Development status on the pyrochemistry R&D program at CEA

21
Development status on the pyrochemistry R&D program at CEA E. Mendes, H. Boussier, A. Laplace, J.F. Vigier, M. Miguirditchian 26-30/08/2012 Fontana (USA) IPRC 2012 | Eric Mendes, 17 OCTOBRE 2012 | PAGE 1 CEA | 10 AVRIL 2012 UO 2 PuO 2 DEN/DRCP/SCPS/LEPS IPRC | AUGUST 26 – 30 th 2012

Transcript of Development status on the pyrochemistry R&D program at CEA

Development status on the

pyrochemistry R&D program at CEA

E. Mendes, H. Boussier, A. Laplace, J.F. Vigier, M. Miguirditchian

26-30/08/2012 Fontana (USA)

IPRC 2012 | Eric Mendes,

17 OCTOBRE 2012 | PAGE 1CEA | 10 AVRIL 2012

UO2

PuO2

DEN/DRCP/SCPS/LEPS IPRC | AUGUST 26 – 30th 2012

Introduction

Outlines

Several spent fuel pyrochemical processes studied worldwide: Electrorefining/Electrolysis in molten chloride melts → most studied technique

Precipitation/Electrolysis assessed

Reductive extraction in molten chlorides also investigated

mainly as a step of the electrorefining complete process

Reference route developed by CEA: Reductive liquid/liquid extraction in fluoride media

France: only country currently considering this alternative route for fuel

reprocessing

17 OCTOBRE 2012 | PAGE 2DEN/DRCP/SCPS/LEPS IPRC | AUGUST 26 – 30th 2012

-LiF-AlF3 solvent at 830°C

- Al both solvent and reductor

AnF3(salt) + Al ↔ An(Al) + AlF3

Liquid/Liquid extraction process flowsheet

17 OCTOBRE 2012 | PAGE 3

Vitrification

FPFx

LiCl-CaCl2

AnO2

Al

LiF-AlF3 15-35%

AlCl3

Thermal

treatment

1100°C

Hydrofluorination

450-500°C

Precipitation/

Conversion

700°C

ZrF4

An

PF

An

Cs, Rb

Distillation

Used Fuel

ZnDigestion

830°C

Platinoïdes

Metallic

wasteDistillation

LiF-AlF3

Gas

Back

Extraction

700°CEXTRACTION

830°C

FP

Stripping

DEN/DRCP/SCPS/LEPS IPRC | AUGUST 26 – 30th 2012

Liquid/liquid extraction core of process

demonstration

17 OCTOBRE 2012

| PAGE 4

CEA | 10 AVRIL 2012

DEN/DRCP/SCPS/LEPS IPRC | AUGUST 26 – 30th 2012

Liquid/liquid extraction core of process demonstration 1/3

17 OCTOBRE 2012 | PAGE 5

(9 %) (42 %)

Basic melt Acidic melt

(9 %) (42 %)

Basic melt Acidic melt

LiF-AlF3 system, J.L Holm and B.J Holm, Thermochim. Acta, 6 [4] 375 (1973)

AlAl

E1 C E2

Experimental conditions

LiF-AlF3 (20g) / Al-Cu (20g) system at 830°C

Chosen salt compositions :

E1 (85-15% mol. LiF-AlF3), C (75-25) and E2 (65-35)

U: 200mg, Pu: 25mg, Am: 100mg and Nd: 50mg

Liquid/liquid extraction reaction:

AnF3(salt) + Al(met) ���� An(met) + AlF3(salt)

Distribution coefficient:3(salt)(Al) AnFAn xxD =

3)(

3 1

AlFAlAn

AnF

An

aKD ⋅⋅=

γ

γ

set-up

Distribution coefficient:

Salt composition (LiF-AlF3) modifies the distribution coefficients

Excellent An/Ln separation factors: >100 for a single liquid/liquid extraction step

Good agreement with previous studies

After experiment in E1 → stripping step using pure LiF-AlF3 (C)

DEN/DRCP/SCPS/LEPS IPRC | AUGUST 26 – 30th 2012

An oxidative liquid/liquid back-extraction step:

In chloride media, using oxidizing reagent → AlCl3

An(met) + AlCl3(salt) ���� AnCl3(salt) + Al(met)

From previous studies, optimal operating conditions:

