Di erential cohomology in a cohesive 1-topos · bundles and of gauge elds { abstractly in homotopy...

1042
Differential cohomology in a cohesive -topos Urs Schreiber 21st century Abstract We formulate differential cohomology and Chern-Weil theory – the theory of connections on fiber bundles and of gauge fields – abstractly in homotopy toposes that we call cohesive. Cocycles in this differential cohomology classify higher principal bundles equipped with cohesive structure (topological, smooth, complex-analytic, formal, supergeometric, etc.) and equipped with connections, hence higher gauge fields. Furthermore we formulate differential geometry abstractly in homotopy toposes that we call differentially cohesive. The manifolds in this theory are higher ´ etale stacks (orbifolds) equipped with higher Cartan geometry (higher Riemannian-, complex, symplectic, conformal-, geometry) together with partial differential equations on spaces of sections of higher bundles over them, and equipped with higher pre-quantization of the resulting covariant phase spaces. We also formulate super-geometry abstractly in homotopy toposes and lift all these constructions to include fermionic degrees of freedom. Finally we indicate an abstract formulation of non-perturbative quantization of prequantum local field theory by fiber integration in twisted generalized cohomology of spectral linearizations of higher prequantum bundles. We then construct models of the abstract theory in which traditional differential super-geometry is recovered and promoted to higher (derived) differential super-geometry. We show that the cohesive and differential refinement of universal characteristic cocycles constitutes a higher Chern-Weil homomorphism refined from secondary characteristic classes to morphisms of higher moduli stacks of higher gauge fields, and at the same time constitutes extended geometric prequantization – in the sense of extended/multi-tiered quantum field theory – of hierarchies of higher dimensional Chern- Simons-type field theories, their higher Wess-Zumino-Witten-type boundary field theories and all further higher codimension defect field theories. We find that in the Whitehead tower of superpoints in higher supergeometry one finds god given such cocycles on higher supersymmetry-groups, reflecting the completed brane scan of string/M-theory. We show that the induced higher super Cartan geometry is higher dimensional supergravity with super p-brane charge corrections included. For the maximal case of 11-dimensional supergravity we find the Einstein equations of motion with cancellation of the classical anomalies of the M-brane sigma-models on these targets. Their higher Noether currents yield higher extensions of super-isometry groups by M2/M5-brane BPS charges in twisted generalized cohomology. We close with an outlook on the cohomological quantization of these higher boundary prequantum field theories by a kind of cohesive motives. This document is kept online, with accompanying material, at ncatlab.org/schreiber/show/differential+cohomology+in+a+cohesive+topos

Transcript of Di erential cohomology in a cohesive 1-topos · bundles and of gauge elds { abstractly in homotopy...

  • Differential cohomology in a cohesive ∞-toposUrs Schreiber

    21st century

    Abstract

    We formulate differential cohomology and Chern-Weil theory – the theory of connections on fiberbundles and of gauge fields – abstractly in homotopy toposes that we call cohesive. Cocycles in thisdifferential cohomology classify higher principal bundles equipped with cohesive structure (topological,smooth, complex-analytic, formal, supergeometric, etc.) and equipped with connections, hence highergauge fields. Furthermore we formulate differential geometry abstractly in homotopy toposes that wecall differentially cohesive. The manifolds in this theory are higher étale stacks (orbifolds) equipped withhigher Cartan geometry (higher Riemannian-, complex, symplectic, conformal-, geometry) together withpartial differential equations on spaces of sections of higher bundles over them, and equipped with higherpre-quantization of the resulting covariant phase spaces. We also formulate super-geometry abstractlyin homotopy toposes and lift all these constructions to include fermionic degrees of freedom. Finallywe indicate an abstract formulation of non-perturbative quantization of prequantum local field theoryby fiber integration in twisted generalized cohomology of spectral linearizations of higher prequantumbundles.

    We then construct models of the abstract theory in which traditional differential super-geometry isrecovered and promoted to higher (derived) differential super-geometry.

    We show that the cohesive and differential refinement of universal characteristic cocycles constitutesa higher Chern-Weil homomorphism refined from secondary characteristic classes to morphisms of highermoduli stacks of higher gauge fields, and at the same time constitutes extended geometric prequantization– in the sense of extended/multi-tiered quantum field theory – of hierarchies of higher dimensional Chern-Simons-type field theories, their higher Wess-Zumino-Witten-type boundary field theories and all furtherhigher codimension defect field theories.

    We find that in the Whitehead tower of superpoints in higher supergeometry one finds god givensuch cocycles on higher supersymmetry-groups, reflecting the completed brane scan of string/M-theory.We show that the induced higher super Cartan geometry is higher dimensional supergravity with superp-brane charge corrections included. For the maximal case of 11-dimensional supergravity we find theEinstein equations of motion with cancellation of the classical anomalies of the M-brane sigma-modelson these targets. Their higher Noether currents yield higher extensions of super-isometry groups byM2/M5-brane BPS charges in twisted generalized cohomology.

    We close with an outlook on the cohomological quantization of these higher boundary prequantumfield theories by a kind of cohesive motives.

    This document is kept online, with accompanying material, at

    ncatlab.org/schreiber/show/differential+cohomology+in+a+cohesive+topos

    http://ncatlab.org/schreiber/show/differential+cohomology+in+a+cohesive+topos

  • General Abstract

    We formulate differential cohomology (e.g. [Bun12]) and Chern-Weil theory (e.g. [BoTo82]) – the theory ofconnections on fiber bundles and of gauge fields – abstractly in the context of a certain class of ∞-toposes([L-Topos]) that we call cohesive. Cocycles in this differential cohomology classify principal ∞-bundlesequipped with cohesive structure (topological, smooth, complex-analytic, formal, supergeometric etc.) andequipped with ∞-connections, hence higher gauge fields (e.g. [Fr00]).

    We construct the cohesive ∞-topos of smooth ∞-groupoids and ∞-Lie algebroids and show that in thisconcrete context the general abstract theory reproduces ordinary differential cohomology (Deligne cohomol-ogy/differential characters), ordinary Chern-Weil theory, the traditional notions of smooth principal bundleswith connection, abelian and nonabelian gerbes/bundle gerbes with connection, principal 2-bundles with2-connection, connections on 3-bundles, etc. and generalizes these to higher degree and to base spaces thatare orbifolds and generally smooth ∞-groupoids, such as smooth realizations of classifying spaces/modulistacks for principal ∞-bundles and configuration spaces of gauge theories.

    We exhibit a general abstract ∞-Chern-Weil homomorphism and observe that it generalizes the La-grangian of Chern-Simons theory to ∞-Chern-Simons theory. For every invariant polynomial on an ∞-Liealgebroid it sends principal ∞-connections to Chern-Simons circle (n+ 1)-bundles (n-gerbes) with connec-tion, whose higher parallel transport is the corresponding higher Chern-Simons Lagrangian. There is ageneral abstract formulation of the higher holonomy of this parallel transport and this provides the actionfunctional of ∞-Chern-Simons theory as a morphism on its cohesive configuration ∞-groupoid. Moreover,to each of these higher Chern-Simons Lagrangian is canonically associated a differentially twisted looping,which we identify with the corresponding higher Wess-Zumino-Witten Lagrangian.

    We show that, when interpreted in smooth ∞-groupoids and their variants, these intrinsic constructionsreproduce the ordinary Chern-Weil homomorphism, hence ordinary Chern-Simons functionals and ordinaryWess-Zumino-Witten functionals, provide their geometric prequantization in higher codimension (localizeddown to the point) and generalize this to a fairly extensive list of action functionals of quantum field theoriesand string theories, some of them new. All of these appear in their refinement from functionals on localdifferential form data to global functionals defined on the full moduli ∞-stacks of field configurations/∞-connections, where they represent higher prequantum line bundles. We show that these moduli ∞-stacksnaturally encode fermionic σ-model anomaly cancellation conditions, such as given by higher analogs ofSpin-structures and of Spinc-structures.

