Digital Low-level RF Test at Diamond Booster Digital Low-level RF Test at Diamond Booster LLRF9...

53
Digital Low-level RF Test at Diamond Booster LLRF9 demo, March 16–20, 2015 D. Teytelman 2 , et. al. 2 Dimtel, Inc., San Jose, CA, USA April 15, 2015 (Dimtel) iGp12 DLS 1 / 16

Transcript of Digital Low-level RF Test at Diamond Booster Digital Low-level RF Test at Diamond Booster LLRF9...

Page 1: Digital Low-level RF Test at Diamond Booster Digital Low-level RF Test at Diamond Booster LLRF9 demo, March 16–20, 2015 D. Teytelman2, et. al. 2Dimtel, Inc., San Jose, CA, USA April

Digital Low-level RF Test at Diamond BoosterLLRF9 demo, March 16–20, 2015

D. Teytelman2, et. al.

2Dimtel, Inc., San Jose, CA, USA

April 15, 2015

(Dimtel) iGp12 DLS 1 / 16

Page 2: Digital Low-level RF Test at Diamond Booster Digital Low-level RF Test at Diamond Booster LLRF9 demo, March 16–20, 2015 D. Teytelman2, et. al. 2Dimtel, Inc., San Jose, CA, USA April

Setup LLRF9 Introduction

Outline

1 SetupLLRF9 IntroductionDemo Setup and Schedule

2 System Operation

3 Performance Tests

(Dimtel) iGp12 DLS 2 / 16

Page 3: Digital Low-level RF Test at Diamond Booster Digital Low-level RF Test at Diamond Booster LLRF9 demo, March 16–20, 2015 D. Teytelman2, et. al. 2Dimtel, Inc., San Jose, CA, USA April

Setup LLRF9 Introduction

LLRF9 System

A single 2U chassis for one-and two-cavity RF control;9 input RF channels, 2 RFoutputs;Tuner motor control viaRS-485/Ethernet/EPICS;External interlock daisy-chain;Two external trigger inputs;Eight opto-isolated basebandADC channels for slowinterlocks.

(Dimtel) iGp12 DLS 3 / 16

Page 4: Digital Low-level RF Test at Diamond Booster Digital Low-level RF Test at Diamond Booster LLRF9 demo, March 16–20, 2015 D. Teytelman2, et. al. 2Dimtel, Inc., San Jose, CA, USA April

Setup LLRF9 Introduction

LLRF9 System

A single 2U chassis for one-and two-cavity RF control;9 input RF channels, 2 RFoutputs;Tuner motor control viaRS-485/Ethernet/EPICS;External interlock daisy-chain;Two external trigger inputs;Eight opto-isolated basebandADC channels for slowinterlocks.

(Dimtel) iGp12 DLS 3 / 16

Page 5: Digital Low-level RF Test at Diamond Booster Digital Low-level RF Test at Diamond Booster LLRF9 demo, March 16–20, 2015 D. Teytelman2, et. al. 2Dimtel, Inc., San Jose, CA, USA April

Setup LLRF9 Introduction

LLRF9 System

A single 2U chassis for one-and two-cavity RF control;9 input RF channels, 2 RFoutputs;Tuner motor control viaRS-485/Ethernet/EPICS;External interlock daisy-chain;Two external trigger inputs;Eight opto-isolated basebandADC channels for slowinterlocks.

(Dimtel) iGp12 DLS 3 / 16

Page 6: Digital Low-level RF Test at Diamond Booster Digital Low-level RF Test at Diamond Booster LLRF9 demo, March 16–20, 2015 D. Teytelman2, et. al. 2Dimtel, Inc., San Jose, CA, USA April

Setup LLRF9 Introduction

LLRF9 System

A single 2U chassis for one-and two-cavity RF control;9 input RF channels, 2 RFoutputs;Tuner motor control viaRS-485/Ethernet/EPICS;External interlock daisy-chain;Two external trigger inputs;Eight opto-isolated basebandADC channels for slowinterlocks.

(Dimtel) iGp12 DLS 3 / 16

Page 7: Digital Low-level RF Test at Diamond Booster Digital Low-level RF Test at Diamond Booster LLRF9 demo, March 16–20, 2015 D. Teytelman2, et. al. 2Dimtel, Inc., San Jose, CA, USA April

Setup LLRF9 Introduction

LLRF9 System

A single 2U chassis for one-and two-cavity RF control;9 input RF channels, 2 RFoutputs;Tuner motor control viaRS-485/Ethernet/EPICS;External interlock daisy-chain;Two external trigger inputs;Eight opto-isolated basebandADC channels for slowinterlocks.

(Dimtel) iGp12 DLS 3 / 16

Page 8: Digital Low-level RF Test at Diamond Booster Digital Low-level RF Test at Diamond Booster LLRF9 demo, March 16–20, 2015 D. Teytelman2, et. al. 2Dimtel, Inc., San Jose, CA, USA April

Setup LLRF9 Introduction

LLRF9 System

A single 2U chassis for one-and two-cavity RF control;9 input RF channels, 2 RFoutputs;Tuner motor control viaRS-485/Ethernet/EPICS;External interlock daisy-chain;Two external trigger inputs;Eight opto-isolated basebandADC channels for slowinterlocks.

(Dimtel) iGp12 DLS 3 / 16

Page 9: Digital Low-level RF Test at Diamond Booster Digital Low-level RF Test at Diamond Booster LLRF9 demo, March 16–20, 2015 D. Teytelman2, et. al. 2Dimtel, Inc., San Jose, CA, USA April

Setup Demo Setup and Schedule

Outline

1 SetupLLRF9 IntroductionDemo Setup and Schedule

2 System Operation

3 Performance Tests

(Dimtel) iGp12 DLS 4 / 16

Page 10: Digital Low-level RF Test at Diamond Booster Digital Low-level RF Test at Diamond Booster LLRF9 demo, March 16–20, 2015 D. Teytelman2, et. al. 2Dimtel, Inc., San Jose, CA, USA April

Setup Demo Setup and Schedule

Demo Setup

Set up LLRF9 to run the booster RF with the following signals:RF reference (500 MHz)Three cavity probe signals (500 MHz)Cavity forward signal (500 MHz)Cavity reflected signal (500 MHz)Drive output (500 MHz)Interlock input (TTL)Ramp trigger (TTL)

Used EPICS interface to control cavity tuning;LLRF9 drive was connected to RF Safety Crate (113S) to maintaininterlocks;Bypassed existing LLRF chain, RF Safety Crate output connecteddirectly to preamplifier (222S).

