework

Assessment: Material / Format / Timing / Marks Coursework / Two coursework assignments / The first assignment is laboratory based with reports due mid-term and the second assignment will involve team-based design projects assessed by group presentation and reports due end of term / 50% per assignment

AIMS This course covers the principles, technologies, methods and applications of biosensors and bioinstrumentation. The objective of this course is to link engineering principles to understanding of biosystems in sensors and bioelectronics. It will provide the student with detail of methods and procedures used in the design, fabrication and application of biosensors and bioelectronic devices. The fundamentals of measurement science are applied to optical, electrochemical, mass, and pressure signal transduction. Upon successful completion of this course, students are expected to be able to explain biosensing and transducing techniques, design and construct biosensors instrumentation. Further details and online resources LECTURE SYLLABUS Introduction

• Overview of Biosensors • Fundamental elements of biosensor devices • Engineering sensor proteins

Electrochemical Biosensors • Electrochemical principles • Amperometric biosensors and charge transfer pathways in enzymes • Glucose biosensors • Engineering electrochemical biosensors

Optical Biosensors • Optics for biosensors • Attenuated total reflection systems

Mass and Acoustic Biosensors • Saubrey formulation • Acoustic sensor formats • Quartz crystal microblalance

Lab-on-chip technologies • Microfluidic interfaces for biosensors • DNA and protein microarrays • Microfabricated PCR technology

Diagnostics for the real world • Communication and tracking in health monitoring • Detection in resource limited settings

COURSEWORK The coursework will be assessed on two marked assignments. The first assignment will involve a laboratory session illustrating the functional demonstration of glucose sensor technology. This assignment will be marked on individual reports handed in during week 5 of term. The second assignment will involve a team-based design exercise. This design exercise will involve teams of 4-6 students engaged in designing a real-world biosensor. Design projects will be discussed during week 2 of term and team assignments completed in week 3. The design assignment will be marked on a team presentation in week 7 with written reports due in week 8. OBJECTIVES

On completion of the module students should: • Be able to extend principles of engineering to the development of bioanalytical devices and the design

of biosensors • Understand the principles of linking cell components and biological pathways with energy

transduction, sensing and detection • Appreciate the basic configuration and distinction among biosensor systems • Demonstrate appreciation for the technical limits of performance • Make design and selection decisions in response to measurement problems amenable to the use of

biosensors

Module 4B20 - Display Technology

Leader: Dr T D Wilkinson ([email protected])

Timing: Lent

Prerequisites: none

Structure: 14L

Assessment: Material / Format / Timing / Marks Lecture Syllabus / Written exam (1.5 hours) / Start of Easter Term / 100 %

AIMS The purpose of this module is to cover the technology behind the displays arena and highlight the technological developments that have occurred in this fast moving industry. Due to the vast number of different displays that are in production today, the course will be centred on three main subsections which represent the biggest growth areas in the past few years. The purpose of the module is to describe and analyse the technology behind the displays themselves starting from the fundamentals and leading on to the various sub-components and then the final mass-produced display system. LECTURE SYLLABUS

• Introduction to display optics – 4 lectures • Liquid crystal displays – 4 lectures • Emissive display technology – 3 lectures • Projection displays – 3 lectures