LiCl-CaCl2 (30-70 mol.%) at 700°C (4h experiment)

Reagent NaAlCl4 , overstoechiometry: 7 (stabilisation of

AlCl3)

Crucible filled inside tightened container (prevent AlCl3

volatilisation during experiment)

Al-Cu ingots coming from reductive extraction step

(ingot from run E1 coming from stripping step)

17 OCTOBRE 2012 | PAGE 6

Liquid/liquid extraction core of process demonstration 2/3

Back-extraction efficiency:

Pu, Am: >99%

U: 87 to 95% → as expected, most difficult

actinide to be back-extracted

(redox potential UIII/U0 close to AlIII/Al0)

Nd: 86 to 92%

No An/Ln selectivity during back-extraction step (as

expected)

⇒ Importance of the selectivity during reductive

extraction step

Reactor

Argon

Inlet

Argon

outlet

Furnace

Shutter’

rod

Reactor

Argon

Inlet

Argon

outlet

Furnace

Experimental set-up

Results for a one-stage experiment promising

E1 and C: more than 96% global recovery of Pu and Am. U: 73% with 2% of Nd (after

stripping)

E2: worse results than expected (mainly due to metal drops transferred into the salt during experiment →

distortion of the results)

U behaviour: no quantitative recovery could be achieved in a one-stage experiment. Could be

due to a possible precipitation of U during reductive extraction step

Advantages of implementing run E1 with stripping step: Nd back-extraction 92%

→ If no stripping implemented: 25% of initial Nd together with An.

→ Stripping: only 1.8% of the initial Nd in the chloride salt. | PAGE 7IPRC | AUGUST 26 – 30th 2012

Efficiency (%) Run

Extraction Back-extraction Global efficiency

Scrubbing +/- U 82 2.3 87 73 3

Pu 99 3.3 99 96 0.4 Am 99 2.8 99.9 96 0.4

E1

Nd 27 78 92 2 - +/-

U 85 95 82 2 Pu 98 99 98 0.3 Am 98.5 99.8 98.5 0.2

C

Nd 11 92 11 -

+/- U 64 94 59 4

Pu 84 99 83 2 Am 84 99.98 84 2

E2

Nd 4.4 86 3.8 -

Liquid/liquid extraction core of process demonstration 3/3

Conversion to oxide step

17 OCTOBRE 2012

| PAGE 8

CEA | 10 AVRIL 2012

Conversion into oxides 1/5

After Back-extraction step:

An(III) in molten chlorides must be converted into

oxide form.

For nuclear fuel re-fabrication:

Quantitative

Oxide form AnO2

Solid solution (U,Pu,MA)O2

Reference routes: precipitation with carbonates

Li2CO3 � 2Li+ + CO2(g) +O2-

Leads to increase of salt volume

Chosen route: precipitation using a process

gas

⇒ Wet Argon sparging

Studied systems:

Nd – Ce (inactive study) and U – Pu

17 OCTOBRE 2012 | PAGE 9

Conversion in molten salt

An3+

O2-

LiCl-CaCl2(700°C)

Ar + H2O

Ar + HCl

O2-

H2O(g) → O2-(salt) + 2HCl(g)

DEN/DRCP/SCPS/LEPS IPRC | AUGUST 26 – 30th 2012

IPRC | AUGUST 26 – 30th 2012

Conversion into oxides 2/5

17 OCTOBRE 2012 | PAGE 10

Ar+H2O

LiCl-CaCl2700°C

Ar+HCl

Uranium

Plutonium

LiCl-CaCl2

Precipitate

25 35 45 55 65 75

Inte

nsi

té (

u.a

.)

2θ (°)

UO2

Au Au Au

UCl3(salt) + 2H2O(g) → UO2(ppt) + 3HCl(g) + ½H2

a=5.470(1)

XRD

SEM

Conversion into oxides 3/5

Conversion of Nd(III) – Ce(III)

XNd = Nd/Ce+Nd → 0; 0.25; 0.5; 0.75 and 1

17 OCTOBRE 2012 | PAGE 11

NdCl3(salt) + H2O(g) → NdOCl(ppt) + 2HCl(g)

40 42 44 46 48 50 52 54 56 58 60 62 64

Inte

nsi

té (

u.a

.)

2θ (°)

NdOCl

xNd=1

Inte

nsit

y(a

. u

.)