    We moreover show that higher symplectic geometry is naturally subsumed in higher Chern-Weil theory,such that the passage from the unrefined to the refined Chern-Weil homomorphism induced from highersymplectic forms implements geometric prequantization of the above higher Chern-Simons and higher Wess-Zumino-Witten functionals. We study the resulting formulation of local prequantum field theory, show howit subsumes traditional classical field theory and how it illuminates the boundary and defect structure ofhigher Chern-Simons-type field theories, their higher Wess-Zumino-Witten type theories, etc.

    We close with an outlook on the “motivic quantization” of such local prequantum field theory of highermoduli stacks of fields to genuine local quantum field theory with boundaries and defects, by pull-push intwisted generalized cohomology of higher stacks and conclude that cohesive∞-toposes provide a “synthetic”axiomatization of local quantum gauge field theories obtained from geometric Lagrangian data [Sc13d].

    We think of these results as providing a further ingredient of the recent identification of the mathemat-ical foundations of quantum field and perturbative string theory [SaSc11a]: while the cobordism theorem[L-TFT] identifies topological quantum field theories and their boundary and defect theories with a univer-sal construction in higher monoidal category theory, our results indicate that the geometric pre-qauntumgeometry that these arise from under geometric motivic quantization originate in a universal constructionin higher topos theory: cohesion.

    ii

  • Global contents

    1 Introduction 11.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.2 Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 671.3 Physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1641.4 Examples and applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

    2 Concept 2762.1 Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2762.2 The method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283

    3 Essence 2913.1 id a id – Reflection and Appearance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2913.2

    ∑a( )∗ a

    ∏– Actuality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303

    4 Substance 3054.1

    ∫a [ a ] – Cohesion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308

    4.2 < a = a & – Elasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3254.3 ⇒a a Rh – Solidity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332

    5 The Idea 3335.1 ∅ a ∗ – Structures in bare substance . . . . . . . . . . . . . . . . . . . . . . . . . . . 3335.2

    ∫a [ a ] – Structures in cohesive substance . . . . . . . . . . . . . . . . . . . . . . . . . 438

    5.3 < a = a & – Structures in elastic substance . . . . . . . . . . . . . . . . . . . . . . . . . . 5285.4 ⇒ a a Rh – Structures in solid substance . . . . . . . . . . . . . . . . . . . . . . . . . . . 5745.5

    ∑a( )∗ a

    ∏– Structures in actual substance . . . . . . . . . . . . . . . . . . . . . . . . . . 576

    6 Externalization 5956.1 Parameterized homotopy types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5966.2 Geometrically discrete homotopy types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6066.3 Topological homotopy types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6186.4 Smooth homotopy types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6386.5 Formal smooth homotopy types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7256.6 Supergeometric homotopy types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7626.7 Further models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 770

    7 Physics 7717.1 Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7717.2 Prequantum Chern-Simons field theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8547.3 Prequantum Wess-Zumino-Witten field theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 9027.4 Prequantum boundary and defect field theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 9117.5 Prequantum geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9277.6 Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 941

    8 Nature 9518.1 Spacetime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9518.2 Gravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 968

    iii

  • OutlineIn 1 we motivate our discussion, give an informal introduction to the main concepts involved and surveyvarious of our constructions and applications in a more concrete, more traditional and more expository waythan in the sections to follow. This may be all that some readers ever want to see, while other readers maywant to skip it entirely.In 2 we review relevant aspects of homotopy-type theory, the theory of∞-categories and∞-toposes, in termsof which all of the following is formulated. This serves to introduce context and notation and to provide alist of technical lemmas which we need in the following, some of which are not, or not as explicitly, stated inexisting literature.In 4, 5 we introduce cohesive homotopy-type theory, a general abstract theory of differential geometry,differential cohomology and Chern-Weil theory in terms of universal constructions in ∞-topos theory. Thisis in the spirit of Lawvere’s proposals [Law07] for axiomatic characterizations of those gros toposes thatserve as contexts for abstract geometry in general and differential geometry in particular: cohesive toposes.We claim that the decisive role of these axioms is realized when generalizing from topos theory to ∞-topostheory and we discuss a fairly long list of geometric structures that is induced by the axioms in this case.Notably we show that every ∞-topos satisfying the immediate analog of Lawvere’s axioms – every cohesive∞-topos– comes with a good intrinsic notion of differential cohomology and Chern-Weil theory.

    Then we add a further simple set of axioms to obtain a theory of what we call differential cohesion, arefinement of cohesion that axiomatizes the explicit presence of infinitesimal objects. This is closely relatedto Lawvere’s other proposal for axiomatizing toposes for differential geometry, called synthetic differentialgeometry [Law97], but here formulated entirely in terms of higher closure modalities as for cohesion itself.We find that these axioms also capture the modern synthetic-differential theory of D-geometry [L-DGeo]. Inparticular a differential cohesive ∞-topos has an intrinsic notion of (formally) étale maps, which makes itan axiomatic geometry in the sense of [L-Geo] and equips it with intrinsic manifold theory.Finally we add axioms for linear homotopy-types that encode structure embodied by parameterized spectrumobjects and discuss how this serves to naturally encode secondary integral transforms parameterized bycorrespondences of cohesive homotopy types. We show that these have the interpretation of cohomologicalpath integrals for topological field theory.

    Where cohesive-homotopy theory axiomatizes Lagrangian pre-quantum geometry, linear homotopy-typetheory axiomatizes quantization.In 6 we discuss models of the axioms, hence ∞-toposes of ∞-groupoids which are equipped with a geo-metric structure (topology, smooth structure, supergeometric structure, etc.) in a way that all the abstractdifferential geometry theory developed in the previous chapter can be realized. The main model of in-terest for our applications is the cohesive ∞-topos Smooth∞Grpd as well as its infinitesimal thickeningFormalSmooth∞Grpd, which we construct. Then we go step-by-step through the list of general abstractstructures in cohesive ∞-toposes and unwind what these amount to in this model. We demonstrate thatthese subsume traditional definitions and constructions and generalize them to higher differential geometryand differential cohomology.In 7 we discuss the application of the general theory in the context of smooth ∞-groupoids and theirsynthetic-differential and super-geometric refinements to aspects of higher gauge prequantum field theory.We present a fairly long list of higher Spin- and Spinc-structures, of classes of local action functionals onhigher moduli stacks of fields of higher Chern-Simons type and functionals of higher Wess-Zumino-Wittentype, that are all naturally induced by higher Chern-Weil theory. We exhibit a higher analog of geometricprequantization that applies to these systems and show that it captures a wealth of structures, such asnotably the local boundary and higher codimension defect structure. Apart from the new constructionsand results, this shows that large parts of local prequantum gauge field theory are induced by axiomaticcohesive homotopy-theory. In 7.6 we close this section with an outlook on how the quantization of the localprequantum gauge field theory to genuine local quantum field theory proceeds via higher linear algebra inlinear cohesive ∞-toposes, namely via duality of cohesive linear homotopy-types.

    iv

  • Main contents

    1 Introduction 11.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

    1.1.1 Prequantum field theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.1.2 Examples of prequantum field theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281.1.3 Abstract prequantum field theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

    1.2 Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 671.2.1 Coordinate systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 671.2.2 Smooth 0-types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 701.2.3 Differential forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 771.2.4 Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 821.2.5 Smooth homotopy types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 841.2.6 Principal bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 981.2.7 Principal connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1191.2.8 Characteristic classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1361.2.9 Lie algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1431.2.10 The Chern-Weil homomorphism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

    1.3 Physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1641.3.1 Classical local Lagrangian Field theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 1641.3.2 Hamilton-Jacobi-Lagrange mechanics via prequantized Lagrangian correspondences . . 1771.3.3 Hamilton-De Donder-Weyl field theory via Higher correspondences . . . . . . . . . . . 2051.3.4 Higher pre-quantum gauge fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2241.3.5 Higher geometric prequantum theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

    1.4 Examples and applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2401.4.1 Prequantum 3d Chern-Simons theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 2411.4.2 Prequantum higher Chern-Simons theory . . . . . . . . . . . . . . . . . . . . . . . . . 2491.4.3 The anomaly-free gauge coupling of the open string . . . . . . . . . . . . . . . . . . . 2681.4.4 Super p-branes propagating on super-spacetimes . . . . . . . . . . . . . . . . . . . . . 271