OBJECTIVES On completion of the module students should: Have a basic understanding of optics for use in displays Understand the basics of raytracing Understand the role of polarisation and birefringence Know the basic structure of key LC display modes, TN, STN, VAN, IPS Understand the principles of addressing fboth passive and active and the importance the TFTs The basic physics of LC materials, especially nematics and chiral nematics The fundamentals of emmissive technologies from CRLs, to EL to OLEDs Know the role of the backplane in emmissives, especially OLEDs and PLEDs Understand the basic optical structures of rear and from projection Understand the concept of etendu and how its limits are interpreted Build up a picture of how key display elements fit both manufacture and the environment SYLLABUS Introduction to display optics – 4 lectures In order to understand display technology in general some fundamental properties of optics must be covered that are common to most display systems. This includes the basics of ray tracing and physical topics, reflection, TIR, polarisation and birefringence. This will be covered in these two opening lectures. 1) Liquid crystal displays – 4 lectures LCDs have become a very dominant force in the modern display market from simple calculator displays right through to large area (>50 inch diagonal) flat panels. This section will start with the fundamental properties of liquid crystal materials and then develop the optics of these materials through to the latest generation of displays technologies such as VAN, IPS and ACS as well as more novel effects such as blue phases, chiral systems and scattering displays. 2) Emissive display technology – 3 lectures Emissive displays are a well established technology with electro-optics such as CRTs, vacuum fluorescents and electroluminescent displays being in production. Displays such as plasma panes are also well established and new technologies such as OLED and PLEDs are now starting to make a serious impact in the displays market. This section will outline how these displays function and are fabricated as well as the enhancements that can be done to improve their overall performance. 3) Projection displays – 3 lectures

The final section will describe a wide range of displays loosely based on projection from classical image based

devices using LCD to DLP based pixel engines to pico projectors. Also included in this will be some of the

emerging display technologies such as those used in 3D cinema (both Real D and Dolby) as well novel displays

such as Actuality and the Wedge.

Module 4F12 - Computer Vision and Robotics

Leader: Professor R Cipolla (cipolla@eng)

Timing: Michaelmas Term

Prerequisites: None

Structure: 16 lectures (including 3 examples classes)

Assessment: Material / Format / Timing / Marks Lecture Syllabus / Written exam (1.5 hours) / Start of Easter Term / 100 %

AIMS The module aims to introduce the principles, models and applications of computer vision. The course will cover image structure, projection, stereo vision, and the interpretation of visual motion. It will be illustrated with case studies of industrial (robotic) applications of computer vision, including visual navigation for autonomous robots, robot hand-eye coordination and novel man-machine interfaces. LECTURE SYLLABUS

• Introduction (1L) Computer vision: what is it, why study it and how ? The eye and the camera, vision as an information processing task. A geometrical framework for vision. 3D interpretation of 2D images. Applications.

• Image structure (2L) Image intensities and structure: edges and corners. Edge detection, the aperture problem. Corner detection. Contour extraction using B-spline snakes. Case study: tracking edges and corners for robot hand-eye coordination and man-machine interfaces.

• Projection (4L) Orthographic projection. Pin-hole camera model. Planar perspective projection. Vanishing points and lines. Projection matrix, homogeneous coordinates. Camera calibration, recovery of world position. Weak perspective, the affine camera. Projective invariants. Case study: 3D models from uncalibrated images using PhotoBuilder.

• Stereo vision (2L) Epipolar geometry and the essential matrix. Recovery of depth. Uncalibrated cameras and the fundamental matrix. The correspondence problem. Affine stereo. Case study: 3D stereograms.

• Object detection and tracking (4L, Prof A. Blake and Prof R. Cipolla) Basic target tracking; Kalman filter; application to B-spline snake. Active appearance models. Chamfer matching, template trees. Case study: intelligent automotive vision system.

• Example classes (3L, Prof R. Cipolla) Discussion of examples papers and past examination papers.

OBJECTIVES On completion of the module, students should:

• Be able to design feature detectors to detect, localise and track image features; • Know how to model perspective image formation and calibrate single and multiple camera systems; • Be able to recover 3D position and shape information from arbitrary viewpoints; • Appreciate the problems in finding corresponding features in different viewpoints; • Analyse visual motion to recover scene structure and viewer motion, and understand how this

information can be used for navigation; • Understand how simple object recognition systems can be designed so that they are independent of

lighting and camera viewpoint; • Appreciate the industrial potential of computer vision but understand the limitations of current

methods.

