Digital’Integrated’Circuits Invertercc.sjtu.edu.cn/upload/20150426201903867.pdfDigitalIC 4...

60
Digital IC Introduction Digital Integrated Circuits Inverter YuZhuo Fu

Transcript of Digital’Integrated’Circuits Invertercc.sjtu.edu.cn/upload/20150426201903867.pdfDigitalIC 4...

Page 1: Digital’Integrated’Circuits Invertercc.sjtu.edu.cn/upload/20150426201903867.pdfDigitalIC 4 Circuit’Under’Design V DD V DD V in V out M1 M2 M3 M4 V out2 Thistwo Ginverter’circuit’will’be’manufactured’in’a’twinGwell’process.

Digital ICIntroduction

Digital Integrated Circuits

InverterYuZhuo Fu

Page 2: Digital’Integrated’Circuits Invertercc.sjtu.edu.cn/upload/20150426201903867.pdfDigitalIC 4 Circuit’Under’Design V DD V DD V in V out M1 M2 M3 M4 V out2 Thistwo Ginverter’circuit’will’be’manufactured’in’a’twinGwell’process.

Digital IC 2

outline• CMOS at a glance• CMOS static behavior• CMOS dynamic behavior• Power, Energy, and Energy Delay• Perspective tech.

Page 3: Digital’Integrated’Circuits Invertercc.sjtu.edu.cn/upload/20150426201903867.pdfDigitalIC 4 Circuit’Under’Design V DD V DD V in V out M1 M2 M3 M4 V out2 Thistwo Ginverter’circuit’will’be’manufactured’in’a’twinGwell’process.

Digital IC 3

CMOS dynamic characteristic• CMOS capacitances mosaic• CMOS propagation delay• Optimizing inverter sizing

Page 4: Digital’Integrated’Circuits Invertercc.sjtu.edu.cn/upload/20150426201903867.pdfDigitalIC 4 Circuit’Under’Design V DD V DD V in V out M1 M2 M3 M4 V out2 Thistwo Ginverter’circuit’will’be’manufactured’in’a’twinGwell’process.

Digital IC 4

Circuit Under Design

VDD VDD

Vin Vout

M1

M2

M3

M4

Vout2

This two-­inverter circuit will be manufactured in a twin-­well process.

Page 5: Digital’Integrated’Circuits Invertercc.sjtu.edu.cn/upload/20150426201903867.pdfDigitalIC 4 Circuit’Under’Design V DD V DD V in V out M1 M2 M3 M4 V out2 Thistwo Ginverter’circuit’will’be’manufactured’in’a’twinGwell’process.

Digital IC

CMOS Inverter: Transient Response

5

VDD

Vout

Vin = VDD

Ron

CL

tpHL = f(Ron.CL)= 0.69 RonCL

t

Vout

VDD

RonCL

1

0.5

ln(0.5)

0.36

Page 6: Digital’Integrated’Circuits Invertercc.sjtu.edu.cn/upload/20150426201903867.pdfDigitalIC 4 Circuit’Under’Design V DD V DD V in V out M1 M2 M3 M4 V out2 Thistwo Ginverter’circuit’will’be’manufactured’in’a’twinGwell’process.

Digital IC6

CMOS capacitance mosaic• Wire capacitance• Junction(diffusion) capacitance• Gate capacitance

Most of them are nonlinear functions!

Page 7: Digital’Integrated’Circuits Invertercc.sjtu.edu.cn/upload/20150426201903867.pdfDigitalIC 4 Circuit’Under’Design V DD V DD V in V out M1 M2 M3 M4 V out2 Thistwo Ginverter’circuit’will’be’manufactured’in’a’twinGwell’process.

Digital IC 7

Computing the Capacitances

VDD VDD

Vin Vout

M1

M2

M3

M4Cdb2

Cdb1

Cgd12

Cw

Cg4

Cg3

Vout2

Fanout

Interconnect

VoutVin

CLSimplifiedModel

Polysilicon

In OutMetal1

VDD

GND

PMOS

NMOS

1.2 mm=2l

Page 8: Digital’Integrated’Circuits Invertercc.sjtu.edu.cn/upload/20150426201903867.pdfDigitalIC 4 Circuit’Under’Design V DD V DD V in V out M1 M2 M3 M4 V out2 Thistwo Ginverter’circuit’will’be’manufactured’in’a’twinGwell’process.

Digital IC 8

Capacitance model

DS

G

B

CGDCGS

CSB CDBCGBDdiffDB

SdiffSB

GCBGB

GCDGDOGD

GCSGSOGS

CCCCCC

CCCCCC

=

=

=

+=

+=

Page 9: Digital’Integrated’Circuits Invertercc.sjtu.edu.cn/upload/20150426201903867.pdfDigitalIC 4 Circuit’Under’Design V DD V DD V in V out M1 M2 M3 M4 V out2 Thistwo Ginverter’circuit’will’be’manufactured’in’a’twinGwell’process.

Digital IC 9

The Miller Effect

Vin

M1

Cgd1Vout

DV

DV

Vin

M1

Vout DV

DV

2Cgd1

“A capacitor experiencing identical but oppositevoltage swings at both its terminals can bereplaced by a capacitor to ground, whose value istwo times the original value.”