    2 Concept 2762.1 Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276

    2.1.1 Dependent homotopy-types and Locally cartesian closed ∞-categories . . . . . . . . . 2762.1.2 Presentation by simplicial sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2782.1.3 Presentation by simplicially enriched categories . . . . . . . . . . . . . . . . . . . . . . 279

    2.2 The method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2832.2.1 Modality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2842.2.2 Moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2862.2.3 Opposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2872.2.4 Determinate negation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2882.2.5 Progression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289

    3 Essence 2913.1 id a id – Reflection and Appearance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291

    3.1.1 Abstract ∞-category theoretic characterization . . . . . . . . . . . . . . . . . . . . . . 2913.1.2 Syntax of homotopy type theory with type universes . . . . . . . . . . . . . . . . . . . 2933.1.3 Presentation by simplicial (pre-)sheaves . . . . . . . . . . . . . . . . . . . . . . . . . . 2943.1.4 Presentation by simplicial objects in the site . . . . . . . . . . . . . . . . . . . . . . . 2963.1.5 ∞-Sheaves and descent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2983.1.6 ∞-Sheaves with values in chain complexes . . . . . . . . . . . . . . . . . . . . . . . . . 301

    3.2∑a( )∗ a

    ∏– Actuality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303

    v

  • 4 Substance 3054.1

    ∫a [ a ] – Cohesion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308

    4.1.1 General abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3084.1.2 Presentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316

    4.2 < a = a & – Elasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3254.2.1 General abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3264.2.2 Presentations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329

    4.3 ⇒a a Rh – Solidity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332

    5 The Idea 3335.1 ∅ a ∗ – Structures in bare substance . . . . . . . . . . . . . . . . . . . . . . . . . . . 333

    5.1.1 Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3345.1.2 Bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3425.1.3 Truncated objects and Postnikov towers . . . . . . . . . . . . . . . . . . . . . . . . . . 3495.1.4 Epi-/mono-morphisms and relative Postnikov systems . . . . . . . . . . . . . . . . . . 3515.1.5 Compact objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3595.1.6 Homotopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3645.1.7 Connected objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3655.1.8 Groupoids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3695.1.9 Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3775.1.10 Cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3835.1.11 Principal bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3885.1.12 Associated fiber bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4055.1.13 Sections and twisted cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4105.1.14 Actions and Representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4145.1.15 Double dimensional reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4195.1.16 Group cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4205.1.17 Stabilizer groups and Klein geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4215.1.18 Extensions, Obstructions and Twisted bundles . . . . . . . . . . . . . . . . . . . . . . 4255.1.19 Gerbes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4315.1.20 Relative cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435

    5.2∫a [ a ] – Structures in cohesive substance . . . . . . . . . . . . . . . . . . . . . . . . . 438

    5.2.1 Codiscrete objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4385.2.2 Concrete objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4395.2.3 Geometric homotopy and Étale homotopy . . . . . . . . . . . . . . . . . . . . . . . . . 4425.2.4 Concordance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4445.2.5 Universal coverings and geometric Whitehead towers . . . . . . . . . . . . . . . . . . . 4445.2.6 Flat connections and local systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4465.2.7 Galois theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4475.2.8 A1-Homotopy and The Continuum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4535.2.9 Manifolds (unseparated) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4545.2.10 de Rham cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4555.2.11 Exponentiated Lie algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4605.2.12 Maurer-Cartan forms and Curvature characteristic forms . . . . . . . . . . . . . . . . 4615.2.13 Differential cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4635.2.14 Chern-Weil homomorphism and Chern-Simons Lagrangian . . . . . . . . . . . . . . . . 4745.2.15 Wess-Zumino-Witten terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4765.2.16 Holonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4795.2.17 Prequantum geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4805.2.18 Local prequantum field theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493

    5.3 < a = a & – Structures in elastic substance . . . . . . . . . . . . . . . . . . . . . . . . . . 5285.3.1 Infinitesimal path ∞-groupoid and de Rham spaces . . . . . . . . . . . . . . . . . . . 528

    vi

  • 5.3.2 Crystalline cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5305.3.3 Local diffeomorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5315.3.4 Étale toposes and Structure sheaves . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5375.3.5 Infinitesimal extensions and Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5405.3.6 Infinitesimal neighbourhoods and Lie differentiation . . . . . . . . . . . . . . . . . . . 5405.3.7 Infinitesimal disk bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5465.3.8 Jets and differential operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5495.3.9 Partial differential equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5515.3.10 Manifolds and Étale groupoids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5525.3.11 Frame bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5535.3.12 G-Structures and Cartan geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5565.3.13 Definite forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5615.3.14 Generalized geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5675.3.15 Isometries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5685.3.16 BPS Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 569

    5.4 ⇒ a a Rh – Structures in solid substance . . . . . . . . . . . . . . . . . . . . . . . . . . . 5745.4.1 A0|1-Homotopy theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5745.4.2 Manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 574

    5.5∑a( )∗ a

    ∏– Structures in actual substance . . . . . . . . . . . . . . . . . . . . . . . . . . 576

    5.5.1 Dependent linear De Morgan duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5765.5.2 Primary integral transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5775.5.3 Exponential modality, Linear spaces of states and Fock space . . . . . . . . . . . . . . 5785.5.4 Fundamental classes and Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5805.5.5 Secondary integral transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5825.5.6 Quantum operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5865.5.7 Quantum states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5895.5.8 Anomaly cancellation of the path integral measure . . . . . . . . . . . . . . . . . . . . 591

    6 Externalization 5956.1 Parameterized homotopy types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 596

    6.1.1 Bundles of homotopy-types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5966.1.2 Bundles of pointed homotopy-types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5996.1.3 Bundles of stable homotopy-types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 601

    6.2 Geometrically discrete homotopy types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6066.2.1 Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6066.2.2 Geometric homotopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6066.2.3 Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6076.2.4 Cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6076.2.5 Principal bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6086.2.6 Twisted cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6106.2.7 Representations and associated bundles . . . . . . . . . . . . . . . . . . . . . . . . . . 6116.2.8 Stabilizer groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6136.2.9 Dependent linear homotopy types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6136.2.10 Secondary integral transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 614

    6.3 Topological homotopy types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6186.3.1 Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6186.3.2 Stalks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6226.3.3 Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6246.3.4 Representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6266.3.5 Geometric homotopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6276.3.6 R1-homotopy / The standard continuum . . . . . . . . . . . . . . . . . . . . . . . . . . 6316.3.7 Manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 631

    vii

  • 6.3.8 Cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6316.3.9 Principal bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6336.3.10 Gerbes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6356.3.11 Extensions, Obstructions and Twisted Bundles . . . . . . . . . . . . . . . . . . . . . . 6376.3.12 Universal coverings and geometric Whitehead towers . . . . . . . . . . . . . . . . . . . 637

    6.4 Smooth homotopy types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6386.4.1 Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6386.4.2 Concrete objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6416.4.3 Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6426.4.4 Groupoids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6446.4.5 Geometric homotopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6456.4.6 Cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6496.4.7 Principal bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6506.4.8 Group representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6526.4.9 Associated bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6536.4.10 Sections of associated bundles and twisted bundles . . . . . . . . . . . . . . . . . . . . 6546.4.11 Reduction of structure groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6606.4.12 Flat connections and local systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6636.4.13 de Rham cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6656.4.14 Exponentiated Lie algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6686.4.15 Maurer-Cartan forms and curvature characteristic forms . . . . . . . . . . . . . . . . . 6776.4.16 Differential cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6856.4.17 Chern-Weil homomorphism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6956.4.18 Holonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7036.4.19 Chern-Simons functionals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7086.4.20 Wess-Zumino-Witten terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7086.4.21 Prequantum geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 710