Module 4F2 - Robust and Nonlinear Systems and Control

Leader: Dr JM Goncalves

Timing: Lent Term

Prerequisites: 3F1 and 3F2 assumed

Structure: 14 lectures + 2 examples classes

Assessment: Material / Format / Timing / Marks Lecture Syllabus / Written exam (1.5 hours) / Start of Easter Term / 100%

AIMS

The aims of this module are to introduce fundamental concepts from nonlinear dynamic systems and to introduce techniques for the analysis and control of nonlinear and multivariable systems.

LECTURE SYLLABUS

PART 1:MULTIVARIABLE FEEDBACK SYSTEMS (7L + 1 example class, Dr G. Vinnicombe)

• Performance measures for multi-input/multi-output systems. • Stabilization: stability conditions, all stabilizing controllers, small gain theorem. • Models for uncertain systems. • Robust stability and performance. Loop shaping design. • Design of multivariable systems.

PART 2: NONLINEAR SYSTEMS (7L + 1 example class, Prof J.M.Maciejowski)

• Dynamical systems: • Differential equations and trajectories. • Equilibria, limit cycles, chaos and other phenomena. • Examples from biology and mechanics. • State space stability analysis: • The theorems of Lyapunov, LaSalle invariance principle. • Stability of nonlinear circuits and neural networks. • Stability of predictive control. • State-space tools for robustness analysis. • Input/output stability analysis: • Describing functions • Small gain theorems, circle and Popov criteria, passivity.

OBJECTIVES

On completion of the module, students should:

• Be able to apply standard analysis and design tools to multivariable and nonlinear feedback systems. Appreciate the diversity of phenomena in nonlinear systems.

Module 4F6 - Signal Detection and Estimation

Leader: Professor W J Fitzgerald (wjf@eng)

Timing: Michaelmas Term

Prerequisites: 3F1 and 3F3 assumed; 4F7 useful

Structure: 16 lectures (including examples classes)

Assessment: Material / Format / Timing / Marks Lecture Syllabus / Written exam (1.5 hours) / Start of Easter Term / 100 %

AIMS The availability of modern digital hardware now allows for many statistical techniques to be implemented, some in real-time, and applied to data and signal processing applications. The aim of this module is to build on module I7 and to introduce some statistical modelling to data and signals analysis. These techniques will be applied to both the detection of signals and the estimation of parameters of models that can account for the observed data. LECTURE SYLLABUS Signal detection

• Hypothesis testing. • Likelihood ratios. • Probability of detection and false alarms. • Receiver operator characteristics. • The matched filter.

Bayes theorem and maximum a-posteriori methods • Introduction of prior knowledge. • Derivation of Bayes theorem. • Joint and Marginal estimators. • Effects of different priors. • Model selection using evidence and other methods. • Parameter estimation. • Kalman Filters and tracking.

Maximum entropy • How to assign probabilities. • Maximum entropy and Fisher Information. • Spectral estimation. • Image recovery and Inverse problems.

Non-linear methods • Examples of non-linear systems. • Linear in the Parameters models. • Volterra expansion and NARMAX models.

Lectures will be supported by interactive computer demonstrations using MATLAB. OBJECTIVES On completion of the module students should:

• Have a good understanding of detection and estimation theory and practice; • Appreciate the shortcomings of some of the various approximations used in the subject; • Be able to apply the methods described to a host of various problems; • Be able to run and understand software implementations of the methods.

Module 4F7 - Digital Filters and Spectrum Estimation

Leader: Dr S.S. Singh (sss40@eng)

Timing: Michaelmas Term

Prerequisites: 3F1 and 3F3 assumed

Structure: 16 lectures (including examples classes)

Assessment: Material / Format / Timing / Marks Lecture Syllabus / Written exam (1.5 hours) / Start of Easter Term / 100 %