(Dimtel) iGp12 DLS 5 / 16

Page 11: Digital Low-level RF Test at Diamond Booster Digital Low-level RF Test at Diamond Booster LLRF9 demo, March 16–20, 2015 D. Teytelman2, et. al. 2Dimtel, Inc., San Jose, CA, USA April

Setup Demo Setup and Schedule

Progress

MondayConnected LLRF9 to inputs only, established signal levels andtransferred calibrations;Connected drive output, configured feedback loops;Established closed-loop operation in CW mode.

TuesdayInterfaced LLRF9 tuner control loops to booster motor control;Established closed-loop operation of tuner and field balance loops.

WednesdayTransitioned to closed-loop operation with ramping and beam;Characterization of open and closed-loop spectra.

ThursdayStep response measurements;System set up from scratch by Alun Watkins.

FridayPerformance testing;Discussion.

(Dimtel) iGp12 DLS 6 / 16

Page 12: Digital Low-level RF Test at Diamond Booster Digital Low-level RF Test at Diamond Booster LLRF9 demo, March 16–20, 2015 D. Teytelman2, et. al. 2Dimtel, Inc., San Jose, CA, USA April

System Operation

Open Loop Transfer Function

∑ ErrorFeedback

RFcavity

DisturbancesSetpoint and excitation

Cavity field probe

Measured from setpoint to thecavity probe;Feedback block in open loop hasno dynamics, just gain and phaseshift;Open loop cavity response;Fit resonator model to extractgain, loaded Q, detuning, delay,phase shift at ωrf;Faster than expected gain roll-offabove the resonance.

(Dimtel) iGp12 DLS 7 / 16

Page 13: Digital Low-level RF Test at Diamond Booster Digital Low-level RF Test at Diamond Booster LLRF9 demo, March 16–20, 2015 D. Teytelman2, et. al. 2Dimtel, Inc., San Jose, CA, USA April

System Operation

Open Loop Transfer Function

∑ ErrorFeedback

RFcavity

DisturbancesSetpoint and excitation

Cavity field probe

Measured from setpoint to thecavity probe;Feedback block in open loop hasno dynamics, just gain and phaseshift;Open loop cavity response;Fit resonator model to extractgain, loaded Q, detuning, delay,phase shift at ωrf;Faster than expected gain roll-offabove the resonance.

(Dimtel) iGp12 DLS 7 / 16

Page 14: Digital Low-level RF Test at Diamond Booster Digital Low-level RF Test at Diamond Booster LLRF9 demo, March 16–20, 2015 D. Teytelman2, et. al. 2Dimtel, Inc., San Jose, CA, USA April

System Operation

Open Loop Transfer Function

−250 −200 −150 −100 −50 0 50 100 150 200 250−40

−30

−20

−10

Frequency offset (kHz)

Gain

(dB

)

−250 −200 −150 −100 −50 0 50 100 150 200 250−200

−100

0

100

200

Frequency offset (kHz)

Phase (

degre

es)

Measured from setpoint to thecavity probe;Feedback block in open loop hasno dynamics, just gain and phaseshift;Open loop cavity response;Fit resonator model to extractgain, loaded Q, detuning, delay,phase shift at ωrf;Faster than expected gain roll-offabove the resonance.

(Dimtel) iGp12 DLS 7 / 16

Page 15: Digital Low-level RF Test at Diamond Booster Digital Low-level RF Test at Diamond Booster LLRF9 demo, March 16–20, 2015 D. Teytelman2, et. al. 2Dimtel, Inc., San Jose, CA, USA April

System Operation

Open Loop Transfer Function

−250 −200 −150 −100 −50 0 50 100 150 200 250−40

−30

−20

−10

Frequency offset (kHz)

Gain

(dB

)

Gain = 0.2, Q = 15739.5, (wr − w

rf) = 0.55 kHz

Data

Fit

−250 −200 −150 −100 −50 0 50 100 150 200 250−200

−100

0

100

200

Frequency offset (kHz)

Phase (

degre

es)

τ = 750.834 ns, φ = 359.6 deg

Data

Fit

Measured from setpoint to thecavity probe;Feedback block in open loop hasno dynamics, just gain and phaseshift;Open loop cavity response;Fit resonator model to extractgain, loaded Q, detuning, delay,phase shift at ωrf;Faster than expected gain roll-offabove the resonance.

(Dimtel) iGp12 DLS 7 / 16

Page 16: Digital Low-level RF Test at Diamond Booster Digital Low-level RF Test at Diamond Booster LLRF9 demo, March 16–20, 2015 D. Teytelman2, et. al. 2Dimtel, Inc., San Jose, CA, USA April

System Operation

Open Loop Transfer Function

−250 −200 −150 −100 −50 0 50 100 150 200 250−40

−30

−20

−10

Frequency offset (kHz)

Gain

(dB

)

Gain = 0.2, Q = 15739.5, (wr − w

rf) = 0.55 kHz

Data

Fit

−250 −200 −150 −100 −50 0 50 100 150 200 250−200

−100

0

100

200

Frequency offset (kHz)

Phase (

degre

es)

τ = 750.834 ns, φ = 359.6 deg

Data

Fit

Measured from setpoint to thecavity probe;Feedback block in open loop hasno dynamics, just gain and phaseshift;Open loop cavity response;Fit resonator model to extractgain, loaded Q, detuning, delay,phase shift at ωrf;Faster than expected gain roll-offabove the resonance.