    6.5 Formal smooth homotopy types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7256.5.1 Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7256.5.2 Infinitesimal neighbourhoods and Lie algebras . . . . . . . . . . . . . . . . . . . . . . . 7276.5.3 Cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7376.5.4 Infinitesimal path groupoid and de Rham spaces . . . . . . . . . . . . . . . . . . . . . 7426.5.5 Local diffeomorphism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7436.5.6 Manifolds and étale groupoids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7456.5.7 Infinitesimal extension and modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7466.5.8 Cartan geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7476.5.9 Definite forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7486.5.10 Partial differential equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7506.5.11 Prequantum local Lagrangian field theory . . . . . . . . . . . . . . . . . . . . . . . . . 757

    6.6 Supergeometric homotopy types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7626.6.1 Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7626.6.2 Super smooth ∞-groupoids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7636.6.3 Super formal smooth ∞-groupoids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7656.6.4 A0|1-Localization and the Odd Continuum . . . . . . . . . . . . . . . . . . . . . . . . . 7666.6.5 Infinitesimal neighbourhoods and Lie algebras . . . . . . . . . . . . . . . . . . . . . . . 7666.6.6 Associated bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7676.6.7 Exponentiated Lie algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 768

    6.7 Further models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7706.7.1 Complex-analytic homotopy types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7706.7.2 Pointed arithmetic homotopy types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 770

    viii

  • 7 Physics 7717.1 Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 771

    7.1.1 Introduction and Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7727.1.2 Spin-structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7797.1.3 Reduction of structure groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8027.1.4 Orientifolds and higher orientifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8077.1.5 Twisted topological structures in quantum anomaly cancellation . . . . . . . . . . . . 8107.1.6 Twisted differential structures in quantum anomaly cancellation . . . . . . . . . . . . 8187.1.7 Classical supergravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8357.1.8 The supergravity C-field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 840

    7.2 Prequantum Chern-Simons field theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8547.2.1 ∞-Chern-Simons field theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8557.2.2 Higher cup-product Chern-Simons theories . . . . . . . . . . . . . . . . . . . . . . . . 8637.2.3 Higher differential Dixmier-Douady class and higher dimensional U(1)-holonomy . . . 8657.2.4 1d Chern-Simons functionals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8667.2.5 3d Chern-Simons functionals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8677.2.6 4d Chern-Simons functionals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8727.2.7 Abelian gauge coupling of branes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8747.2.8 Higher abelian Chern-Simons functionals . . . . . . . . . . . . . . . . . . . . . . . . . 8747.2.9 7d Chern-Simons functionals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8767.2.10 Action of closed string field theory type . . . . . . . . . . . . . . . . . . . . . . . . . . 8837.2.11 Non-perturbative AKSZ theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 884

    7.3 Prequantum Wess-Zumino-Witten field theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 9027.3.1 Introduction: Traditional WZW and the need for higher WZW . . . . . . . . . . . . . 9027.3.2 Lie n-algebraic formulation of perturbative higher WZW . . . . . . . . . . . . . . . . . 9047.3.3 Metaplectic pre-quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9067.3.4 The Green-Schwarz anomaly in heterotic supergravity . . . . . . . . . . . . . . . . . . 9087.3.5 Boundary conditions and brane intersection laws . . . . . . . . . . . . . . . . . . . . . 908

    7.4 Prequantum boundary and defect field theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 9117.4.1 Vacuum defects from spontaneous symmetry breaking . . . . . . . . . . . . . . . . . . 9127.4.2 Higher Chern-Simons local prequantum boundary field theory . . . . . . . . . . . . . . 914

    7.5 Prequantum geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9277.5.1 Higher prequantum 2d WZW model and the smooth string 2-group . . . . . . . . . . 9277.5.2 Higher prequantum nd Chern-Simons-type theories and L∞-algebra cohomology . . . 9307.5.3 Higher prequantum 2d Poisson-Chern-Simons theory and quantum mechanics . . . . . 9347.5.4 Higher prequantum 6d WZW-type models and the smooth fivebrane-6-group . . . . . 937

    7.6 Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9417.6.1 Cohomological quantization of correspondences in a cohesive slice . . . . . . . . . . . . 9417.6.2 The quantum particle at the boundary of the string . . . . . . . . . . . . . . . . . . . 9477.6.3 The quantum string at the boundary of the membrane . . . . . . . . . . . . . . . . . . 949

    8 Nature 9518.1 Spacetime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 951

    8.1.1 Minkowski spacetime and Lorentzian geometry . . . . . . . . . . . . . . . . . . . . . . 9518.1.2 Fundamental super p-branes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 954

    8.2 Gravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9688.2.1 11-Dimensional supergravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9688.2.2 The M2-WZW term and the exceptional tangent bundle . . . . . . . . . . . . . . . . . 9728.2.3 M2/M5 BPS charges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 976

    ix

  • Global contents dependency

    1 Introduction

    2, 3, Toposes

    vv ''4 Differential geometry

    ((

    ��

    3.2 Linearization

    ww

    ��

    5 Universal constructions

    ��6 Models

    vv ''7 Local prequantum field theory

    ((

    7.6 Motivic quantization

    ww8 11d supergravity with M-branes

    x

  • The geometries

    discretegeometry

    6.2

    cohesivegeometry

    6.4

    syntheticdifferentialgeometry

    6.5

    syntheticsupergeometry

    6.6

    relativegeometry

    D-geometry6.5.10

    Set � // Mfd _

    ��

    kK

    $$

    � // FormMfd _

    ��

    // SupFormMfd _

    ��

    Σ∗ // SupFormMfd/Σ _

    ��

    oo U

    F// EM(J∞Σ ) ' PDEΣ _

    ��

    poin

    t-setgeo

    metry

    Orbfldp�

    FrechetMfd _

    ��DiffeologicalSp _

    ��Sh(∗) _

    ��

    � // Sh(Mfd)mM

    � // Sh(FormMfd) _

    ��

    // Sh(SupFormMfd) _

    ��

    // Sh(SupFormMfd/Σ)oo// _

    ��

    Sh(SupFormMfd/=Σ) _

    ��

    top

    os

    theo

    ry

    LieGrpd/GeomStack

    _

    ��

    Grpd _

    ��

    � // SmoothGrpd/SmoothStack

    _

    ��2Grpd _

    ��

    � // Smooth2Grpd _

    ��Sh∞(∗) �

    // Sh∞(Mfd)� // Sh∞(FormMfd) // Sh∞(SupFormMfd) // Sh∞(SupFormMfd/Σ)

    oo// Sh∞(SupFormMfd/=Σ)

    hig

    her

    top

    os

    theo

    ry

    ∞Grpd � // H<

    � // H � // H

    Σ∗ // H/Σoo (η

    =Σ )∗

    (η=Σ )∗

    // H/=Σ

    mod

    alh

    omotop

    yty

    pe

    theory

    xi

  • The progression of modalities

    id

    a id

    supergeometry4.3, 5.4

    a

    a

    Rh

    ' locR0|1

    differentialgeometry4.2, 5.3

    <⊥

    a =⊥

    ' locD

    locD ' =

    a &

    cohesivegeometry4.1, 5.2

    locR1 '<∫⊥

    a [

    [

    a ]

    ∨∨

    discretegeometry

    ∅ a ∗

    xii

  • The Proceß

    8.2 11d Supergravity with M2/M5-branes

    8.1 Lorentzian supergeometry_

    unravel bouquet of Whitehead towers

    OO

    6 Higher supergeometry_

    represent rheonomy and form universal cover

    OO

    4.3 Solid homotopy theory_

    faithful model

    OO

    4.2 Elastic homotopy theory_

    resolve finite/infinitesimal

    OO

    4.1 Cohesive homotopy theory_

    resolve continuous/discrete

    OO

    3 Homotopy topos theory_

    resolve initial opposition

    OO

    2 Homotopy type theory_

    internal self-reflection (univalent universe)