AIMS This module continues the study of digital signal processing (DSP) systems, continuing from the basics studied in 3F1/3F3. The first aim of the course is to introduce the fundamental concepts and methods of adaptive filtering, i.e. filters which attempt to adapt their parameters automatically on-line to the data at hand - good examples of this are echo cancellation in telephony or background noise cancellation for aircraft pilots. Modern filtering theory will be introduced for state-space models (i.e. the Kalman filter) and for Hidden Markov Models. This part of the course is an extension of the basic filter design material combined with the optimal filtering material from 3F3. In the second part of the course optimal spectrum estimation is studied. The aims are to develop the basic techniques for estimating the power spectrum of a random signal, i.e. what is the average frequency content of a signal, based just on a set of measured signal values. The course introduces both non-parametric (Fourier transform-based) and parametric model-based methods for this. LECTURE SYLLABUS Adaptive Filters (8L, Dr S.S. Singh)

• Optimal linear Filter: Wiener Filter • LMS Algorithm and its variants • Adaptive Filtering without Reference Signal • RLS Algorithm • State-space models and the Kalman filter • Hidden Markov Models • Applications

Spectral estimation (8L, Dr S.S. Singh) • Non-Parametric Methods: Data Windows; Frequency resolution; Correlogram; Periodogram; Bartlett;

Blackman-Tukey; Welch methods • Parametric Methods; Autogressive Moving Average (ARMA) models; Sinusoidal Models; Yule-

Walker Equations; Least Squares; Maximum Likelihood; Lectures will be supported by interactive computer demonstrations using MATLAB. OBJECTIVES On completion of the module students should:

• Understand the theory and objectives of optimal (Wiener) filtering in an adaptive setting • Be able to recognise and describe the classes of problem where adaptive filtering might be applied; • Be able to describe the implementation of the LMS and RLS adaptation algorithms, and understand

the their convergence properties. Understand the basic principles of Kalman filtering and filtering for Hidden Markov Models;

• Understand the principles of spectrum estimation, windowing, resolution; • Understand and be able to apply non-parametric spectral analysis methods; • Be able to specify data requirements in order to achieve specified spectral analysis criteria; • Be able to formulate signal processing tasks in a model-based framework, and to estimate the model

parameters

Module 4F8 - Image Processing and Image Coding

Leader: Dr J Lasenby (jl@eng)

Timing: Michaelmas Term

Prerequisites: 3F1, 3F3 assumed; 4F7 useful

Structure: 16 lectures (including examples classes)

Assessment: Material / Format / Timing / Marks Lecture Syllabus / Written exam (1.5 hours) / Start of Easter Term / 100 %

AIMS Sophisticated processing of images by digital hardware is now fairly common, and ranges from special effects in video games to satellite image enhancement. Three of the main application areas are video data compression, image enhancement, and scene understanding. This module introduces the key tools for performing these tasks, and shows how these tools can be applied. The module will be split into two courses of 8 lectures each: Image Processing, and Image Coding. Lectures are supported by computer demonstrations. There will be one examples sheet for each of the two 8-lecture sections. LECTURE SYLLABUS Image processing (8L, Dr J Lasenby) This course covers the following topics, relevant to most aspects of image processing:

1. Two-dimensional linear system theory, as applied to discretely sampled systems: • The continuous 2D Fourier transform and its properties • Digitisation, sampling, aliasing and quantisation • The discrete 2D Fourier transform (DFT)

2. 2D Digital Filters and Filter Design • Zero phase filters • Ideal 2D filters: rectangular and bandpass • Filter design: the window method

3. Image Deconvolution • Deconvolution of noiseless images -- the inverse filter • The Wiener filter (conventional and Bayesian derivations) • Maximum Entropy deconvolution

4. Image Enhancement • Contrast enhancement • Histogram equalisation • Median filtering

Image coding (8L, Dr N.G. Kingsbury) This course concentrates on video data compression techniques, and covers the following topics:

1. Characteristics of the human visual system which are important for data compression, such as spatial and temporal frequency sensitivities and distortion masking phenomena.

2. Block transforms (including the discrete cosine transform) and overlapped transforms, to provide good energy compaction of typical images.