DEN/DRCP/SCPS/LEPS IPRC | AUGUST 26 – 30th 2012

Conversion into oxides 3/5

Conversion of Nd(III) – Ce(III)

XNd = Nd/Ce+Nd → 0; 0.25; 0.5; 0.75 and 1

17 OCTOBRE 2012 | PAGE 12

40 42 44 46 48 50 52 54 56 58 60 62 64

Inte

nsi

té (

u.a

.)

2θ (°)

CeO2

xNd=1

CeOCl

xNd=0

xNd=0.25

xNd=0.50

xNd=0.75

Ce1-xNdxO2-0.5X

CeCl3(salt) + H2O(g) → CeOCl(ppt) + 2HCl(g)

CeCl3(salt) + 2H2O(g) → CeO2(ppt) + 3HCl(g) + ½H2

80%

20%

Ce1-yNdyOCl

Inte

nsit

y(a

. u

.)

ICP analysis : 99.9%conversion rate

Nd-Ce Solid solution formation

DEN/DRCP/SCPS/LEPS IPRC | AUGUST 26 – 30th 2012

DEN/DRCP/SCPS/LEPS IPRC | AUGUST 26 – 30th 2012

Conversion of U(III) – Pu(III)

XPu = Pu/U+Pu → 0; 0.25; 0.5; 0.75 and 1

Uranium volatilization observed (10-15%)

ICP analysis : conversion rate >99.9%

Conversion into oxides 4/5

17 OCTOBRE 2012 | PAGE 13

PuO2

xPu=0.20

xPu=0.50

xPu=0.75

25 30 35 40 45 50

Inte

nsi

té (

u.a

.)

2θ (°)

UO2

xPu=0standard

Inte

nsit

y(a

. u

.)

U3+ U4+ UO2e-

2O2-

Pu3+ Pu4+ PuO2e-

2O2-

E(V) Intermediate sample

XPu U3+ Pu3+

0.75 < 1% 70%

0.5 < 1% 76%

0.2 < 1% 61%

xPu=1

PuOCl

17 OCTOBRE 2012 | PAGE 14

Conversion into oxides 5/5

Nd(III)-Ce(III) precipitation :

Partially oxidative method

1 - Quantitative

2 - Oxide Form LnO2

3 - Solid solution

OK

OK calcination

OK

U(III)-Pu(III) precipitation

1 - Quantitative

2 - Oxide Form AnO2

3 - Solid solution

OK

OK

OK

DEN/DRCP/SCPS/LEPS IPRC | AUGUST 26 – 30th 2012

Hydrofluorination : in situ HF

production

17 OCTOBRE 2012

| PAGE 15

CEA | 10 AVRIL 2012

Hydrofluorination by in situ produced HF 1/3

17 OCTOBRE 2012 | PAGE 16

Zone 1 zone2 zone3

HKF2 FP2O3 KF

Safety bottle

2 KOH trap

Oven

Air inlet

Antiacid filter Antiacid filter

Ventilation

Water

cooling

Zone 1 zone2 zone3

HKF2 FP2O3 KF

Safety bottle

2 KOH trap

Oven

Air inlet

Antiacid filter Antiacid filter

Ventilation

Water

cooling

Why in-situ production of HF?

Conversion of spent fuel into fluoride is needed.

Few hot cells facilities are equipped with HF gas line

HF produced by dissociation of solid HF-KF at 200-350°C

Experimental set-up including three eating areas

Study of oxide fluorination: La, Ce, Pr, Nd, Mo, Ru, Rh, Sm, Eu, Pr, Zr, Sr, Ag, Y

Determination of the best reaction conditions

Assessing behaviour of oxides under HF gas flow (fluorination rate, final product)

200-350°C

HF generation

300-500°C

Oxide fluorination

100°C

Excess HF trapped

DEN/DRCP/SCPS/LEPS IPRC | AUGUST 26 – 30th 2012

GIBBS free energy of hydrofluorination reaction normalized to 1 HF mole

-200,0

-150,0

-100,0

-50,0

0,0

50,0

100,0

0 100 200 300 400 500 600 700 800 900 1000

Te mpe r a t ur e °C

Nd2O3

Pr2O3

Rh2O3

Eu2O3

Y2O3

La2O3

Sm2O3

MoO3

RuO2

ZrO2

CeO2

SrO

AgO

lant hanides

Plat inoides

ZrO2

∆∆ ∆∆G

(K

J/m

ol H

F)

Temperature °C

Hydrofluorination by in situ produced HF 2/3

Thermodynamic cacluations (HSC Chemistry® V.4.1)

Gibbs free energy of fluoride formation from oxide form, with HF → Determination of

optimum experimental temperature range.