    OO

    Logical substancetype theory

    _first law of thought: A = A

    OO

    xiii

  • Contents

    1 Introduction 11.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

    1.1.1 Prequantum field theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.1.1.1 The need for higher prequantum geometry . . . . . . . . . . . . . . . . . . . 21.1.1.2 The principle of extremal action – comonadically . . . . . . . . . . . . . . . . 51.1.1.3 The global action functional – cohomologically . . . . . . . . . . . . . . . . . 81.1.1.4 The covariant phase space – transgressively . . . . . . . . . . . . . . . . . . . 121.1.1.5 The local observables – Lie theoretically . . . . . . . . . . . . . . . . . . . . . 161.1.1.6 The evolution – correspondingly . . . . . . . . . . . . . . . . . . . . . . . . . 25

    1.1.2 Examples of prequantum field theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281.1.2.1 Gauge fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

    1.1.2.1.1 Ordinary gauge fields. . . . . . . . . . . . . . . . . . . . . . . . . . . 291.1.2.1.2 Higher gauge fields. . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

    1.1.2.2 The BV-BRST complex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401.1.2.3 Sigma-model field theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431.1.2.4 Chern-Simons-type field theories . . . . . . . . . . . . . . . . . . . . . . . . . 461.1.2.5 Wess-Zumino-Witten type field theory . . . . . . . . . . . . . . . . . . . . . . 48

    1.1.3 Abstract prequantum field theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 551.1.3.1 Modal homotopy theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 551.1.3.2 Abstract differential cohomology . . . . . . . . . . . . . . . . . . . . . . . . . 601.1.3.3 Abstract differential geometry . . . . . . . . . . . . . . . . . . . . . . . . . . 631.1.3.4 Abstract PDE theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

    1.2 Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 671.2.1 Coordinate systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

    1.2.1.1 The continuum real (world-)line . . . . . . . . . . . . . . . . . . . . . . . . . 671.2.1.2 Cartesian spaces and smooth functions . . . . . . . . . . . . . . . . . . . . . 68

    1.2.2 Smooth 0-types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 701.2.2.1 Plots of smooth spaces and their gluing . . . . . . . . . . . . . . . . . . . . . 701.2.2.2 Homomorphisms of smooth spaces . . . . . . . . . . . . . . . . . . . . . . . . 731.2.2.3 Products and fiber products of smooth spaces . . . . . . . . . . . . . . . . . 741.2.2.4 Smooth mapping spaces and smooth moduli spaces . . . . . . . . . . . . . . 751.2.2.5 The smooth moduli space of smooth functions . . . . . . . . . . . . . . . . . 761.2.2.6 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

    1.2.3 Differential forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 771.2.3.1 Differential forms on abstract coordinate systems . . . . . . . . . . . . . . . . 771.2.3.2 Differential forms on smooth spaces . . . . . . . . . . . . . . . . . . . . . . . 791.2.3.3 Concrete smooth spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 811.2.3.4 Smooth moduli spaces of differential forms on a smooth space . . . . . . . . 82

    1.2.4 Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 821.2.5 Smooth homotopy types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

    1.2.5.1 Toposes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 851.2.5.1.1 Sheaves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 851.2.5.1.2 Concrete and non-concrete sheaves . . . . . . . . . . . . . . . . . . . 86

    1.2.5.2 ∞-Toposes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 871.2.5.2.1 ∞-Groupoids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 871.2.5.2.2 ∞-Sheaves / ∞-Stacks . . . . . . . . . . . . . . . . . . . . . . . . . 901.2.5.2.3 Structured ∞-Groups . . . . . . . . . . . . . . . . . . . . . . . . . . 92

    1.2.5.3 Cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 921.2.5.4 Homotopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

    1.2.6 Principal bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

    xiv

  • 1.2.6.1 Principal 1-bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 981.2.6.2 Principal 2-bundles and twisted 1-bundles . . . . . . . . . . . . . . . . . . . . 1021.2.6.3 Principal 3-bundles and twisted 2-bundles . . . . . . . . . . . . . . . . . . . . 1081.2.6.4 A model for principal ∞-bundles . . . . . . . . . . . . . . . . . . . . . . . . . 1131.2.6.5 Higher fiber bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

    1.2.6.5.1 Ordinary principal bundles . . . . . . . . . . . . . . . . . . . . . . . 1141.2.6.5.2 Principal ∞-bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . 1161.2.6.5.3 Associated and twisted ∞-bundles . . . . . . . . . . . . . . . . . . . 117

    1.2.7 Principal connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1191.2.7.1 Parallel n-transport for low n . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

    1.2.7.1.1 Connections on a principal bundle . . . . . . . . . . . . . . . . . . . 1201.2.7.1.2 Connections on a principal 2-bundle . . . . . . . . . . . . . . . . . . 1231.2.7.1.3 Curvature characteristics of 1-bundles . . . . . . . . . . . . . . . . . 1251.2.7.1.4 Circle n-bundles with connection . . . . . . . . . . . . . . . . . . . . 1291.2.7.1.5 Holonomy and canonical action functionals . . . . . . . . . . . . . . 133

    1.2.7.2 Differential cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1341.2.7.3 Higher geometric prequantization . . . . . . . . . . . . . . . . . . . . . . . . 136

    1.2.8 Characteristic classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1361.2.9 Lie algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

    1.2.9.1 L∞-algebroids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1431.2.9.2 Lie integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1451.2.9.3 Characteristic cocycles from Lie integration . . . . . . . . . . . . . . . . . . . 1461.2.9.4 L∞-algebra valued connections . . . . . . . . . . . . . . . . . . . . . . . . . . 1471.2.9.5 Curvature characteristics and Chern-Simons forms . . . . . . . . . . . . . . . 1481.2.9.6 ∞-Connections from Lie integration . . . . . . . . . . . . . . . . . . . . . . . 151

    1.2.9.6.1 Curvature characteristics . . . . . . . . . . . . . . . . . . . . . . . . 1531.2.9.6.2 1-Morphisms: integration of infinitesimal gauge transformations . . 153

    1.2.9.7 Examples of ∞-connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1551.2.9.7.1 Connections on ordinary principal bundles . . . . . . . . . . . . . . 1551.2.9.7.2 string-2-connections . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

    1.2.10 The Chern-Weil homomorphism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1581.2.10.1 Motivating examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1581.2.10.2 The ∞-Chern-Weil homomorphism . . . . . . . . . . . . . . . . . . . . . . . 161

    1.2.10.2.1 ∞-Chern-Simons functionals . . . . . . . . . . . . . . . . . . . . . . 1611.2.10.2.2 Secondary characteristic classes . . . . . . . . . . . . . . . . . . . . 162

    1.3 Physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1641.3.1 Classical local Lagrangian Field theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

    1.3.1.1 Jet bundles, Differential operators and PDEs . . . . . . . . . . . . . . . . . . 1651.3.1.2 Horizontal de Rham complex . . . . . . . . . . . . . . . . . . . . . . . . . . . 1681.3.1.3 Variational bicomplex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1691.3.1.4 Euler-Lagrange complex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1711.3.1.5 Equations of motion and Lagrangians . . . . . . . . . . . . . . . . . . . . . . 1731.3.1.6 Action functional and covariant phase space . . . . . . . . . . . . . . . . . . 175

    1.3.1.6.1 Action functional . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1751.3.1.6.2 Covariant phase space . . . . . . . . . . . . . . . . . . . . . . . . . . 176

    1.3.1.7 Symmetries and conserved currents . . . . . . . . . . . . . . . . . . . . . . . 1761.3.2 Hamilton-Jacobi-Lagrange mechanics via prequantized Lagrangian correspondences . . 177