Page 10: Digital’Integrated’Circuits Invertercc.sjtu.edu.cn/upload/20150426201903867.pdfDigitalIC 4 Circuit’Under’Design V DD V DD V in V out M1 M2 M3 M4 V out2 Thistwo Ginverter’circuit’will’be’manufactured’in’a’twinGwell’process.

Digital IC

Miller effect

10

Z

VAV

Z

VVI invinoutinin

−=

−=

vinvin

in

in

inin

A

Z

VAV

ZV

I

VZ

−=

−==

1

sCZ

1=

Mv

insCAsC

Z1

)1(

1=

−= )1( vM ACC −=

Vin Vout

Vin Vout

Z

Zin

Page 11: Digital’Integrated’Circuits Invertercc.sjtu.edu.cn/upload/20150426201903867.pdfDigitalIC 4 Circuit’Under’Design V DD V DD V in V out M1 M2 M3 M4 V out2 Thistwo Ginverter’circuit’will’be’manufactured’in’a’twinGwell’process.

Digital IC

Diffusion capacitances

Slide 11

( )mD

j

D

jj

V

C

dV

dQC

0Φ1

0

−==

0

)()(jeq

lowhigh

lowjhighj

D

jeq CK

VVVQVQ

VQ

C =−

−=

Δ

Δ=

( )

( )

( ) 0

-1

0

m0

-1

0

0

Φ1

Φ

Φ21

1

Φ2

j

m

D

m

D

DA

DAsiD

D

DA

DAsiDj

CVm

VNN

NNqA

m

VNN

NNqAQ

−−

=

⎟⎟⎠

⎞⎜⎜⎝

⎛−⎟⎟

⎞⎜⎜⎝

+−→

−⎟⎟⎠

⎞⎜⎜⎝

+=

ε

ε

m

DA

DAsiD

DA

DAsiDj

NN

NNqA

NN

NNqAC

-1

0

0

Φ2

Φ20

⎟⎟⎠

⎞⎜⎜⎝

+→

+=

ε

ε

[ ]mlowm

highlowhigh

m

eq VVmVV

K −− −Φ−−Φ−−

Φ−= 1

01

00 )()(

)1)((

Page 12: Digital’Integrated’Circuits Invertercc.sjtu.edu.cn/upload/20150426201903867.pdfDigitalIC 4 Circuit’Under’Design V DD V DD V in V out M1 M2 M3 M4 V out2 Thistwo Ginverter’circuit’will’be’manufactured’in’a’twinGwell’process.

Digital IC 12

Computing the Capacitances

Cox(fF/um2)

Co(fF/um)

Cj(fF/um2)

mj Φb(V)

Cjsw(fF/um)

mjsw Φbsw

(V)NMOS 6 0.31 2 0.5 0.9 0.28 0.44 0.9PMOS 6 0.27 1.9 0.48 0.9 0.22 0.32 0.9

CDG0

CJ CJSW

W/L AD(um2) PD(um) AS(um2) PS(um)NMOS 3/2 19 15 19 15PMOS 9/2 45 19 45 19

NMOS and PMOS almost is same for unit capacitance

Page 13: Digital’Integrated’Circuits Invertercc.sjtu.edu.cn/upload/20150426201903867.pdfDigitalIC 4 Circuit’Under’Design V DD V DD V in V out M1 M2 M3 M4 V out2 Thistwo Ginverter’circuit’will’be’manufactured’in’a’twinGwell’process.

Digital IC

Computing the Capacitances

Slide 13

Polysilicon

InOutMetal1

VDD

GND

PMOS

NMOS

1.2 mm=2l

AD=4*4+3*1=16+3=19λ2PD=1+4+4+4+1+1=15λ

Page 14: Digital’Integrated’Circuits Invertercc.sjtu.edu.cn/upload/20150426201903867.pdfDigitalIC 4 Circuit’Under’Design V DD V DD V in V out M1 M2 M3 M4 V out2 Thistwo Ginverter’circuit’will’be’manufactured’in’a’twinGwell’process.

Digital IC

Computing the Capacitances• Vhigh=-­2.5V,Vlow=-­1.25V[NMOS,2.5V-­>1.25V HL]

• Bottom plate:Keqn(m=0.5,Φ0=0.9)=0.57• Sidewall:Keqwn(m=0.44,Φ0=0.9)=0.61

• Vlow=0V,Vhigh=-­1.25V [NMOS,0V-­>1.25VLH]• Bottom plate:Keqn(m=0.5,Φ0=0.9)=0.79• Sidewall:Keqwn(m=0.44,Φ0=0.9)=0.81

• Vhigh=-­1.25V,Vlow=0V [PMOS,2.5V-­>1.25VHL]• Bottom plate:Keqp(m=0.48,Φ0=0.9)=0.79• Sidewall:Keqwp(m=0.32,Φ0=0.9)=0.86

• Vhigh=-­2.5V,Vlow=-­1.25V [PMOS,0V-­>1.25VLH]• Bottom plate:Keqp(m=0.48,Φ0=0.9)=0.59• Sidewall:Keqwp(m=0.32,Φ0=0.9)=0.7

14

Page 15: Digital’Integrated’Circuits Invertercc.sjtu.edu.cn/upload/20150426201903867.pdfDigitalIC 4 Circuit’Under’Design V DD V DD V in V out M1 M2 M3 M4 V out2 Thistwo Ginverter’circuit’will’be’manufactured’in’a’twinGwell’process.