(Dimtel) iGp12 DLS 7 / 16

Page 17: Digital Low-level RF Test at Diamond Booster Digital Low-level RF Test at Diamond Booster LLRF9 demo, March 16–20, 2015 D. Teytelman2, et. al. 2Dimtel, Inc., San Jose, CA, USA April

System Operation

Wideband Open Loop Transfer Function

−4000 −3000 −2000 −1000 0 1000 2000 3000 4000−80

−60

−40

−20

0

Frequency offset (kHz)

Gain

(dB

)

−4000 −3000 −2000 −1000 0 1000 2000 3000 4000−600

−400

−200

0

200

400

Frequency offset (kHz)

Phase (

degre

es)

Wider sweep reveals a parasiticmode at 2.8 MHz above the πmode;Negative feedback for the π modeis positive for the parasitic mode;This positive feedback limits directloop gain;The simplest way around theissue is to use digital delay toequalize the modal phase shifts(230 ns).

(Dimtel) iGp12 DLS 8 / 16

Page 18: Digital Low-level RF Test at Diamond Booster Digital Low-level RF Test at Diamond Booster LLRF9 demo, March 16–20, 2015 D. Teytelman2, et. al. 2Dimtel, Inc., San Jose, CA, USA April

System Operation

Wideband Open Loop Transfer Function

−400 −200 0 200 400−50

−40

−30

−20

−10

Frequency offset (kHz)

Gain

(dB

)

Gain −13.7 dB

−400 −200 0 200 400−200

−100

0

100

200

Frequency offset (kHz)

Phase (

degre

es)

Phase −0.4 deg

2600 2800 3000 3200−35

−30

−25

−20

−15

−10

Frequency offset (kHz)

Gain

(dB

)

Gain −12.6 dB

2600 2800 3000 3200−300

−200

−100

0

100

Frequency offset (kHz)

Phase (

degre

es)

Phase −121.0 deg

Wider sweep reveals a parasiticmode at 2.8 MHz above the πmode;Negative feedback for the π modeis positive for the parasitic mode;This positive feedback limits directloop gain;The simplest way around theissue is to use digital delay toequalize the modal phase shifts(230 ns).

(Dimtel) iGp12 DLS 8 / 16

Page 19: Digital Low-level RF Test at Diamond Booster Digital Low-level RF Test at Diamond Booster LLRF9 demo, March 16–20, 2015 D. Teytelman2, et. al. 2Dimtel, Inc., San Jose, CA, USA April

System Operation

Wideband Open Loop Transfer Function

−400 −200 0 200 400−50

−40

−30

−20

−10

Frequency offset (kHz)

Gain

(dB

)

Gain −13.7 dB

−400 −200 0 200 400−200

−100

0

100

200

Frequency offset (kHz)

Phase (

degre

es)

Phase −0.4 deg

2600 2800 3000 3200−35

−30

−25

−20

−15

−10

Frequency offset (kHz)

Gain

(dB

)

Gain −12.6 dB

2600 2800 3000 3200−300

−200

−100

0

100

Frequency offset (kHz)

Phase (

degre

es)

Phase −121.0 deg

Wider sweep reveals a parasiticmode at 2.8 MHz above the πmode;Negative feedback for the π modeis positive for the parasitic mode;This positive feedback limits directloop gain;The simplest way around theissue is to use digital delay toequalize the modal phase shifts(230 ns).

(Dimtel) iGp12 DLS 8 / 16

Page 20: Digital Low-level RF Test at Diamond Booster Digital Low-level RF Test at Diamond Booster LLRF9 demo, March 16–20, 2015 D. Teytelman2, et. al. 2Dimtel, Inc., San Jose, CA, USA April

System Operation

Wideband Open Loop Transfer Function

−400 −200 0 200 400−50

−40

−30

−20

−10

Frequency offset (kHz)

Gain

(dB

)

Gain −13.7 dB

−400 −200 0 200 400−200

−100

0

100

200

Frequency offset (kHz)

Phase (

degre

es)

Phase −0.4 deg

2600 2800 3000 3200−35

−30

−25

−20

−15

−10

Frequency offset (kHz)

Gain

(dB

)

Gain −12.6 dB

2600 2800 3000 3200−200

−100

0

100

200

Frequency offset (kHz)

Phase (

degre

es)

Phase −2.5 deg

Wider sweep reveals a parasiticmode at 2.8 MHz above the πmode;Negative feedback for the π modeis positive for the parasitic mode;This positive feedback limits directloop gain;The simplest way around theissue is to use digital delay toequalize the modal phase shifts(230 ns).

(Dimtel) iGp12 DLS 8 / 16

Page 21: Digital Low-level RF Test at Diamond Booster Digital Low-level RF Test at Diamond Booster LLRF9 demo, March 16–20, 2015 D. Teytelman2, et. al. 2Dimtel, Inc., San Jose, CA, USA April

System Operation

Proportional Loop Gain and Delay

−1000 −500 0 500 1000 1500 2000 2500 3000 3500 4000−80

−70

−60

−50

−40

−30

−20

−10

Frequency offset (kHz)

Gain

(dB

)

Gain margin 12.3 dB at 2874.4 kHz

−1000 −500 0 500 1000 1500 2000 2500 3000 3500 4000−200

−150

−100

−50

0

50

100

150

200

Frequency offset (kHz)

Gain

(dB

)

TF

GM

TF

GM

Set up minimum delay and equalizedtransfer functions for identical 3 dBclosed-loop peaking.

Minimum delay: peak gain at RF is−9.2 dB, gain margin 12.3 dBEqualized: peak gain at RF is+8 dB, gain margin 11.8 dB, phasemargin 88 degrees

More sophisticated parasitic modesuppression methods can improvethe performance only slightly, around2-3 dB.