    1.3.2.1 Phase spaces and symplectic manifolds . . . . . . . . . . . . . . . . . . . . . 1781.3.2.2 Coordinate systems and the topos of smooth spaces . . . . . . . . . . . . . . 1801.3.2.3 Canonical transformations and Symplectomorphisms . . . . . . . . . . . . . . 1821.3.2.4 Trajectories and Lagrangian correspondences . . . . . . . . . . . . . . . . . . 182

    xv

  • 1.3.2.5 Observables, symmetries and the Poisson bracket Lie algebra . . . . . . . . . 1861.3.2.6 Hamiltonian (time evolution) trajectories and Hamiltonian correspondences . 1891.3.2.7 Noether symmetries and equivariant structure . . . . . . . . . . . . . . . . . 1911.3.2.8 Gauge theory, smooth groupoids and higher toposes . . . . . . . . . . . . . . 1931.3.2.9 The kinetic action, pre-quantization and differential cohomology . . . . . . . 1951.3.2.10 The classical action, the Legendre transform and Hamiltonian flows . . . . . 1981.3.2.11 The classical action functional pre-quantizes Lagrangian correspondences . . 2001.3.2.12 Quantization, the Heisenberg group, and slice automorphism groups . . . . . 2011.3.2.13 Integrable systems, moment maps and maps into the Poisson bracket . . . . 2041.3.2.14 Classical anomalies and projective symplectic reduction . . . . . . . . . . . . 205

    1.3.3 Hamilton-De Donder-Weyl field theory via Higher correspondences . . . . . . . . . . . 2051.3.3.1 Local field theory Lagrangians and n-plectic smooth spaces . . . . . . . . . . 2061.3.3.2 The kinetic action, higher prequantization and higher differential cohomology 2101.3.3.3 Local observables, conserved currents and their higher Poisson brackets . . . 2121.3.3.4 Field equations of motion and Higher Poisson-Maurer-Cartan elements . . . 2171.3.3.5 Source terms, off-shell Poisson bracket and Poisson holography . . . . . . . . 221

    1.3.4 Higher pre-quantum gauge fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2241.3.4.1 Cocycles: generalized, parameterized, twisted . . . . . . . . . . . . . . . . . . 2251.3.4.2 Fields of gravity: special and generalized geometry . . . . . . . . . . . . . . . 2281.3.4.3 Gauge fields: higher, twisted, non-abelian . . . . . . . . . . . . . . . . . . . . 2341.3.4.4 Gauge invariance, equivariance and general covariance . . . . . . . . . . . . . 236

    1.3.5 Higher geometric prequantum theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2371.4 Examples and applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

    1.4.1 Prequantum 3d Chern-Simons theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 2411.4.1.1 k = 0: the universal Chern-Simons 3-connection ĉ . . . . . . . . . . . . . . . 2421.4.1.2 k = 1: the Wess-Zumino-Witten gerbe . . . . . . . . . . . . . . . . . . . . . . 2421.4.1.3 k = 2: Symplectic structure on the moduli of flat connections . . . . . . . . . 2441.4.1.4 k = 3: the Chern-Simons action functional . . . . . . . . . . . . . . . . . . . 2451.4.1.5 The Chern-Simons action functional with Wilson loops . . . . . . . . . . . . 246

    1.4.2 Prequantum higher Chern-Simons theory . . . . . . . . . . . . . . . . . . . . . . . . . 2491.4.2.1 Classical Chern-Weil theory and its shortcomings . . . . . . . . . . . . . . . 2491.4.2.2 Higher Chern-Weil theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2511.4.2.3 Higher Chern-Simons-type Lagrangians . . . . . . . . . . . . . . . . . . . . . 2521.4.2.4 Boundaries and long fiber sequences of characteristic classes . . . . . . . . . 2601.4.2.5 Global effects and anomaly cancellation . . . . . . . . . . . . . . . . . . . . . 263

    1.4.3 The anomaly-free gauge coupling of the open string . . . . . . . . . . . . . . . . . . . 2681.4.4 Super p-branes propagating on super-spacetimes . . . . . . . . . . . . . . . . . . . . . 271

    1.4.4.1 Super-Minkowski spacetimes . . . . . . . . . . . . . . . . . . . . . . . . . . . 2721.4.4.2 The old brane scan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2731.4.4.3 Brane charges and Supergravity BPS-states . . . . . . . . . . . . . . . . . . . 275

    2 Concept 2762.1 Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276

    2.1.1 Dependent homotopy-types and Locally cartesian closed ∞-categories . . . . . . . . . 2762.1.2 Presentation by simplicial sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2782.1.3 Presentation by simplicially enriched categories . . . . . . . . . . . . . . . . . . . . . . 279

    2.2 The method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2832.2.1 Modality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2842.2.2 Moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2862.2.3 Opposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2872.2.4 Determinate negation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2882.2.5 Progression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289

    xvi

  • 3 Essence 2913.1 id a id – Reflection and Appearance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291

    3.1.1 Abstract ∞-category theoretic characterization . . . . . . . . . . . . . . . . . . . . . . 2913.1.2 Syntax of homotopy type theory with type universes . . . . . . . . . . . . . . . . . . . 2933.1.3 Presentation by simplicial (pre-)sheaves . . . . . . . . . . . . . . . . . . . . . . . . . . 2943.1.4 Presentation by simplicial objects in the site . . . . . . . . . . . . . . . . . . . . . . . 2963.1.5 ∞-Sheaves and descent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2983.1.6 ∞-Sheaves with values in chain complexes . . . . . . . . . . . . . . . . . . . . . . . . . 301

    3.2∑a( )∗ a

    ∏– Actuality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303

    4 Substance 3054.1

    ∫a [ a ] – Cohesion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308

    4.1.1 General abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3084.1.1.1 External formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3104.1.1.2 Internal formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313

    4.1.2 Presentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3164.1.2.1 Presentation over ∞-connected sites . . . . . . . . . . . . . . . . . . . . . . . 3164.1.2.2 Presentation over ∞-cohesive sites . . . . . . . . . . . . . . . . . . . . . . . . 3184.1.2.3 Fibrancy over ∞-cohesive sites . . . . . . . . . . . . . . . . . . . . . . . . . . 321

    4.2 < a = a & – Elasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3254.2.1 General abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3264.2.2 Presentations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329

    4.3 ⇒a a Rh – Solidity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332

    5 The Idea 3335.1 ∅ a ∗ – Structures in bare substance . . . . . . . . . . . . . . . . . . . . . . . . . . . 333

    5.1.1 Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3345.1.1.1 General abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3345.1.1.2 Presentations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335

    5.1.1.2.1 ∞-Pullbacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3355.1.1.2.2 Finite ∞-limits of ∞-sheaves . . . . . . . . . . . . . . . . . . . . . . 3365.1.1.2.3 ∞-Colimits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3375.1.1.2.4 ∞-Colimits over simplicial diagrams . . . . . . . . . . . . . . . . . . 339

    5.1.2 Bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3425.1.2.1 General abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3425.1.2.2 Presentations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348

    5.1.3 Truncated objects and Postnikov towers . . . . . . . . . . . . . . . . . . . . . . . . . . 3495.1.3.1 General abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3495.1.3.2 Presentations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350

    5.1.4 Epi-/mono-morphisms and relative Postnikov systems . . . . . . . . . . . . . . . . . . 3515.1.4.1 General abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3515.1.4.2 Presentations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355

    5.1.4.2.1 Effective epimorphisms . . . . . . . . . . . . . . . . . . . . . . . . . 3555.1.4.2.2 n-Images and Relative Postnikov towers . . . . . . . . . . . . . . . . 357

    5.1.5 Compact objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3595.1.6 Homotopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3645.1.7 Connected objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365

    5.1.7.1 General abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3655.1.7.2 Presentations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367

    5.1.8 Groupoids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3695.1.8.1 General abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369

    5.1.8.1.1 Atlases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370

    xvii

  • 5.1.8.1.2 Group of Bisections . . . . . . . . . . . . . . . . . . . . . . . . . . . 3725.1.8.1.3 Atiyah groupoids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373

    5.1.9 Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3775.1.9.1 General abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3785.1.9.2 Presentations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381

    5.1.9.2.1 Presentation of ∞-groups by presheaves of simplicial groups . . . . 3815.1.9.2.2 Presentation of automorphism groups . . . . . . . . . . . . . . . . . 383

    5.1.10 Cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3835.1.10.1 General abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3845.1.10.2 Presentations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386

    5.1.10.2.1 Cocycle ∞-groupoids and cohomology classes . . . . . . . . . . . . . 3875.1.10.2.2 Fiber sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388