Digital IC 15

Computing the Capacitances

capacitor expression Value(fF)(H-­>L)

Value(fF)(L-­>H)

Cgd1 2CGD0n*Wn 0.23 0.23Cgd2 2CGD0p*Wp 0.61 0.61Cdb1 KeqnADnCJ+KeqwnPDnCJSW 0.66 0.90Cdb2 KeqnADnCJ+KeqwnPDnCJSW 1.5 1.15Cg3 (CGD0n+CGSOn)Wn+CoxWnLn 0.76 0.76Cg4 (CGD0p+CGSOp)Wp+CoxWpLp 2.28 2.28Cw 0.12 0.12CL 6.1 6.0

Page 16: Digital’Integrated’Circuits Invertercc.sjtu.edu.cn/upload/20150426201903867.pdfDigitalIC 4 Circuit’Under’Design V DD V DD V in V out M1 M2 M3 M4 V out2 Thistwo Ginverter’circuit’will’be’manufactured’in’a’twinGwell’process.

Digital ICIntroduction

Computing it more simple by estimation

Slide 16

Page 17: Digital’Integrated’Circuits Invertercc.sjtu.edu.cn/upload/20150426201903867.pdfDigitalIC 4 Circuit’Under’Design V DD V DD V in V out M1 M2 M3 M4 V out2 Thistwo Ginverter’circuit’will’be’manufactured’in’a’twinGwell’process.

Digital IC Slide 17

Effective Resistance• Shockley models have limited value

• Not accurate enough for modern transistors• Too complicated for much hand analysis

• Simplification: treat transistor as resistor• Replace Ids(Vds, Vgs) with effective resistance R• Ids = Vds/R

• R averaged across switching of digital gate• Too inaccurate to predict current at any given time

• But good enough to predict RC delay

Page 18: Digital’Integrated’Circuits Invertercc.sjtu.edu.cn/upload/20150426201903867.pdfDigitalIC 4 Circuit’Under’Design V DD V DD V in V out M1 M2 M3 M4 V out2 Thistwo Ginverter’circuit’will’be’manufactured’in’a’twinGwell’process.

Digital IC Slide 18

RC Delay Model• Use equivalent circuits for MOS transistors

• Ideal switch + capacitance and ON resistance• Unit nMOS has resistance R, capacitance C• Unit pMOS has resistance 2R, capacitance C

• Capacitance proportional to width• Resistance inversely proportional to width

kgs

dg

s

d

kCkC

kCR/k

kgs

dg

s

d

kC

kC

kC

2R/k

Page 19: Digital’Integrated’Circuits Invertercc.sjtu.edu.cn/upload/20150426201903867.pdfDigitalIC 4 Circuit’Under’Design V DD V DD V in V out M1 M2 M3 M4 V out2 Thistwo Ginverter’circuit’will’be’manufactured’in’a’twinGwell’process.

Digital IC

Reason of 2R

Slide 19

)2

V-VV(

LW

k=I2DSAT

DSATGT'

DSAT

Page 20: Digital’Integrated’Circuits Invertercc.sjtu.edu.cn/upload/20150426201903867.pdfDigitalIC 4 Circuit’Under’Design V DD V DD V in V out M1 M2 M3 M4 V out2 Thistwo Ginverter’circuit’will’be’manufactured’in’a’twinGwell’process.

Digital IC Slide 20

RC Values• Capacitance

• C = Cg = Cs = Cd = 2 fF/mm of gate width• Values similar across many processes

• Resistance• R ≈ 6 KW*mm in 0.6um process• Improves with shorter channel lengths

• Unit transistors• May refer to minimum contacted device (4/2 l)• Or maybe 1 mm wide device• Doesn’t matter as long as you are consistent

Page 21: Digital’Integrated’Circuits Invertercc.sjtu.edu.cn/upload/20150426201903867.pdfDigitalIC 4 Circuit’Under’Design V DD V DD V in V out M1 M2 M3 M4 V out2 Thistwo Ginverter’circuit’will’be’manufactured’in’a’twinGwell’process.

Digital IC Slide 21

Inverter Delay Estimate• Estimate the delay of a fanout-­of-­1 inverter

2

1A

Y 2

1

Page 22: Digital’Integrated’Circuits Invertercc.sjtu.edu.cn/upload/20150426201903867.pdfDigitalIC 4 Circuit’Under’Design V DD V DD V in V out M1 M2 M3 M4 V out2 Thistwo Ginverter’circuit’will’be’manufactured’in’a’twinGwell’process.

Digital IC Slide 22

Inverter Delay Estimate• Estimate the delay of a fanout-­of-­1 inverter

C

CR

2C

2C

R

2

1A

Y

C

2C

Y2

1

Page 23: Digital’Integrated’Circuits Invertercc.sjtu.edu.cn/upload/20150426201903867.pdfDigitalIC 4 Circuit’Under’Design V DD V DD V in V out M1 M2 M3 M4 V out2 Thistwo Ginverter’circuit’will’be’manufactured’in’a’twinGwell’process.