(Dimtel) iGp12 DLS 9 / 16

Page 22: Digital Low-level RF Test at Diamond Booster Digital Low-level RF Test at Diamond Booster LLRF9 demo, March 16–20, 2015 D. Teytelman2, et. al. 2Dimtel, Inc., San Jose, CA, USA April

System Operation

Proportional Loop Gain and Delay

−1000 −500 0 500 1000 1500 2000 2500 3000 3500 4000−60

−50

−40

−30

−20

−10

0

10

Frequency offset (kHz)

Gain

(dB

)

Gain margin 11.8 dB at 3105.9 kHz

−1000 −500 0 500 1000 1500 2000 2500 3000 3500 4000−200

−150

−100

−50

0

50

100

150

200Phase margin 88.5

° at 2904.3 kHz

Frequency offset (kHz)

Gain

(dB

)

TF

GM

PM

TF

GM

PM

Set up minimum delay and equalizedtransfer functions for identical 3 dBclosed-loop peaking.

Minimum delay: peak gain at RF is−9.2 dB, gain margin 12.3 dBEqualized: peak gain at RF is+8 dB, gain margin 11.8 dB, phasemargin 88 degrees

More sophisticated parasitic modesuppression methods can improvethe performance only slightly, around2-3 dB.

(Dimtel) iGp12 DLS 9 / 16

Page 23: Digital Low-level RF Test at Diamond Booster Digital Low-level RF Test at Diamond Booster LLRF9 demo, March 16–20, 2015 D. Teytelman2, et. al. 2Dimtel, Inc., San Jose, CA, USA April

System Operation

Proportional Loop Gain and Delay

−1000 −500 0 500 1000 1500 2000 2500 3000 3500 4000−60

−50

−40

−30

−20

−10

0

10

Frequency offset (kHz)

Gain

(dB

)

Gain margin 11.8 dB at 3105.9 kHz

−1000 −500 0 500 1000 1500 2000 2500 3000 3500 4000−200

−150

−100

−50

0

50

100

150

200Phase margin 88.5

° at 2904.3 kHz

Frequency offset (kHz)

Gain

(dB

)

TF

GM

PM

TF

GM

PM

Set up minimum delay and equalizedtransfer functions for identical 3 dBclosed-loop peaking.

Minimum delay: peak gain at RF is−9.2 dB, gain margin 12.3 dBEqualized: peak gain at RF is+8 dB, gain margin 11.8 dB, phasemargin 88 degrees

More sophisticated parasitic modesuppression methods can improvethe performance only slightly, around2-3 dB.

(Dimtel) iGp12 DLS 9 / 16

Page 24: Digital Low-level RF Test at Diamond Booster Digital Low-level RF Test at Diamond Booster LLRF9 demo, March 16–20, 2015 D. Teytelman2, et. al. 2Dimtel, Inc., San Jose, CA, USA April

System Operation

Closed Loop Transfer Function

∑ ErrorFeedback

RFcavity

DisturbancesSetpoint and excitation

Cavity field probe

Measured from setpoint to theerror signal;Quantifies closed-loopdisturbance rejection vs.frequency offset from fRF;Proportional and integrator loopsproduce high rejection at lowfrequencies;Magnitude on log-log scale, fieldsetpoint of 1 MV.

(Dimtel) iGp12 DLS 10 / 16

Page 25: Digital Low-level RF Test at Diamond Booster Digital Low-level RF Test at Diamond Booster LLRF9 demo, March 16–20, 2015 D. Teytelman2, et. al. 2Dimtel, Inc., San Jose, CA, USA April

System Operation

Closed Loop Transfer Function

∑ ErrorFeedback

RFcavity

DisturbancesSetpoint and excitation

Cavity field probe

Measured from setpoint to theerror signal;Quantifies closed-loopdisturbance rejection vs.frequency offset from fRF;Proportional and integrator loopsproduce high rejection at lowfrequencies;Magnitude on log-log scale, fieldsetpoint of 1 MV.

(Dimtel) iGp12 DLS 10 / 16

Page 26: Digital Low-level RF Test at Diamond Booster Digital Low-level RF Test at Diamond Booster LLRF9 demo, March 16–20, 2015 D. Teytelman2, et. al. 2Dimtel, Inc., San Jose, CA, USA April

System Operation

Closed Loop Transfer Function

101

102

103

104

105

−70

−60

−50

−40

−30

−20

−10

0

10

Frequency offset (Hz)

Att

en

ua

tio

n (

dB

)

Direct

Direct+integral

Measured from setpoint to theerror signal;Quantifies closed-loopdisturbance rejection vs.frequency offset from fRF;Proportional and integrator loopsproduce high rejection at lowfrequencies;Magnitude on log-log scale, fieldsetpoint of 1 MV.

(Dimtel) iGp12 DLS 10 / 16

Page 27: Digital Low-level RF Test at Diamond Booster Digital Low-level RF Test at Diamond Booster LLRF9 demo, March 16–20, 2015 D. Teytelman2, et. al. 2Dimtel, Inc., San Jose, CA, USA April

System Operation

Closed Loop Transfer Function

101

102

103

104

105

−70

−60

−50

−40

−30

−20

−10

0

10

Frequency offset (Hz)

Att

en

ua

tio

n (

dB

)

Direct

Direct+integral

Measured from setpoint to theerror signal;Quantifies closed-loopdisturbance rejection vs.frequency offset from fRF;Proportional and integrator loopsproduce high rejection at lowfrequencies;Magnitude on log-log scale, fieldsetpoint of 1 MV.

(Dimtel) iGp12 DLS 10 / 16

Page 28: Digital Low-level RF Test at Diamond Booster Digital Low-level RF Test at Diamond Booster LLRF9 demo, March 16–20, 2015 D. Teytelman2, et. al. 2Dimtel, Inc., San Jose, CA, USA April

System Operation

Step Response

0 50 100 150 200 250190

200

210

220

230

Time (µs)

Am

plit

ud

e (

kV

)

Cavity probe

0 50 100 150 200 25054

54.5

55

55.5

56

Ph

ase

(d

eg

) Use ramp start signal to triggerwaveform acquisition;Ramp profile loaded with a 10%amplitude step (200 to 220 kV);Some coupling between amplitude andphase;All input channels are captured on thesame trigger, observing reflectedpower here;Characterized a 5 degree phase stepas well.