3. Optimal quantisation techniques for coding the transform coefficients to provide maximum data compression.

OBJECTIVES On completion of the module, students should:

• Understand the main elements of 2-dimensional linear system theory; • Be able to design linear spatial filters for a variety of applications (smoothing etc); • Understand techniques for the restoration and enhancement of degraded images; • Be familiar with the main characteristics of the human visual system with particular reference to

subjective criteria for image data compression;

• Understand techniques for image coding using transform methods including the Discrete Cosine Transform (as used in the JPEG coding standard) and overlapped transforms;

• Understand methods for coding transform coefficients to provide maximum data compression.

Module Name: Optical Transmission Network  Module Acronym:  OTN  Module Manager: Prof Polina Bayvel     Course Lecturers: Prof Polina Bayvel, Dr Seb Savory, Dr Phil Watts, Prof Takis  Hadjifotiou. Guest lecturers: Dr Yannis Benlachtar – Principles of OFDM Dr Steve  Desbruslais – Submarine System Design   1.1.1 Summary  This module provides the student with an advanced understanding of the physical layer of optical transmission  systems and networks from short‐haul (access) to long‐haul (core and submarine) system applications. It  includes in‐depth understanding of optical transmission system design, optical amplifiers and amplified  systems and the operation of wavelength division multiplexed systems. Both linear and nonlinear sources of  transmission impairments are analysed. The choice of modulation formats, fibre dispersion and electronic  processing techniques are discussed with the aim of maximising the spectral efficiency, channel capacity and  operating system margins.   1.1.2 Learning Outcomes  At the end of the course, students should be able to:  Understand the principles of optically amplified optical transmission systems, power levels, noise  accumulation and the trade‐off between optical signal to noise ratio and fibre nonlinearity Carry  out power budget calculations for an optically amplified links  Understand signal transmission impairments: fibre dispersion, PMD, fibre nonlinearity  Carry out calculations quantifying the effects of dispersion and nonlinearity on an optical link  Understand the concept of spectral efficiency; appreciate the difference between baud rate and  bit rate and describe different modulation formats that can be used  Understand and apply the principles of electronic processing (transmitter and receiver based)  and the basics of coherent detection  Describe & analyse a variety of optical network architectures: access vs core, static vs dynamic  Understand the optical components used for signal routing in wavelength routed networks  Describe current research in optical communications and explain expected future trends in  optical communications   1.1.3 Syllabus  Single mode optical fibre propagation  Here the physical properties that effect the propagation of optical signals are explained and  the techniques for modelling these are described.  Attenuation  Dispersion  Polarisation mode dispersion  Nonlinear effects  Nonlinear Schroedinger Equation  Optically amplified systems and compensation  Optically amplified systems for long distance transmission and the techniques used to  compensate for the fibre transmission impairments are described.  Noise accumulation  Dispersion compensation 

DCF  Dispersion maps  Electronic dispersion compensation  Advanced Modulation Formats  Spectral efficiency  IMDD and Phase Shift Keyed (PSK) formats   OFDM  Coherent systems  Dual polarization QPSK  Digital coherent transceivers  Digital Signal Processing  Wavelength division multiplexing  The principle of WDM for increasing the system capacity, the properties components required and  the additional propagation impairments that occur are described.  AWG based Wavelength MUX/DEMUX  EDFA: gain bandwidth and gain flattening  Interchannel nonlinear propagation impairments: FWM, XPM   Optical Networks  Here examples of typical optical networks and their particular characteristics are described.  Why route in the optical domain?  Wavelength Routed Optical Networks  Dynamic Optical Networks (packet switching, optical burst switching, load balancing)  Reading List  The following are books that you may find useful for this section of the course.  Core and metro networks, Alexander Stavdas, Wiley Series in Communications, Networking and  Distributes Systems, 2010 – covers both systems and networks  Fiber‐optic Communication Systems,Govind P Agrawal, Wiley‐Interscience; 3rd edition, 2002  Optical Fiber Telecommunications V B, Fifth Edition: Systems and Networks (Optics and Photonics), I  Kaminow, T Li and A E Willner, Academic Press; 5th edition, 2008  Multiwavelength Optical Networks, T E Stern, G Ellinas and K Bala, Cambridge Univ Press 2009 