Digital IC Slide 23

Inverter Delay Estimate• Estimate the delay of a fanout-­of-­1 inverter

C

CR

2C

2C

R

2

1A

Y

C

2C

C

2C

C

2C

RY

2

1

Page 24: Digital’Integrated’Circuits Invertercc.sjtu.edu.cn/upload/20150426201903867.pdfDigitalIC 4 Circuit’Under’Design V DD V DD V in V out M1 M2 M3 M4 V out2 Thistwo Ginverter’circuit’will’be’manufactured’in’a’twinGwell’process.

Digital IC Slide 24

Inverter Delay Estimate• Estimate the delay of a fanout-­of-­1 inverter

C

CR

2C

2C

R

2

1A

Y

C

2C

C

2C

C

2C

RY

2

1

d = 6RC

Page 25: Digital’Integrated’Circuits Invertercc.sjtu.edu.cn/upload/20150426201903867.pdfDigitalIC 4 Circuit’Under’Design V DD V DD V in V out M1 M2 M3 M4 V out2 Thistwo Ginverter’circuit’will’be’manufactured’in’a’twinGwell’process.

Digital IC 25

CMOS dynamic characteristic• CMOS capacitances mosaic• CMOS propagation delay• Optimizing inverter sizing

Page 26: Digital’Integrated’Circuits Invertercc.sjtu.edu.cn/upload/20150426201903867.pdfDigitalIC 4 Circuit’Under’Design V DD V DD V in V out M1 M2 M3 M4 V out2 Thistwo Ginverter’circuit’will’be’manufactured’in’a’twinGwell’process.

Digital IC26

Propagation delay: first order analysis

• Propagation delay model of RC

2→/ 21

OHOLOLOH

VVvVVv +==

)2

()(

)9

71(

4

3≈)1(-

1

'

2

112

n

nn

n

DSATTDDDSATnnsat

DD

DSAT

DDv

v

eq

VVVVk

LWI

VI

V

VvvR

--

-IVdv

sat

=

+= ∫ λ

λ

Assuming transistor as saturation

Page 27: Digital’Integrated’Circuits Invertercc.sjtu.edu.cn/upload/20150426201903867.pdfDigitalIC 4 Circuit’Under’Design V DD V DD V in V out M1 M2 M3 M4 V out2 Thistwo Ginverter’circuit’will’be’manufactured’in’a’twinGwell’process.

Digital IC27

Propagation delay: first order analysis

• Propagation delay model of RC

L

DSATp

DDeqppLH C

I

VCRt )V-1(

4

3*69.0)2ln( DDλ==

L

DSATn

DDeqnpHL C

I

VCRt )V-1(

4

3*69.0)2ln( DDλ==

))/2-('**

1

)/2-('**

1(*52.0≈

*)11(**2/75.0*69.0

2*69.0

2

ppppp

pnnnn DSATGTDSATDSATGTDSAT

n

nDDL

Ldsatpdsatn

DD

LeqpeqnpLHpHL

p

VVVkLWVVVkL

WVC

CII

V

CRRtt

t

+

+=

+=

+=

Page 28: Digital’Integrated’Circuits Invertercc.sjtu.edu.cn/upload/20150426201903867.pdfDigitalIC 4 Circuit’Under’Design V DD V DD V in V out M1 M2 M3 M4 V out2 Thistwo Ginverter’circuit’will’be’manufactured’in’a’twinGwell’process.

Digital IC

Inverter Transient Response

-­0.5

0

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2 2.5

Vin

V out

(V)

t (sec) x 10-10

VDD=2.5V0.25µmW/Ln = 1.5W/Lp = 4.5Reqn= 13 kΩ (÷ 1.5)Reqp= 31 kΩ (÷ 4.5)

Page 29: Digital’Integrated’Circuits Invertercc.sjtu.edu.cn/upload/20150426201903867.pdfDigitalIC 4 Circuit’Under’Design V DD V DD V in V out M1 M2 M3 M4 V out2 Thistwo Ginverter’circuit’will’be’manufactured’in’a’twinGwell’process.

Digital IC

Inverter Transient Response

-­0.5

0

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2 2.5

Vin

V out

(V)

t (sec) x 10-10

VDD=2.5V0.25µmW/Ln = 1.5W/Lp = 4.5Reqn= 13 kΩ (÷ 1.5)Reqp= 31 kΩ (÷ 4.5)

tpHL = 36 psec

tpLH = 29 psec

So tp = 32.5 psec

tf trtpHL

tpLH

From simulation: tpHL = 39.9 psec and tpLH = 31.7 psec

Page 30: Digital’Integrated’Circuits Invertercc.sjtu.edu.cn/upload/20150426201903867.pdfDigitalIC 4 Circuit’Under’Design V DD V DD V in V out M1 M2 M3 M4 V out2 Thistwo Ginverter’circuit’will’be’manufactured’in’a’twinGwell’process.