Temperature acts in opposite direction

However, Gas/Solid reaction → higher specific surface of the solid and higher temperature should favour kinetic

Ln oxides: temperatures ranging from 400 to 500°C are favourable.

ZrO2: favourable temperature rather from 300 to 320°C.| PAGE 17IPRC | AUGUST 26 – 30th 2012

Hydrofluorination by in situ produced HF 3/3

17 OCTOBRE 2012 | PAGE 18

Overview of the set-up Ar inlet + HF production area

Water cooling system

Opening the reactor

Oxide → Fluoride conversion basket

Hydrofluorination reactor

Experimental results

Flurorination experiments: 6h, 330°C to 420°C

(depending on oxide to convert), HF excess ~3.5

Oxides behaviour: (determined by XRD)

Nd2O3, CeO2, SrO, Eu2O3, La2O3,Y2O3, Sm2O3,

Pr2O3 successfully converted into fluorides

→ Pr, La, Eu presence of oxyfluorides could be evidenced

MoO3, Rh2O3, RuO2, AgO remained in oxide form

good agreement with thermodynamic calculations.

Case of ZrO2: Several experiments on

commercial and nanopowder ZrO2.

Commercial ZrO2 → No fluorination

Nanopowder (350°C) → 25% of Zr fluorinated

DEN/DRCP/SCPS/LEPS IPRC | AUGUST 26 – 30th 2012

17 OCTOBRE 2012 | PAGE 19

Potential

routes

Principle Media Average working Temp.

Predilection fuels

Remarks

Electrorefining/

Electrolysis

Electrorefining

Selective electrodeposition

LiCl,

LiCl-KCl

450°C Metal, (oxide) The most studied and the most advanced pyro process

At pilot scale

Electrolysis Selective electrodeposition

NaCl-2CsCl

(with

Cl2(g)/O2(g))

550-800°C Oxide At semi-pilot scale, coupled with

vibrocompact fuel fabrication

Reductive

extraction

Selective extraction in a metal phase (Cd) with reductor (Li)

LiCl-KCl/Cd

450°C Oxide, Metal Laboratory scale

Reductive

extraction

Selective extraction in a metal phase (Al)

LiF-AlF3/Al

830°C Oxide Carbide

Laboratory scale, high temp. and corrosive solvents and gases ����material issues

Very good recovery yields and separation factors

DEN/DRCP/SCPS/LEPS IPRC | AUGUST 26 – 30th 2012

DEN/DRCP/SCPS/LEPS IPRC | AUGUST 26 – 30th 2012

Conclusion

The core of process is now well assessed at lab scale with encouraging results on a

One stage Extraction-Back-extraction experiment

Conversion step:

Use of wet Argon → promising method. U(III) and Pu(III) coconversion lead to UO2 and PuO2 mixture

Still some further investigations are needed

Hydrofluorination highlighted Zr behaviour (should be studied and simulated in the whole process)

Analytical techniques are under development.

17 OCTOBRE 2012 | PAGE 20

PerspectivesReference Route in molten fluorides

A few steps need to be tested with genuine fuel (thermal treatment,

digestion)

An alternative head of process is under investigation in order to

prevent use of HF to convert oxides fuels into fluorides.

Electrorefining process in molten chloride

CEA is collaborating with JRC-ITU and LGC (Toulouse university,

France) to study the salt cleaning step by exhaustive electrolysis.

Development of a dedicated reactor within the framework of the ACSEPT program.

DEN

DRCP

SCPS

LEPS

Commissariat à l’énergie atomique et aux énergies alternatives

Centre de Marcoule | 30207 Bagnols sur Cèze

T. +33 (0)4 66 79 63 11 | F. +33 (0)4 66 79 65 67

Etablissement public à caractère industriel et commercial | RCS Paris B 775 685 01917 OCTOBRE 2012

| PAGE 21

CEA | 10 AVRIL 2012

Thank you for your attention