(Dimtel) iGp12 DLS 11 / 16

Page 29: Digital Low-level RF Test at Diamond Booster Digital Low-level RF Test at Diamond Booster LLRF9 demo, March 16–20, 2015 D. Teytelman2, et. al. 2Dimtel, Inc., San Jose, CA, USA April

System Operation

Step Response

0 50 100 150 200 250190

200

210

220

230

Time (µs)

Am

plit

ud

e (

kV

)

Cavity probe

0 50 100 150 200 25054

54.5

55

55.5

56

Ph

ase

(d

eg

) Use ramp start signal to triggerwaveform acquisition;Ramp profile loaded with a 10%amplitude step (200 to 220 kV);Some coupling between amplitude andphase;All input channels are captured on thesame trigger, observing reflectedpower here;Characterized a 5 degree phase stepas well.

(Dimtel) iGp12 DLS 11 / 16

Page 30: Digital Low-level RF Test at Diamond Booster Digital Low-level RF Test at Diamond Booster LLRF9 demo, March 16–20, 2015 D. Teytelman2, et. al. 2Dimtel, Inc., San Jose, CA, USA April

System Operation

Step Response

0 50 100 150 200 250190

200

210

220

230

Time (µs)

Am

plit

ud

e (

kV

)

Cavity probe

0 50 100 150 200 25054

54.5

55

55.5

56

Ph

ase

(d

eg

) Use ramp start signal to triggerwaveform acquisition;Ramp profile loaded with a 10%amplitude step (200 to 220 kV);Some coupling between amplitude andphase;All input channels are captured on thesame trigger, observing reflectedpower here;Characterized a 5 degree phase stepas well.

(Dimtel) iGp12 DLS 11 / 16

Page 31: Digital Low-level RF Test at Diamond Booster Digital Low-level RF Test at Diamond Booster LLRF9 demo, March 16–20, 2015 D. Teytelman2, et. al. 2Dimtel, Inc., San Jose, CA, USA April

System Operation

Step Response

0 10 20 30 40 50190

200

210

220

230

Time (µs)

Am

plit

ud

e (

kV

)

Cavity probe

0 10 20 30 40 500

0.5

1

Time (µs)

Am

plit

ud

e (

kW

)

Reflected power

0 10 20 30 40 5054

54.5

55

55.5

56

Ph

ase

(d

eg

)

0 10 20 30 40 50−100

−50

0

Ph

ase

(d

eg

)

Use ramp start signal to triggerwaveform acquisition;Ramp profile loaded with a 10%amplitude step (200 to 220 kV);Some coupling between amplitude andphase;All input channels are captured on thesame trigger, observing reflectedpower here;Characterized a 5 degree phase stepas well.

(Dimtel) iGp12 DLS 11 / 16

Page 32: Digital Low-level RF Test at Diamond Booster Digital Low-level RF Test at Diamond Booster LLRF9 demo, March 16–20, 2015 D. Teytelman2, et. al. 2Dimtel, Inc., San Jose, CA, USA April

System Operation

Step Response

0 50 100 150 200 250198

200

202

204

Time (µs)

Am

plit

ud

e (

kV

)

0 50 100 150 200 25050

55

60

65

Ph

ase

(d

eg

) Use ramp start signal to triggerwaveform acquisition;Ramp profile loaded with a 10%amplitude step (200 to 220 kV);Some coupling between amplitude andphase;All input channels are captured on thesame trigger, observing reflectedpower here;Characterized a 5 degree phase stepas well.

(Dimtel) iGp12 DLS 11 / 16

Page 33: Digital Low-level RF Test at Diamond Booster Digital Low-level RF Test at Diamond Booster LLRF9 demo, March 16–20, 2015 D. Teytelman2, et. al. 2Dimtel, Inc., San Jose, CA, USA April

Performance Tests

IQ Circles

20

40

60

80

30

210

60

240

90

270

120

300

150

330

180 0

Frequency offset input, IQ circles, decibel radius scale

Input signal at −60 to 0 dBm in 10 dBsteps, ≈ 1 Hz offset;Log scale polar plot (r = 20 log10|x|);Center offset, more prominent at lowamplitudes, is due to RF feedthrough(coupled from the reference channel);Can numerically remove the offsets;Good linearity (uncorrected forsynthesizer errors), consistent offsetsat −73 dBFS.

(Dimtel) iGp12 DLS 12 / 16

Page 34: Digital Low-level RF Test at Diamond Booster Digital Low-level RF Test at Diamond Booster LLRF9 demo, March 16–20, 2015 D. Teytelman2, et. al. 2Dimtel, Inc., San Jose, CA, USA April

Performance Tests

IQ Circles

20

40

60

80

30

210

60

240

90

270

120

300

150

330

180 0

Frequency offset input, IQ circles, decibel radius scale

Input signal at −60 to 0 dBm in 10 dBsteps, ≈ 1 Hz offset;Log scale polar plot (r = 20 log10|x|);Center offset, more prominent at lowamplitudes, is due to RF feedthrough(coupled from the reference channel);Can numerically remove the offsets;Good linearity (uncorrected forsynthesizer errors), consistent offsetsat −73 dBFS.

(Dimtel) iGp12 DLS 12 / 16

Page 35: Digital Low-level RF Test at Diamond Booster Digital Low-level RF Test at Diamond Booster LLRF9 demo, March 16–20, 2015 D. Teytelman2, et. al. 2Dimtel, Inc., San Jose, CA, USA April

Performance Tests

IQ Circles

20

40

60

80

30

210

60

240

90

270

120

300

150

330

180 0

Frequency offset input, IQ circles, decibel radius scale

Input signal at −60 to 0 dBm in 10 dBsteps, ≈ 1 Hz offset;Log scale polar plot (r = 20 log10|x|);Center offset, more prominent at lowamplitudes, is due to RF feedthrough(coupled from the reference channel);Can numerically remove the offsets;Good linearity (uncorrected forsynthesizer errors), consistent offsetsat −73 dBFS.