Digital IC

Inverter Propagation Delay, Revisited

To see how a designer can optimize the delay of agate have to expand the Req in the delay equation

11.52

2.53

3.54

4.55

5.5

0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

VDD (V)

t p(no

rmali

zed)

tpHL = 0.69 Reqn CL

= 0.69 (3/4 (CL VDD)/IDSATn )≈ 0.52 CL / (W/Ln k’n VDSATn )

Page 31: Digital’Integrated’Circuits Invertercc.sjtu.edu.cn/upload/20150426201903867.pdfDigitalIC 4 Circuit’Under’Design V DD V DD V in V out M1 M2 M3 M4 V out2 Thistwo Ginverter’circuit’will’be’manufactured’in’a’twinGwell’process.

Digital IC31

Design techniques for minimized propagation delay

• Reduce CL• Keep the drain diffusion areas as small as possible

• Increase the W/L ratio of the transistor• Increase Vdd

)1()(*52.0≈

'DDDSATnn

LpHL VVkL

WCtn

λ+

Page 32: Digital’Integrated’Circuits Invertercc.sjtu.edu.cn/upload/20150426201903867.pdfDigitalIC 4 Circuit’Under’Design V DD V DD V in V out M1 M2 M3 M4 V out2 Thistwo Ginverter’circuit’will’be’manufactured’in’a’twinGwell’process.

Digital IC

Design for Performance• Reduce CL

• internal diffusion capacitance of the gate itself• keep the drain diffusion as small as possible

• interconnect capacitance• fanout

• Increase VDD• can trade-­off energy for performance• increasing VDD above a certain level yields only very minimal improvements

• Increase W/L ratio of the transistor• the most powerful and effective performance optimization tool in the hands of the designer

• watch out for self-­loading! – when the intrinsic capacitance dominates the extrinsic load

Page 33: Digital’Integrated’Circuits Invertercc.sjtu.edu.cn/upload/20150426201903867.pdfDigitalIC 4 Circuit’Under’Design V DD V DD V in V out M1 M2 M3 M4 V out2 Thistwo Ginverter’circuit’will’be’manufactured’in’a’twinGwell’process.

Digital IC 33

Define NMOS-­to-­PMOS ratio

In order to create an inverter with a symmetrical propagate delaysAlso create symmetrical VTC β =2.4 which Rn=Rp!

nDSATnn

LneqLpHL VkL

WCRCt

')(2)2ln( ≈=

p

p

DSATpp

LeqLpLH VkL

WCRCt

')(2)2ln( ≈=

(W L)p(W L)n

=kn'VDSATn (VM −VTn −

VDSATn2

)

kp'VDSATp (VDD −VM +VTp +

VDSATp2

)

1)(

)('

'

===p

n

n

p

DSATpp

DSATnn

eq

eq

VkLW

VkLW

RR

γ

Page 34: Digital’Integrated’Circuits Invertercc.sjtu.edu.cn/upload/20150426201903867.pdfDigitalIC 4 Circuit’Under’Design V DD V DD V in V out M1 M2 M3 M4 V out2 Thistwo Ginverter’circuit’will’be’manufactured’in’a’twinGwell’process.

Digital IC 34

1 1.5 2 2.5 3 3.5 4 4.5 53

3.5

4

4.5

5x 10-11

t p(sec

)

tpLH tpHL

tp

Wp/Wn

Which point is optimal delay?

p

p

DSATpp

LeqLpLH VkL

WCRCt

')(2)2ln( ≈=

nDSATnn

LneqLpHL VkL

WCRCt

')(2)2ln( ≈=

Assume CL=C

Page 35: Digital’Integrated’Circuits Invertercc.sjtu.edu.cn/upload/20150426201903867.pdfDigitalIC 4 Circuit’Under’Design V DD V DD V in V out M1 M2 M3 M4 V out2 Thistwo Ginverter’circuit’will’be’manufactured’in’a’twinGwell’process.

Digital IC 35

Which point is optimal delay?

VDD VDD

Vin Vout

M1

M2

M3

M4Cdb2

Cdb1

Cgd12

Cw

Cg4

Cg3

Vout2

Interconnect

( ) ( )

n

p

wgdwggddL

LWLW

CCCCCCCCCnnpnpn

)()(

))(1(212211

=

+++=++++=

β

β

)1()))(1((345.0

))())(1((22ln

2

21

21

βγ

β

ββ

++++=

++++=+

=

nnn

p

nnn

eqwgd

eqeqwgd

pHLpLHp

RCCC

RRCCC

ttt

Page 36: Digital’Integrated’Circuits Invertercc.sjtu.edu.cn/upload/20150426201903867.pdfDigitalIC 4 Circuit’Under’Design V DD V DD V in V out M1 M2 M3 M4 V out2 Thistwo Ginverter’circuit’will’be’manufactured’in’a’twinGwell’process.

Digital IC 36

Which point is optimal delay?

This r is different from before! It is the resistor rate of the NMOS and PMOS

0=∂

βpt

0)]1()))(1((345.0[

21

=∂

++++∂

ββγ

βnnn eqwgd RCCC

54.11331≈)1(

25.05.2

21

==+

+= =um

VVddgndn

w

CCC

γγβ

Page 37: Digital’Integrated’Circuits Invertercc.sjtu.edu.cn/upload/20150426201903867.pdfDigitalIC 4 Circuit’Under’Design V DD V DD V in V out M1 M2 M3 M4 V out2 Thistwo Ginverter’circuit’will’be’manufactured’in’a’twinGwell’process.