Module Name: Nanotechnology and Healthcare Module Acronym: NTH  Module Manager: Dr Mick Flannagan Course Summary:  This course covers the application of nano‐technology to both devices and instrumentation for the doctor‐patient interface, the pharmaceutical industry, the medical research laboratory and, in its more advanced techniques, to the hospital environment. The course includes descriptions and discussions of the underpinning techniques, the present state of the art, the future potential, the business context and the regulatory constraints. 

Module Name: RF Circuits Sub‐Systems & Devices  Module Acronym:  RFCD  Module Manager: Dr Edward Romans  Course Summary:  To give students an understanding of RF devices, circuits and system architectures, including RF  device construction and their properties.    Learning Outcomes:  At the end of the course, students should be able to:  Understand the basic science and physical mechanisms underlying the operation of  semiconductor RF devices;  Understand the design, fabrication, packaging, operation and characteristics of a wide  range of two and three terminal RF devices;   Compare and contrast established and emerging rf device technologies for different  applications, including understanding economic and manufacturing constraints.  Analyse device performance and understand figures‐of merit, limitations, design criteria  and implications for circuits;  Understand the design of RF circuits, key applications and integration technology;   Understand the tools and analysis techniques used for RF circuit design and  optimisation.   Course Content:  Review of carrier dynamics: effective mass, scattering, mobility; drift and diffusion  currents; negative differential resistance.   Two‐terminal devices (Schottky and tunnel barriers, detector and mixer diodes,  varactors, PIN switches, transferred electron devices and avalanche sources).   Radio frequency CMOS technology. Comparison with other semiconductor technologies.  Three‐terminal devices (bipolar devices including SiGe and III‐V HBTs, GaAs MESFETs,  III‐V HEMTs, and SiGe heterostructure MOSFETs).   Microwave transmission line theory and scattering parameters.  RF circuit design techniques in MIC and MMIC form.  Amplifier gain, noise and stability analysis using scattering parameters.   Applications: RF transmitters and receivers, amplifier linearisation, mixers, modulators.   Integration technology and the design of monolithic RF circuits. Critical comparison of  different rf technologies and manufacturing processes.  Assessment:  A 2.5 hour unseen written examination will be held under UCL MSc examination regulations at  UCL.  Tutorials/Workshops:  An afternoon tutorial is offered on the Friday afternoon of the week following the module  delivery.  

Module Name: Software for Network Services and Design  Module Acronym:  SNS  Module Manager: Dr  Miguel Rio  Course Summary:  This course will provide an introduction to Object Oriented Programming and the Java  programming language. It will have a big emphasis on Network programming using the socket  paradigm. Finally there will be an introduction to Software Engineering techniques and to UML  Learning Outcomes:  At the end of the course, students should be able to:  Code simple programs in Java  Build a client/server applications using TCP sockets  Build UDP based socket programs  Know the basic Software Engineering methods  Know how to specify a distributed application in UML  Know how to build an application for the Android platform  Course Content  Introduction to Java  Introduction to the Java Class Library  Socket Network Programming  Advanced Network Programming  Software Engineering Techniques  UML – Unified Modelling Language    Assessment:  Examination will by assignment Tutorials/Workshops:  About half of the course will take place in the Laboratory doing practical exercises  Tutorial will consist of a two hour session  Guest Speakers:  Dr Andrea Savigni, an IT consultant in the area of Software Engineering will deliver the last day of  Lectures.   

Module Name: Physics and optics of Nanostructures  Module Acronym:  PON  Module Manager: Dr  Oleg Mitrofanov  Course Summary:  Research on nanostructures has revolutionized the field of optics and optical devices. This course will focus on unique optical properties of structures with dimensions smaller than the optical wavelength. From the fundamental principles to the latest advances in research, the course will explore light‐matter interactions on the nanometer scale, size effects in small objects and the use of nano‐structures in modern optical devices. The aim of the course is to provide an introduction the diverse field of nano‐optics. 