    5.1.11 Principal bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3885.1.11.1 Introduction and survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3885.1.11.2 Definition and classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3905.1.11.3 Universal principal ∞-bundles and the Borel construction . . . . . . . . . . . 3965.1.11.4 Presentation in locally fibrant simplicial sheaves . . . . . . . . . . . . . . . . 398

    5.1.12 Associated fiber bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4055.1.12.1 General abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4055.1.12.2 Presentation in locally fibrant simplicial sheaves . . . . . . . . . . . . . . . . 409

    5.1.13 Sections and twisted cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4105.1.13.1 General abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4105.1.13.2 Presentations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414

    5.1.14 Actions and Representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4145.1.14.1 General abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4145.1.14.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416

    5.1.15 Double dimensional reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4195.1.16 Group cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 420

    5.1.16.1 General abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4205.1.16.2 Presentations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421

    5.1.17 Stabilizer groups and Klein geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4215.1.18 Extensions, Obstructions and Twisted bundles . . . . . . . . . . . . . . . . . . . . . . 425

    5.1.18.1 General abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4265.1.18.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429

    5.1.19 Gerbes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4315.1.20 Relative cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435

    5.2∫a [ a ] – Structures in cohesive substance . . . . . . . . . . . . . . . . . . . . . . . . . 438

    5.2.1 Codiscrete objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4385.2.2 Concrete objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439

    5.2.2.1 General abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4405.2.2.2 Presentations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 441

    5.2.3 Geometric homotopy and Étale homotopy . . . . . . . . . . . . . . . . . . . . . . . . . 4425.2.4 Concordance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4445.2.5 Universal coverings and geometric Whitehead towers . . . . . . . . . . . . . . . . . . . 4445.2.6 Flat connections and local systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4465.2.7 Galois theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4475.2.8 A1-Homotopy and The Continuum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4535.2.9 Manifolds (unseparated) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4545.2.10 de Rham cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4555.2.11 Exponentiated Lie algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4605.2.12 Maurer-Cartan forms and Curvature characteristic forms . . . . . . . . . . . . . . . . 461

    xviii

  • 5.2.13 Differential cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4635.2.13.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4635.2.13.2 Global curvature forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4645.2.13.3 Ordinary differential cohomology . . . . . . . . . . . . . . . . . . . . . . . . . 4655.2.13.4 Differential moduli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 470

    5.2.14 Chern-Weil homomorphism and Chern-Simons Lagrangian . . . . . . . . . . . . . . . . 4745.2.15 Wess-Zumino-Witten terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4765.2.16 Holonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4795.2.17 Prequantum geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 480

    5.2.17.1 Introduction and survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4805.2.17.2 Prequantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4855.2.17.3 Symplectomorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4855.2.17.4 Contactomorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4865.2.17.5 Quantomorphism group and Heisenberg group . . . . . . . . . . . . . . . . . 4865.2.17.6 Courant groupoids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4895.2.17.7 Poisson and Heisenberg Lie algebra . . . . . . . . . . . . . . . . . . . . . . . 4915.2.17.8 Prequantum states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4915.2.17.9 Prequantum operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 492

    5.2.18 Local prequantum field theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4935.2.18.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 494

    5.2.18.1.1 Action functionals and correspondences . . . . . . . . . . . . . . . . 4955.2.18.1.2 Local Lagrangians and higher differential cocycles . . . . . . . . . . 4985.2.18.1.3 Boundary field theory and twisted relative cohomology . . . . . . . 500

    5.2.18.2 Local worldvolumes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5015.2.18.3 Local bulk fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5075.2.18.4 Local action functionals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5155.2.18.5 Anomaly cancellation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5195.2.18.6 Boundary field theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5225.2.18.7 Corner field theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5265.2.18.8 Defect field theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 527

    5.3 < a = a & – Structures in elastic substance . . . . . . . . . . . . . . . . . . . . . . . . . . 5285.3.1 Infinitesimal path ∞-groupoid and de Rham spaces . . . . . . . . . . . . . . . . . . . 5285.3.2 Crystalline cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5305.3.3 Local diffeomorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5315.3.4 Étale toposes and Structure sheaves . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5375.3.5 Infinitesimal extensions and Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5405.3.6 Infinitesimal neighbourhoods and Lie differentiation . . . . . . . . . . . . . . . . . . . 5405.3.7 Infinitesimal disk bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5465.3.8 Jets and differential operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5495.3.9 Partial differential equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5515.3.10 Manifolds and Étale groupoids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5525.3.11 Frame bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5535.3.12 G-Structures and Cartan geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5565.3.13 Definite forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5615.3.14 Generalized geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5675.3.15 Isometries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5685.3.16 BPS Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 569

    5.4 ⇒ a a Rh – Structures in solid substance . . . . . . . . . . . . . . . . . . . . . . . . . . . 5745.4.1 A0|1-Homotopy theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5745.4.2 Manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 574

    5.5∑a( )∗ a

    ∏– Structures in actual substance . . . . . . . . . . . . . . . . . . . . . . . . . . 576

    xix

  • 5.5.1 Dependent linear De Morgan duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5765.5.2 Primary integral transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5775.5.3 Exponential modality, Linear spaces of states and Fock space . . . . . . . . . . . . . . 5785.5.4 Fundamental classes and Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5805.5.5 Secondary integral transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5825.5.6 Quantum operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5865.5.7 Quantum states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5895.5.8 Anomaly cancellation of the path integral measure . . . . . . . . . . . . . . . . . . . . 591

    6 Externalization 5956.1 Parameterized homotopy types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 596

    6.1.1 Bundles of homotopy-types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5966.1.2 Bundles of pointed homotopy-types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5996.1.3 Bundles of stable homotopy-types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 601

    6.1.3.1 Cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6036.1.3.2 DifferentialCohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 604

    6.2 Geometrically discrete homotopy types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6066.2.1 Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6066.2.2 Geometric homotopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6066.2.3 Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6076.2.4 Cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 607

    6.2.4.1 Group cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6086.2.5 Principal bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6086.2.6 Twisted cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6106.2.7 Representations and associated bundles . . . . . . . . . . . . . . . . . . . . . . . . . . 6116.2.8 Stabilizer groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6136.2.9 Dependent linear homotopy types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6136.2.10 Secondary integral transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 614

    6.3 Topological homotopy types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6186.3.1 Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6186.3.2 Stalks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6226.3.3 Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6246.3.4 Representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6266.3.5 Geometric homotopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 627

    6.3.5.1 Geometric realization of topological ∞-groupoids . . . . . . . . . . . . . . . . 6276.3.5.2 Fundamental path ∞-groupoids . . . . . . . . . . . . . . . . . . . . . . . . . 6296.3.5.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 630

    6.3.6 R1-homotopy / The standard continuum . . . . . . . . . . . . . . . . . . . . . . . . . . 6316.3.7 Manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6316.3.8 Cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 631

    6.3.8.1 Čech cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6326.3.8.2 Nonabelian cohomology with constant coefficients . . . . . . . . . . . . . . . 6326.3.8.3 Equivariant cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 633

    6.3.9 Principal bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6336.3.10 Gerbes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6356.3.11 Extensions, Obstructions and Twisted Bundles . . . . . . . . . . . . . . . . . . . . . . 6376.3.12 Universal coverings and geometric Whitehead towers . . . . . . . . . . . . . . . . . . . 637

    6.4 Smooth homotopy types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6386.4.1 Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6386.4.2 Concrete objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6416.4.3 Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6426.4.4 Groupoids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 644

    xx

  • 6.4.4.1 Group of bisections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6446.4.4.2 Atiyah groupoids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 645

    6.4.5 Geometric homotopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6456.4.5.1 Geometric realization of simplicial smooth spaces . . . . . . . . . . . . . . . 6466.4.5.2 Co-Tensoring of smooth ∞-Stacks over homotopy-types of manifolds . . . . . 6476.4.5.3 Fundamental smooth path ∞-groupoids . . . . . . . . . . . . . . . . . . . . . 648

    6.4.6 Cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6496.4.6.1 Cohomology with constant coefficients . . . . . . . . . . . . . . . . . . . . . . 6496.4.6.2 Refined Lie group cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . 649