Digital IC 37

Summary of ratio

Beta=1.6, we have minimum delayBeta=2.4, we have equal delay tphl=tplhBeta=3.5, we have VM=Vdd/2

Page 38: Digital’Integrated’Circuits Invertercc.sjtu.edu.cn/upload/20150426201903867.pdfDigitalIC 4 Circuit’Under’Design V DD V DD V in V out M1 M2 M3 M4 V out2 Thistwo Ginverter’circuit’will’be’manufactured’in’a’twinGwell’process.

Digital IC 38

CMOS dynamic characteristic• CMOS capacitances mosaic• CMOS propagation delay• Optimizing inverter sizing

Page 39: Digital’Integrated’Circuits Invertercc.sjtu.edu.cn/upload/20150426201903867.pdfDigitalIC 4 Circuit’Under’Design V DD V DD V in V out M1 M2 M3 M4 V out2 Thistwo Ginverter’circuit’will’be’manufactured’in’a’twinGwell’process.

Digital IC

iref

extpp

irefextirefref

intextinteqextinteqp

SCCtt

SCCSCSRCCCRCCRt

00 69.069.0

)1)()((69.0

)1(69.0)(69.0

+=

+=

+=+=

39

Increasing inverter performance by sizing the NMOS and PMOS

Intrinsic delay is independent of the sizing of the gate

S>>0 will eliminate the impact of any external loadIf no load

If load

Page 40: Digital’Integrated’Circuits Invertercc.sjtu.edu.cn/upload/20150426201903867.pdfDigitalIC 4 Circuit’Under’Design V DD V DD V in V out M1 M2 M3 M4 V out2 Thistwo Ginverter’circuit’will’be’manufactured’in’a’twinGwell’process.

Digital IC 40

2 4 6 8 10 12 142

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8x 10-11

S

t p(sec

)Device Sizing

(for fixed load)

Self-­loading effect:Intrinsic capacitancesdominate

Example 5.5

Page 41: Digital’Integrated’Circuits Invertercc.sjtu.edu.cn/upload/20150426201903867.pdfDigitalIC 4 Circuit’Under’Design V DD V DD V in V out M1 M2 M3 M4 V out2 Thistwo Ginverter’circuit’will’be’manufactured’in’a’twinGwell’process.

Digital IC 41

Inverter Chain

CL

If CL is given:-­ How many stages are needed to minimize the delay?-­ How to size the inverters?

In Out

Page 42: Digital’Integrated’Circuits Invertercc.sjtu.edu.cn/upload/20150426201903867.pdfDigitalIC 4 Circuit’Under’Design V DD V DD V in V out M1 M2 M3 M4 V out2 Thistwo Ginverter’circuit’will’be’manufactured’in’a’twinGwell’process.

Digital IC 42

Inverter Delayl Minimum length devices, L=0.25mm, Assume that for WP = 2WN =2W

l same pull-­up and pull-­down currentsl approx. equal resistances RN = RPl approx. equal rise tpLH and fall tpHL delays

l Analyze as an RC network

WNunit

Nunit

unit

PunitP RR

WWR

WWRR ==⎟⎟

⎞⎜⎜⎝

⎛≈⎟⎟

⎞⎜⎜⎝

⎛=

−− 11

tpHL = (ln 2) RNCL tpLH = (ln 2) RPCLDelay (D):

2W

W

unitunit

gin CWWC 3=Load for the next stage:

Page 43: Digital’Integrated’Circuits Invertercc.sjtu.edu.cn/upload/20150426201903867.pdfDigitalIC 4 Circuit’Under’Design V DD V DD V in V out M1 M2 M3 M4 V out2 Thistwo Ginverter’circuit’will’be’manufactured’in’a’twinGwell’process.

Digital IC 43

Inverter with Load

Load (CL)

Delay

Assumptions: no load -­> zero delay

CL

tp = k RWCL

RW

RW

Wunit = 1k is a constant, equal to 0.69

Page 44: Digital’Integrated’Circuits Invertercc.sjtu.edu.cn/upload/20150426201903867.pdfDigitalIC 4 Circuit’Under’Design V DD V DD V in V out M1 M2 M3 M4 V out2 Thistwo Ginverter’circuit’will’be’manufactured’in’a’twinGwell’process.

Digital IC 44

Delay Formula

( )

( ) ( )γ/1/1

~

0int ftCCCkRt

CCRDelay

pintLWp

LintW

+=+=

+

Cint = rCginwith r ≈ 1f = CL/Cgin -­ effective fanoutR = Runit/W ;; Cint =WCunittp0 = 0.69RunitCunit

Page 45: Digital’Integrated’Circuits Invertercc.sjtu.edu.cn/upload/20150426201903867.pdfDigitalIC 4 Circuit’Under’Design V DD V DD V in V out M1 M2 M3 M4 V out2 Thistwo Ginverter’circuit’will’be’manufactured’in’a’twinGwell’process.