Module 4E4 - Management of Technology

Leader: Dr T H W Minshall (thwm100@eng)

Timing: Michaelmas Term

Prerequisites: None

Structure: Eight 2-hour sessions incorporating industry speakers.

Assessment: Material / Format / Timing / Marks Coursework / Report / Start of Lent Term / 100 %

AIMS The aim of this course is to provide students with an understanding of the ways in which technology is brought to market. It does this by focusing on key technology management topics from the standpoint of an established business as well as new entrepreneurial ventures. Strong emphasis is placed on frameworks and methods that are both theoretically sound and practically useful. It will provide students with both an understanding of the issues and the practical means of dealing with them in an engineering context. LECTURE SYLLABUS

1. Introduction: Technology in the business context • Technology origins and evolution. • How technology generates value. • What are technology management processes and how are they used?

2. Developing new technologies: Managing research and development (R&D) and intellectual property rights (IPR)

• How do you manage a portfolio of R&D projects? • What are the key aspects of IPR, and how are they managed? • How do you put a value on R&D projects and IPR?

3. Making money from new technologies: How to choose the right business model • What are the different ways in which an idea can be brought to market? • Why do most innovations reach the market through new firms rather than established firms? • How do new and established firms work together?

4. Resources to bring ideas to market: 'Make versus Buy' (MvB) and strategic alliances • Strategic context for MvB and partnering decisions. • Tools and techniques to support MvB decisions. • Working in partnership with other organisations.

5. New product introduction (NPI) 1: Why is it so hard? • Challenges in NPI. • Balancing technology and market issues. • People issues.

6. New product introduction (NPI) 2: How to manage the process • Structuring the NPI process • New product life cycles, time-to-market and metrics • Completing an NPI project on time and within budget

7. Planning for the future: Technology strategy and planning • Strategic technology management. • Planning for the future by linking technology, product and market considerations -

Technology Roadmapping (TRM). • Scenario planning tools to help manage the uncertainties of the future.

8. Technology management in application • Company case studies of technology management – one start-up, one large corporation –

delivered by senior managers from the companies. • Review of module and guidelines for coursework.

OBJECTIVES On completion of the course, students should:

• Have a thorough appreciation of how technology is brought to address market opportunities, and how technology management supports that process.

• Be able to assess and utilise appropriate technology management methods in different contexts. • Understand the core issues of technology management and the practical means of dealing with them in

an engineering context.

Module 4E1 - Technological Innovation

Leader: Dr THW Minshall (thwn100@eng)

Timing: Michaelmas Term

Prerequisites: None

Structure: Four 3.5-hour sessions (total 14 hours) + one 2-hour guide to coursework session

Assessment: Material / Format / Timing / Marks Coursework / Report / Start of Lent Term / 100 %

AIMS This course addresses technological innovation and the ways industries emerge and change as they mature. It examines these issues from a research and an application standpoint. Key issues include the commercialisation of technical projects, the transfer of technologies from the lab to the market, the diffusion of innovation, the management of technological innovation on an international scale. LECTURE SYLLABUS Session One: Emergence and evolution of new industries

• Introduction to the module • Identification of typical changes as a new industry emerges and matures • Identification of the key drivers of these developments • Understanding the role of technology standards • Case study: the PC industry

Session Two: Types of innovation • Types of innovation; product, process, business models, et al. • Technological combination and speciation • Examples of key process innovations • Case study: materials and process innovations

Session Three: Knowledge, investment and new industries • New firms versus incumbents • Alliances and partnerships • Technology transfer • Investment • Case study: Biotechnology

Session Four: Evolving markets for innovation • Markets for innovations • Adoption of innovations by users/consumers • Consumer networks and tipping points • Investment and instability • Case study: The Internet

Session Five: Getting the most out of your coursework • Review of module • Options for coursework • Report structure • Sources of evidence

OBJECTIVES • Have an appreciation of how technologies create and are shaped by industries and markets. • Be able to select and apply the appropriate means to analyse industry trends and technological

developments • Understand several important emerging industries and the interaction of technological innovations

with their development.