(Dimtel) iGp12 DLS 12 / 16

Page 36: Digital Low-level RF Test at Diamond Booster Digital Low-level RF Test at Diamond Booster LLRF9 demo, March 16–20, 2015 D. Teytelman2, et. al. 2Dimtel, Inc., San Jose, CA, USA April

Performance Tests

IQ Circles

20

40

60

80

30

210

60

240

90

270

120

300

150

330

180 0

Frequency offset input, IQ circles, decibel radius scale

Input signal at −60 to 0 dBm in 10 dBsteps, ≈ 1 Hz offset;Log scale polar plot (r = 20 log10|x|);Center offset, more prominent at lowamplitudes, is due to RF feedthrough(coupled from the reference channel);Can numerically remove the offsets;Good linearity (uncorrected forsynthesizer errors), consistent offsetsat −73 dBFS.

(Dimtel) iGp12 DLS 12 / 16

Page 37: Digital Low-level RF Test at Diamond Booster Digital Low-level RF Test at Diamond Booster LLRF9 demo, March 16–20, 2015 D. Teytelman2, et. al. 2Dimtel, Inc., San Jose, CA, USA April

Performance Tests

IQ Circles

−60 −50 −40 −30 −20 −10 0−80

−60

−40

−20

0

Input power (dBm)

(dB

FS

)

IQ amplitude vs. input power

−60 −50 −40 −30 −20 −10 0−0.2

0

0.2

0.4

0.6

Input power (dBm)

(dB

)

Error between Pin

and IQ amplitude, linear fit from −50 to −10

−60 −50 −40 −30 −20 −10 0

0.8

1

1.2

1.4

1.6

Input power (dBm)

(AD

C c

ou

nts

)

RF reference feedthrough (circle offset)

I

Q

Input signal at −60 to 0 dBm in 10 dBsteps, ≈ 1 Hz offset;Log scale polar plot (r = 20 log10|x|);Center offset, more prominent at lowamplitudes, is due to RF feedthrough(coupled from the reference channel);Can numerically remove the offsets;Good linearity (uncorrected forsynthesizer errors), consistent offsetsat −73 dBFS.

(Dimtel) iGp12 DLS 12 / 16

Page 38: Digital Low-level RF Test at Diamond Booster Digital Low-level RF Test at Diamond Booster LLRF9 demo, March 16–20, 2015 D. Teytelman2, et. al. 2Dimtel, Inc., San Jose, CA, USA April

Performance Tests

IQ Circles: On the Bench

20

40

60

80

30

210

60

240

90

270

120

300

150

330

180 0

Frequency offset input, IQ circles, decibel radius scale

Similar to the test at DLS with severalmodifications:

Reference level at +10.5 dBm vs.+8 dBm at DLS;Input power level monitored by aspectrum analyzer;5 dB steps.

Center offset correction;Linearity good to ±0.05 dB down to-50 dBFS;Offsets/feedthrough at −72 dBFS.

(Dimtel) iGp12 DLS 13 / 16

Page 39: Digital Low-level RF Test at Diamond Booster Digital Low-level RF Test at Diamond Booster LLRF9 demo, March 16–20, 2015 D. Teytelman2, et. al. 2Dimtel, Inc., San Jose, CA, USA April

Performance Tests

IQ Circles: On the Bench

20

40

60

80

30

210

60

240

90

270

120

300

150

330

180 0

Frequency offset input, IQ circles, decibel radius scale

Similar to the test at DLS with severalmodifications:

Reference level at +10.5 dBm vs.+8 dBm at DLS;Input power level monitored by aspectrum analyzer;5 dB steps.

Center offset correction;Linearity good to ±0.05 dB down to-50 dBFS;Offsets/feedthrough at −72 dBFS.

(Dimtel) iGp12 DLS 13 / 16

Page 40: Digital Low-level RF Test at Diamond Booster Digital Low-level RF Test at Diamond Booster LLRF9 demo, March 16–20, 2015 D. Teytelman2, et. al. 2Dimtel, Inc., San Jose, CA, USA April

Performance Tests

IQ Circles: On the Bench

−70 −60 −50 −40 −30 −20 −10 0−80

−60

−40

−20

0

Input power (dBm)

(dB

FS

)

IQ amplitude vs. input power

−70 −60 −50 −40 −30 −20 −10 0−0.5

0

0.5

1

Input power (dBm)

(dB

)

Error between Pin

and IQ amplitude, linear fit

−70 −60 −50 −40 −30 −20 −10 00

0.5

1

1.5

2

2.5

Input power (dBm)

(AD

C c

ounts

)

RF reference feedthrough (circle offset)

I

Q

Similar to the test at DLS with severalmodifications:

Reference level at +10.5 dBm vs.+8 dBm at DLS;Input power level monitored by aspectrum analyzer;5 dB steps.

Center offset correction;Linearity good to ±0.05 dB down to-50 dBFS;Offsets/feedthrough at −72 dBFS.

(Dimtel) iGp12 DLS 13 / 16

Page 41: Digital Low-level RF Test at Diamond Booster Digital Low-level RF Test at Diamond Booster LLRF9 demo, March 16–20, 2015 D. Teytelman2, et. al. 2Dimtel, Inc., San Jose, CA, USA April

Performance Tests

IQ Circles: On the Bench

−70 −60 −50 −40 −30 −20 −10 0−80

−60

−40

−20

0

Input power (dBm)

(dB

FS

)

IQ amplitude vs. input power

−70 −60 −50 −40 −30 −20 −10 0−0.5

0

0.5

1

Input power (dBm)

(dB

)

Error between Pin

and IQ amplitude, linear fit

−70 −60 −50 −40 −30 −20 −10 00

0.5

1

1.5

2

2.5

Input power (dBm)

(AD

C c

ounts

)

RF reference feedthrough (circle offset)

I

Q

Similar to the test at DLS with severalmodifications:

Reference level at +10.5 dBm vs.+8 dBm at DLS;Input power level monitored by aspectrum analyzer;5 dB steps.

Center offset correction;Linearity good to ±0.05 dB down to-50 dBFS;Offsets/feedthrough at −72 dBFS.