Digital IC 45

Apply to Inverter Chain

CL

In Out

1 2 Ntp = tp1 + tp2 + …+ tpN

⎟⎟⎠

⎞⎜⎜⎝

⎛+ +

jgin

jginunitunitpj C

CCRt

,

1,1~γ

LNgin

N

i jgin

jginp

N

jjpp CC

CC

ttt =⎟⎟⎠

⎞⎜⎜⎝

⎛+== +

=

+

=∑∑ 1,1 ,

1,0

1, ,1

γ

Page 46: Digital’Integrated’Circuits Invertercc.sjtu.edu.cn/upload/20150426201903867.pdfDigitalIC 4 Circuit’Under’Design V DD V DD V in V out M1 M2 M3 M4 V out2 Thistwo Ginverter’circuit’will’be’manufactured’in’a’twinGwell’process.

Digital IC

Optimal Tapering for Given Nl Delay equation has N -­ 1 unknowns, Cgin,2 – Cgin,N

l Minimize the delay, find N -­ 1 partial derivatives Result:

l Cgin,j+1/Cgin,j = Cgin,j/Cgin,j-­1

l Size of each stage is the geometric mean of two

neighbors

46

1,1,, +−= jginjginjgin CCC

each stage has the same effective fanout (Cout/Cin)

each stage has the same delay

Page 47: Digital’Integrated’Circuits Invertercc.sjtu.edu.cn/upload/20150426201903867.pdfDigitalIC 4 Circuit’Under’Design V DD V DD V in V out M1 M2 M3 M4 V out2 Thistwo Ginverter’circuit’will’be’manufactured’in’a’twinGwell’process.

Digital IC 47

Optimum size for fixed Number of Stages

When each stage is sized by f and has same eff. fanout f:

Minimum path delay

Effective fanout of each stage:

1,/ ginLN CCFf ==

N Ff =

( )γ/10 Npp FNtt +=

Page 48: Digital’Integrated’Circuits Invertercc.sjtu.edu.cn/upload/20150426201903867.pdfDigitalIC 4 Circuit’Under’Design V DD V DD V in V out M1 M2 M3 M4 V out2 Thistwo Ginverter’circuit’will’be’manufactured’in’a’twinGwell’process.

Digital IC 48

Example

CL= 8 C1

In Out

C1 1 f f2

283 ==fCL/C1 has to be evenly distributed across N = 3 stages:

CL/C1 has to be evenly distributed across N = 4 stages:

?84 ==f

Page 49: Digital’Integrated’Circuits Invertercc.sjtu.edu.cn/upload/20150426201903867.pdfDigitalIC 4 Circuit’Under’Design V DD V DD V in V out M1 M2 M3 M4 V out2 Thistwo Ginverter’circuit’will’be’manufactured’in’a’twinGwell’process.

Digital IC 49

Optimum Number of Stages

For a given load, CL and given input capacitance Cin Find optimal sizing f

( ) ( )γγ

γ +=+= ftfFFNtt p

Npp 0

/10 ln

ln1/

0ln1lnln2

0 =−−

⋅=∂

fffFt

ft pp γ

γ

fFNCfCFC in

NinL ln

ln with ==⋅=

( )fef γ+= 1

Page 50: Digital’Integrated’Circuits Invertercc.sjtu.edu.cn/upload/20150426201903867.pdfDigitalIC 4 Circuit’Under’Design V DD V DD V in V out M1 M2 M3 M4 V out2 Thistwo Ginverter’circuit’will’be’manufactured’in’a’twinGwell’process.

Digital IC 50

Optimum Effective Fanout f

Optimum f for given process defined by g( )fef γ+= 1

fopt = 3.6[4]for g=1

For r = 0, f = e, N = lnF

Page 51: Digital’Integrated’Circuits Invertercc.sjtu.edu.cn/upload/20150426201903867.pdfDigitalIC 4 Circuit’Under’Design V DD V DD V in V out M1 M2 M3 M4 V out2 Thistwo Ginverter’circuit’will’be’manufactured’in’a’twinGwell’process.

Digital IC 51

Impact of Self-­Loading on tp

1.0 3.0 5.0 7.0u

0.0

20.0

40.0

60.0

u/ln(u)

x=10

x=100

x=1000

x=10,000

No Self-­Loading, r=0 With Self-­Loading r=1

0

1

2

3

4

5

6

7

1 1.5 2 2.5 3 3.5 4 4.5 5

Page 52: Digital’Integrated’Circuits Invertercc.sjtu.edu.cn/upload/20150426201903867.pdfDigitalIC 4 Circuit’Under’Design V DD V DD V in V out M1 M2 M3 M4 V out2 Thistwo Ginverter’circuit’will’be’manufactured’in’a’twinGwell’process.

Digital IC 52

Normalized delay function of F

( ) Fln6.3=)6.3+1(Fln78.0=γ/F+1Nt=t N0pp

F unbuffered Two stages Inverter chain10 11 8.3 8.3100 101 22 16.61000 1001 65 24.910000 10001 202 33

Fln78.0=6.3lnFln

=flnFln

=N,F=f N

Page 53: Digital’Integrated’Circuits Invertercc.sjtu.edu.cn/upload/20150426201903867.pdfDigitalIC 4 Circuit’Under’Design V DD V DD V in V out M1 M2 M3 M4 V out2 Thistwo Ginverter’circuit’will’be’manufactured’in’a’twinGwell’process.