Module Name: Telecommunications Business Environment  Module Acronym:  TBE  Module Manager: Prof Andy Valdar  Course Summary:  The objectives of the TBE module are for students to gain an appreciation of the external  environment within which a telecommunications business operates and how a company can  successfully conduct business in this environment.   Two perspectives are therefore taken:  scene setting descriptions of the macro‐economic and regulatory environment of today  (focusing on the UK, but with a global view also); coupled with an introduction to the  management of a telecommunications business.    Learning Outcomes:  At the end of the course, students should be able to understand:  Value Chain analysis, the detailed ICT Value Chain and the position of telecommunications  operators within it;  The Macro‐economic environment including regulation, global trends and changing         customer needs/expectations;  How to develop winning strategies in this environment  The Key elements of successful trading, including strategy development, customer         service, technology developments and exploitation and portfolio and product         development  The key elements of successful product and portfolio management and how to apply         them in a changing world  How to use systems and technological developments to meet customer needs and         improve customer service  Risk evaluation and mitigating strategies    Module Content  1)  Introduction to Telecommunications & ICT Business  Scene setting for today’s business: covering the types of network operator and the range of  competitors.  The concept of ICT is defined, together with the convergence issues.  This set of  lectures will position the interaction of all the factors affecting an operator: macro‐economic,  the market place, government policy, regulation, competition, legacy aspects and technology  changes, customer expectation and globalisation.  The dotcom bubble burst will be examined for lessons for today’s business environment.  2) Business Strategic Drivers.  The concept of strategy is introduced and applied to a network operator (fixed, mobile, voice &  data).  The various strategy analysis tools (PEST, PUV, Porters 5 Forces, and SWOT) are  introduced and example strategies are discussed.  3) The Regulatory and Legal Scene  The UK, and European legal and regulatory framework is presented, showing the constraints  and opportunities offered to incumbent and other operators and service providers.  Apart from  interconnect issues, the Telecommunications Strategic Review is described, as is the role of  OFCOM in regulating in a converged world.  4) Review of the Industry  This section presents a quantified view of the industry from a World‐wide perspective.  The  major cost, revenue, demand, service and technology trends are analysed.  5) Infrastructure Economics  Description of the cost dynamics of a telecommunications infrastructure, covering access and  core – fundamental to all networks (including railways, airlines, electricity supply, etc), fixed  and variable cost, effect of volume on unit cost, cost and revenue apportionment, and long‐run  costs.    6) Product Management & Marketing  

An overview of the principles of marketing and product management is presented, together  with recent practical examples.  The scope includes: market segmentation, pricing, promotion,  sales strategies, customer‐relationship management, billing issues and product/service  development.  In particular, the product life cycle is used as a structure to consider all aspects of product/service management.  Although these principles are generic, the examples given will  relate specifically to the telecommunications industry.      7) Business Cases  The key aspects of a business case are introduced, covering its role in corporate governance, the essential content, the financial case and supporting evidence.  8) Financial Management  The role of financial management in any business is described, with detailed application to the  telecommunications network operators’ functions.  Students will gain an understanding of  financial statements and how to read them, as well as the principles of amortisation and  depreciation, ebitda, profit, cash flow, cost of capital, share price dynamics and dividend policy.     Assessment:  At the end of the module students will be set an examined assignment designed to assess their  understanding of the drivers and forces affecting a network operator and how it can  successfully compete in today’s market place.    Tutorials/Workshops:  Two hour tutorial to address the main learning points of the module and to prepare the  students for their assignment  Guest Speakers:  Several guest speakers will be invited to give the students the benefit of their experience on the  practical aspects of the telecommunications business.