    6.4.7 Principal bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6506.4.8 Group representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6526.4.9 Associated bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6536.4.10 Sections of associated bundles and twisted bundles . . . . . . . . . . . . . . . . . . . . 654

    6.4.10.1 Sections of vector bundles – twisted 0-bundles . . . . . . . . . . . . . . . . . 6546.4.10.2 Sections of 2-bundles – twisted vector bundles and twisted K-classes . . . . . 656

    6.4.11 Reduction of structure groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6606.4.12 Flat connections and local systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6636.4.13 de Rham cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6656.4.14 Exponentiated Lie algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 668

    6.4.14.1 Lie integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6686.4.14.2 Examples of exponentiated L∞-Algebras . . . . . . . . . . . . . . . . . . . . 6716.4.14.3 Flat coefficients for exponentiated L∞-algebras . . . . . . . . . . . . . . . . 6736.4.14.4 de Rham coefficients for exponentiated L∞-algebras . . . . . . . . . . . . . . 676

    6.4.15 Maurer-Cartan forms and curvature characteristic forms . . . . . . . . . . . . . . . . . 6776.4.15.1 Canonical form on an ordinary Lie group . . . . . . . . . . . . . . . . . . . . 6776.4.15.2 Canonical form on the circle n-group . . . . . . . . . . . . . . . . . . . . . . 6786.4.15.3 Canonical form on a simplicial Lie group . . . . . . . . . . . . . . . . . . . . 683

    6.4.16 Differential cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6856.4.16.1 The smooth n-groupoid of circle-principal n-connections . . . . . . . . . . . . 6856.4.16.2 The universal moduli n-stack of circle-principal n-connections . . . . . . . . 6876.4.16.3 The smooth moduli of connections over a given base . . . . . . . . . . . . . . 688

    6.4.16.3.1 Moduli of smooth principal 1-connections . . . . . . . . . . . . . . . 6906.4.16.3.2 Moduli of smooth principal 2-connections . . . . . . . . . . . . . . . 692

    6.4.16.4 Cup product in differential cohomology . . . . . . . . . . . . . . . . . . . . . 6946.4.16.5 Equivariant circle n-bundles with connection . . . . . . . . . . . . . . . . . . 694

    6.4.17 Chern-Weil homomorphism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6956.4.18 Holonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7036.4.19 Chern-Simons functionals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7086.4.20 Wess-Zumino-Witten terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7086.4.21 Prequantum geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 710

    6.4.21.1 n-Plectic manifolds and their Hamiltonian vector fields . . . . . . . . . . . . 7116.4.21.2 Prequantization of n-plectic manifolds . . . . . . . . . . . . . . . . . . . . . . 7126.4.21.3 The L∞-algebra of local observables . . . . . . . . . . . . . . . . . . . . . . . 7126.4.21.4 The Kostant-Souriau L∞-cocycle . . . . . . . . . . . . . . . . . . . . . . . . . 7136.4.21.5 The Kostant-Souriau-Heisenberg L∞-extension . . . . . . . . . . . . . . . . . 7146.4.21.6 Ordinary symplectic geometry and its prequantization . . . . . . . . . . . . . 7146.4.21.7 2-Plectic geometry and its prequantization . . . . . . . . . . . . . . . . . . . 7196.4.21.8 Truncation of higher Poisson brackets and Dickey bracket on conserved currents722

    6.5 Formal smooth homotopy types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7256.5.1 Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7256.5.2 Infinitesimal neighbourhoods and Lie algebras . . . . . . . . . . . . . . . . . . . . . . . 727

    xxi

  • 6.5.2.1 Infinitesimal neighbourhoods and Relative cohesion . . . . . . . . . . . . . . 7286.5.2.2 Lie algebroids and smooth commutative dg-algebras . . . . . . . . . . . . . . 7296.5.2.3 Infinitesimal smooth groupoids . . . . . . . . . . . . . . . . . . . . . . . . . . 7316.5.2.4 Lie 1-algebroids as infinitesimal simplicial presheaves . . . . . . . . . . . . . 7336.5.2.5 Lie differentiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 736

    6.5.3 Cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7376.5.3.1 Cohomology localization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7376.5.3.2 Lie group cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7386.5.3.3 ∞-Lie algebroid cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . 7416.5.3.4 Extensions of L∞-algebroids . . . . . . . . . . . . . . . . . . . . . . . . . . . 742

    6.5.4 Infinitesimal path groupoid and de Rham spaces . . . . . . . . . . . . . . . . . . . . . 7426.5.5 Local diffeomorphism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7436.5.6 Manifolds and étale groupoids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7456.5.7 Infinitesimal extension and modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7466.5.8 Cartan geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7476.5.9 Definite forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 748

    6.5.9.1 G2-Manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7486.5.10 Partial differential equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7506.5.11 Prequantum local Lagrangian field theory . . . . . . . . . . . . . . . . . . . . . . . . . 757

    6.5.11.1 Prequantum covariant phase space . . . . . . . . . . . . . . . . . . . . . . . . 7586.5.11.2 Globally defined local action functionals . . . . . . . . . . . . . . . . . . . . . 7606.5.11.3 Sigma-models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 761

    6.6 Supergeometric homotopy types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7626.6.1 Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7626.6.2 Super smooth ∞-groupoids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7636.6.3 Super formal smooth ∞-groupoids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7656.6.4 A0|1-Localization and the Odd Continuum . . . . . . . . . . . . . . . . . . . . . . . . . 7666.6.5 Infinitesimal neighbourhoods and Lie algebras . . . . . . . . . . . . . . . . . . . . . . . 7666.6.6 Associated bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7676.6.7 Exponentiated Lie algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 768

    6.7 Further models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7706.7.1 Complex-analytic homotopy types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7706.7.2 Pointed arithmetic homotopy types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 770

    7 Physics 7717.1 Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 771

    7.1.1 Introduction and Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7727.1.1.1 Example: Orthogonal structures. . . . . . . . . . . . . . . . . . . . . . . . . . 7727.1.1.2 Example: (Exceptional) generalized geometry. . . . . . . . . . . . . . . . . . 7727.1.1.3 Example: Spin structures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7737.1.1.4 Example: Heterotic fields. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7737.1.1.5 Example: Dual heterotic fields. . . . . . . . . . . . . . . . . . . . . . . . . . . 774

    7.1.2 Spin-structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7797.1.2.1 Overview: the smooth and differential Whitehead tower of BO . . . . . . . . 7797.1.2.2 Orienation structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7837.1.2.3 Spin structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7837.1.2.4 Smooth string structure and the String-2-group . . . . . . . . . . . . . . . . 7847.1.2.5 Smooth fivebrane structure and the Fivebrane-6-group . . . . . . . . . . . . 7967.1.2.6 Higher Spinc-structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7987.1.2.7 Spinc as a homotopy fiber product in Smooth∞Grpd . . . . . . . . . . . . . 7987.1.2.8 Smooth Stringc2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 800

    7.1.3 Reduction of structure groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 802

    xxii

  • 7.1.3.1 Orthogonal/Riemannian structure . . . . . . . . . . . . . . . . . . . . . . . . 8027.1.3.2 Type II NS-NS generalized geometry . . . . . . . . . . . . . . . . . . . . . . 8047.1.3.3 U-duality geometry / exceptional generalized geometry . . . . . . . . . . . . 806

    7.1.4 Orientifolds and higher orientifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8077.1.5 Twisted topological structures in quantum anomaly cancellation . . . . . . . . . . . . 810

    7.1.5.1 The type II superstring and twisted Spinc-structures . . . . . . . . . . . . . . 8117.1.5.2 The heterotic/type I superstring and twisted String-structures . . . . . . . . 8137.1.5.3 The M2-brane and twisted String2a-structures . . . . . . . . . . . . . . . . . 8157.1.5.4 The NS-5-brane and twisted Fivebrane-structures . . . . . . . . . . . . . . . 8177.1.5.5 The M5-brane and twisted Fivebrane2a∪2a-structures . . . . . . . . . . . . . 817

    7.1.6