Digital IC 53

Buffer Design

1

1

1

1

8

64

64

64

64

4

2.8 8

16

22.6

N f tp

1 64 65

2 8 18

3 4 15

4 2.8 15.3

Page 54: Digital’Integrated’Circuits Invertercc.sjtu.edu.cn/upload/20150426201903867.pdfDigitalIC 4 Circuit’Under’Design V DD V DD V in V out M1 M2 M3 M4 V out2 Thistwo Ginverter’circuit’will’be’manufactured’in’a’twinGwell’process.

Digital IC

More general example

Slide 54

1 2 3 CLoutin

( )γ/f+1Nt=t 0pp

3

3

3

L

2

3

1

2

3

L

2

3

1

2

1

L

3

L

2

3

1

2

164=f

f161

=CC

CC4

CC4

161

=CC

CC

CC

=CC

=F

f=CC

=CC4

=CC4

13

13

33

2

13

13L

3

C16=C16444*4

=fC4

=C

C44=C16464

=fC

=C

Page 55: Digital’Integrated’Circuits Invertercc.sjtu.edu.cn/upload/20150426201903867.pdfDigitalIC 4 Circuit’Under’Design V DD V DD V in V out M1 M2 M3 M4 V out2 Thistwo Ginverter’circuit’will’be’manufactured’in’a’twinGwell’process.

Digital IC

Input Signal Rise/Fall Time

• In reality, the input signal changes gradually (and both PMOS and NMOS conduct for a brief time). This affects the current available for charging/discharging CL and impacts propagation delay.

3.6

3.8

4

4.2

4.4

4.6

4.8

5

5.2

5.4

0 2 4 6 8ts(sec)t p(

sec)

x 10-11

x 10-11

for a minimum-size inverter with a fan-out of a single gate

q tp increases linearly with increasing input slope ts, once ts > tp

q ts is due to the limited driving capability of the preceding gate

Page 56: Digital’Integrated’Circuits Invertercc.sjtu.edu.cn/upload/20150426201903867.pdfDigitalIC 4 Circuit’Under’Design V DD V DD V in V out M1 M2 M3 M4 V out2 Thistwo Ginverter’circuit’will’be’manufactured’in’a’twinGwell’process.

Digital IC

Design Challenge• A gate is never designed in isolation: its performance is affected by both the fan-­out and the driving strength of the gate(s) feeding its inputs.

(η ≈ 0.25)• Keep signal rise times smaller than or equal to the gate propagation delays• good for performance• good for power consumption

• Keeping rise and fall times of the signals small and of approx. equal values is one of the major challenges in high-­performance designs(slope engineering.)

1-iiistepstepptη+t=t

Page 57: Digital’Integrated’Circuits Invertercc.sjtu.edu.cn/upload/20150426201903867.pdfDigitalIC 4 Circuit’Under’Design V DD V DD V in V out M1 M2 M3 M4 V out2 Thistwo Ginverter’circuit’will’be’manufactured’in’a’twinGwell’process.

Digital IC

Rising-­fall time of the input signal

Slide 57

1-iiistepstepptη+t=t

Note: tp increases linearly with increasing input slope,once ts>tp(ts=0)

1 2 3 CLoutin

Page 58: Digital’Integrated’Circuits Invertercc.sjtu.edu.cn/upload/20150426201903867.pdfDigitalIC 4 Circuit’Under’Design V DD V DD V in V out M1 M2 M3 M4 V out2 Thistwo Ginverter’circuit’will’be’manufactured’in’a’twinGwell’process.

Digital ICSlide 58

Process Corners• Process corners describe worst case variations

• If a design works in all corners, it will probably work for any variation.

• Describe corner with four letters (T, F, S)• nMOS speed• pMOS speed• Voltage• Temperature

Page 59: Digital’Integrated’Circuits Invertercc.sjtu.edu.cn/upload/20150426201903867.pdfDigitalIC 4 Circuit’Under’Design V DD V DD V in V out M1 M2 M3 M4 V out2 Thistwo Ginverter’circuit’will’be’manufactured’in’a’twinGwell’process.

Digital ICSlide 59

Important Corners• Some critical simulation corners include

Purpose nMOS pMOS VDD Temp

Cycle time

Power

SubthreholdleakagePseudo-­nMOS

Page 60: Digital’Integrated’Circuits Invertercc.sjtu.edu.cn/upload/20150426201903867.pdfDigitalIC 4 Circuit’Under’Design V DD V DD V in V out M1 M2 M3 M4 V out2 Thistwo Ginverter’circuit’will’be’manufactured’in’a’twinGwell’process.

Digital IC15: Nonideal Transistors Slide 60

Important Corners• Some critical simulation corners include

Purpose nMOS pMOS VDD Temp

Cycle time S S S S

Power F F F F

Subthreholdleakage

F F F S

Pseudo-­nMOS S F ? ?