(Dimtel) iGp12 DLS 13 / 16

Page 42: Digital Low-level RF Test at Diamond Booster Digital Low-level RF Test at Diamond Booster LLRF9 demo, March 16–20, 2015 D. Teytelman2, et. al. 2Dimtel, Inc., San Jose, CA, USA April

Performance Tests

Single Channel Phase Noise

103

104

105

106

107

−146

−144

−142

−140

−138

−136

−134

−132

Frequency (Hz)

dB

c/H

z

Reference channel at DLS,+8 dBm input level;Sources of lines at 65.2and 111.8 kHz are known,already fixed;Same channel measuredon the bench, HP8664A at+11.5 dBm.

(Dimtel) iGp12 DLS 14 / 16

Page 43: Digital Low-level RF Test at Diamond Booster Digital Low-level RF Test at Diamond Booster LLRF9 demo, March 16–20, 2015 D. Teytelman2, et. al. 2Dimtel, Inc., San Jose, CA, USA April

Performance Tests

Single Channel Phase Noise

103

104

105

106

107

−146

−144

−142

−140

−138

−136

−134

−132

Frequency (Hz)

dB

c/H

z

Reference channel at DLS,+8 dBm input level;Sources of lines at 65.2and 111.8 kHz are known,already fixed;Same channel measuredon the bench, HP8664A at+11.5 dBm.

(Dimtel) iGp12 DLS 14 / 16

Page 44: Digital Low-level RF Test at Diamond Booster Digital Low-level RF Test at Diamond Booster LLRF9 demo, March 16–20, 2015 D. Teytelman2, et. al. 2Dimtel, Inc., San Jose, CA, USA April

Performance Tests

Single Channel Phase Noise

103

104

105

106

107

−146

−144

−142

−140

−138

−136

−134

−132

X: 5.592e+04Y: −134

Frequency (Hz)

dB

c/H

z

DLS

Bench

Reference channel at DLS,+8 dBm input level;Sources of lines at 65.2and 111.8 kHz are known,already fixed;Same channel measuredon the bench, HP8664A at+11.5 dBm.

(Dimtel) iGp12 DLS 14 / 16

Page 45: Digital Low-level RF Test at Diamond Booster Digital Low-level RF Test at Diamond Booster LLRF9 demo, March 16–20, 2015 D. Teytelman2, et. al. 2Dimtel, Inc., San Jose, CA, USA April

Performance Tests

Thermal Stability

−12 −10 −8 −6 −4 −2 0

22

23

24

25

26

Time (hours)

°C

Ambient temperature measurement

On chassis

In air

−12 −10 −8 −6 −4 −2 0

22

23

24

25

26

Time (hours)

°C

Out of loop sensors

−12 −10 −8 −6 −4 −2 020.98

20.99

21

21.01

21.02

21.03

21.04

Time (hours)

°C

In−loop sensors

LLRF:BRD1:NTC1:TEMP [degC]

LLRF:BRD2:NTC1:TEMP [degC]

LLRF:BRD3:NTC1:TEMP [degC]

LLRF:BRD1:DS1822:TEMP [degC]

LLRF:BRD2:DS1822:TEMP [degC]

LLRF:BRD1:NTC0:TEMP [degC]

LLRF:BRD2:NTC0:TEMP [degC]

LLRF:BRD3:NTC0:TEMP [degC]

9 internal sensors on cold plate: 6NTCs, 3 DS18B20 digital sensors;Three temperature stabilization loopsusing thermoelectric coolers;Two external sensors, in air andattached to chassis;Tight stabilization of in-loop sensors;Residual sensitivity of out-of-loopsensors is 0.09–0.12 ◦C/◦C.

(Dimtel) iGp12 DLS 15 / 16

Page 46: Digital Low-level RF Test at Diamond Booster Digital Low-level RF Test at Diamond Booster LLRF9 demo, March 16–20, 2015 D. Teytelman2, et. al. 2Dimtel, Inc., San Jose, CA, USA April

Performance Tests

Thermal Stability

−12 −10 −8 −6 −4 −2 0

22

23

24

25

26

Time (hours)

°C

Ambient temperature measurement

On chassis

In air

−12 −10 −8 −6 −4 −2 0

22

23

24

25

26

Time (hours)

°C

Out of loop sensors

−12 −10 −8 −6 −4 −2 020.98

20.99

21

21.01

21.02

21.03

21.04

Time (hours)

°C

In−loop sensors

LLRF:BRD1:NTC1:TEMP [degC]

LLRF:BRD2:NTC1:TEMP [degC]

LLRF:BRD3:NTC1:TEMP [degC]

LLRF:BRD1:DS1822:TEMP [degC]

LLRF:BRD2:DS1822:TEMP [degC]

LLRF:BRD1:NTC0:TEMP [degC]

LLRF:BRD2:NTC0:TEMP [degC]

LLRF:BRD3:NTC0:TEMP [degC]

9 internal sensors on cold plate: 6NTCs, 3 DS18B20 digital sensors;Three temperature stabilization loopsusing thermoelectric coolers;Two external sensors, in air andattached to chassis;Tight stabilization of in-loop sensors;Residual sensitivity of out-of-loopsensors is 0.09–0.12 ◦C/◦C.

(Dimtel) iGp12 DLS 15 / 16

Page 47: Digital Low-level RF Test at Diamond Booster Digital Low-level RF Test at Diamond Booster LLRF9 demo, March 16–20, 2015 D. Teytelman2, et. al. 2Dimtel, Inc., San Jose, CA, USA April

Performance Tests

Thermal Stability

−12 −10 −8 −6 −4 −2 0

22

23

24

25

26

Time (hours)

°C

Ambient temperature measurement

On chassis

In air

−12 −10 −8 −6 −4 −2 0

22

23

24

25

26

Time (hours)

°C

Out of loop sensors

−12 −10 −8 −6 −4 −2 020.98

20.99

21

21.01

21.02

21.03

21.04

Time (hours)

°C

In−loop sensors

LLRF:BRD1:NTC1:TEMP [degC]

LLRF:BRD2:NTC1:TEMP [degC]

LLRF:BRD3:NTC1:TEMP [degC]

LLRF:BRD1:DS1822:TEMP [degC]

LLRF:BRD2:DS1822:TEMP [degC]

LLRF:BRD1:NTC0:TEMP [degC]

LLRF:BRD2:NTC0:TEMP [degC]

LLRF:BRD3:NTC0:TEMP [degC]

9 internal sensors on cold plate: 6NTCs, 3 DS18B20 digital sensors;Three temperature stabilization loopsusing thermoelectric coolers;Two external sensors, in air andattached to chassis;Tight stabilization of in-loop sensors;Residual sensitivity of out-of-loopsensors is 0.09–0.12 ◦C/◦C.

(Dimtel) iGp12 DLS 15 / 16

Page 48: Digital Low-level RF Test at Diamond Booster Digital Low-level RF Test at Diamond Booster LLRF9 demo, March 16–20, 2015 D. Teytelman2, et. al. 2Dimtel, Inc., San Jose, CA, USA April

Performance Tests

Thermal Stability

−12 −10 −8 −6 −4 −2 0

22

23

24

25

26

Time (hours)

°C

Ambient temperature measurement

On chassis

In air

−12 −10 −8 −6 −4 −2 0

22

23

24

25

26

Time (hours)

°C

Out of loop sensors

−12 −10 −8 −6 −4 −2 020.98

20.99

21

21.01

21.02

21.03

21.04

Time (hours)

°C

In−loop sensors (32 sample average)

LLRF:BRD1:NTC0:TEMP [degC]

LLRF:BRD2:NTC0:TEMP [degC]

LLRF:BRD3:NTC0:TEMP [degC]

LLRF:BRD1:NTC1:TEMP [degC]

LLRF:BRD2:NTC1:TEMP [degC]

LLRF:BRD3:NTC1:TEMP [degC]

LLRF:BRD1:DS1822:TEMP [degC]

LLRF:BRD2:DS1822:TEMP [degC]

9 internal sensors on cold plate: 6NTCs, 3 DS18B20 digital sensors;Three temperature stabilization loopsusing thermoelectric coolers;Two external sensors, in air andattached to chassis;Tight stabilization of in-loop sensors;Residual sensitivity of out-of-loopsensors is 0.09–0.12 ◦C/◦C.

(Dimtel) iGp12 DLS 15 / 16

Page 49: Digital Low-level RF Test at Diamond Booster Digital Low-level RF Test at Diamond Booster LLRF9 demo, March 16–20, 2015 D. Teytelman2, et. al. 2Dimtel, Inc., San Jose, CA, USA April

Performance Tests

Thermal Stability

−12 −10 −8 −6 −4 −2 0

22

23

24

25

26

Time (hours)

°C

Ambient temperature measurement

On chassis

In air

−12 −10 −8 −6 −4 −2 0

22

23

24

25

26

Time (hours)

°C

Out of loop sensors

−12 −10 −8 −6 −4 −2 020.98

20.99

21

21.01

21.02

21.03

21.04

Time (hours)

°C

In−loop sensors (32 sample average)

LLRF:BRD1:NTC0:TEMP [degC]

LLRF:BRD2:NTC0:TEMP [degC]

LLRF:BRD3:NTC0:TEMP [degC]

LLRF:BRD1:NTC1:TEMP [degC]

LLRF:BRD2:NTC1:TEMP [degC]

LLRF:BRD3:NTC1:TEMP [degC]

LLRF:BRD1:DS1822:TEMP [degC]

LLRF:BRD2:DS1822:TEMP [degC]

9 internal sensors on cold plate: 6NTCs, 3 DS18B20 digital sensors;Three temperature stabilization loopsusing thermoelectric coolers;Two external sensors, in air andattached to chassis;Tight stabilization of in-loop sensors;Residual sensitivity of out-of-loopsensors is 0.09–0.12 ◦C/◦C.

(Dimtel) iGp12 DLS 15 / 16

Page 50: Digital Low-level RF Test at Diamond Booster Digital Low-level RF Test at Diamond Booster LLRF9 demo, March 16–20, 2015 D. Teytelman2, et. al. 2Dimtel, Inc., San Jose, CA, USA April

Summary

Summary

Successfully operated booster RF station with beam;Demonstrated powerful user interface tools necessary for faststation configuration;Demonstrated field control at forward power 60 W to 60 kW;Showed high rejection of disturbances, good tuner loop responsewith low reflected power.

(Dimtel) iGp12 DLS 16 / 16

Page 51: Digital Low-level RF Test at Diamond Booster Digital Low-level RF Test at Diamond Booster LLRF9 demo, March 16–20, 2015 D. Teytelman2, et. al. 2Dimtel, Inc., San Jose, CA, USA April

Summary

Summary

Successfully operated booster RF station with beam;Demonstrated powerful user interface tools necessary for faststation configuration;Demonstrated field control at forward power 60 W to 60 kW;Showed high rejection of disturbances, good tuner loop responsewith low reflected power.

(Dimtel) iGp12 DLS 16 / 16

Page 52: Digital Low-level RF Test at Diamond Booster Digital Low-level RF Test at Diamond Booster LLRF9 demo, March 16–20, 2015 D. Teytelman2, et. al. 2Dimtel, Inc., San Jose, CA, USA April

Summary

Summary

Successfully operated booster RF station with beam;Demonstrated powerful user interface tools necessary for faststation configuration;Demonstrated field control at forward power 60 W to 60 kW;Showed high rejection of disturbances, good tuner loop responsewith low reflected power.

(Dimtel) iGp12 DLS 16 / 16

Page 53: Digital Low-level RF Test at Diamond Booster Digital Low-level RF Test at Diamond Booster LLRF9 demo, March 16–20, 2015 D. Teytelman2, et. al. 2Dimtel, Inc., San Jose, CA, USA April

Summary

Summary

Successfully operated booster RF station with beam;Demonstrated powerful user interface tools necessary for faststation configuration;Demonstrated field control at forward power 60 W to 60 kW;Showed high rejection of disturbances, good tuner loop responsewith low reflected power.

(Dimtel) iGp12 DLS 16 / 16