Design of Sewage Treatment Plants Course

download Design of Sewage Treatment Plants Course

of 56

Transcript of Design of Sewage Treatment Plants Course

  • 7/26/2019 Design of Sewage Treatment Plants Course

    1/56

    Copyright J.N. Ramaswamy, Ph D, PE www.PDHSite.com

    Design of Sewage Treatment Plants, Course #407

    Presented by:

    PDH Enterprises, LLC

    PO Box 942

    Morrisville, NC 27560

    www.pdhsite.com

    This course discusses design of sewage treatment plants and explains the procedures and standards

    required for preliminary, primary, secondary (biological) and advanced treatment methods for domestic

    sewage.

    The course describes preliminary treatment units such as bar screen, comminutor, and grit chamber withillustrations and design particulars.

    Primary sedimentation is explained with illustration and design features. Numerical example with

    solution is provided for better understanding.

    Secondary (biological) treatment is explained in considerable length. Variety of secondary treatment

    process units such as trickling filter (all forms), activated sludge units (all modifications), and different

    types of stabilization ponds are described. Design standards are furnished for each unit. Numerical

    problems with solution are provided for easy understanding.

    Disinfection theory is explained. Different types of disinfectant such as chlorine, ozone, and chlorine

    dioxide are described with their design and procedures for use.

    Various methods of treated effluent disposal such as disposal in water bodies, disposal on land,

    recreational, and municipal reuse are described.

    Sludge treatment steps such as thickening (mechanical and flotation), digestion (aerobic and anaerobic),

    conditioning, and dewatering (drying bed, vacuum filter, centrifuge) are explained with illustrations.

    Sludge disposal by land filling, lagooning, incineration, and ocean disposal is described.

    To receive credit for this course, each student must pass an online quiz consisting of twenty-five (25)

    questions. A passing score is 70% or better. Completion of this course and successfully passing the quiz

    will qualify the student for four (4)hours of continuing education credit.

    Course Author:

    JN Ramaswamy, PhD, PE

  • 7/26/2019 Design of Sewage Treatment Plants Course

    2/56

    DESIGNOFSEWAGETREATMENTPLANTS

    By

    J.N.Ramaswamy,Ph.D.,P.E.

  • 7/26/2019 Design of Sewage Treatment Plants Course

    3/56

    1

    TABLEOFCONTENTS

    I.

    Introduction

    II. PreliminaryTreatment

    III.

    PrimaryTreatment

    IV. SecondaryTreatment

    V. AdvancedTreatment

    VI. Disinfection

    VII.

    EffluentDisposal

    VIII.SludgeTreatmentandDisposal

    ListofFigures

    II.1. Handcleanedandmechanicallycleanedracks

    II.2. Brushcleanedscreen

    II.3. Plan&crosssectionalviewofacomminuter

    II.4. Crosssectionofsutro&proportionalflowweirIII.1. Rectangularsedimentationtank

    III.2. Typicalcircularsedimentationtank

    IV.1. Cutawayviewofatricklingfilter

    IV.2. Highratetricklingfilterflowsheets

    IV.3. Underdrainblocksfortricklingfilters

    IV.4. Flowdiagramforconventionalactivatedsludgeprocess

    IV.5. Flowdiagramforcompletemixactivatedsludgeprocess

    IV.6. Flowdiagramforstepaerationactivatedsludgeprocess

    IV.7. Flowsheetforcontactstabilizationtank

    IV.8. FlowsheetforextendedaerationtankIV.9. Crosssectionofanactivatedsludgeaerationtankwithdiffusers

    IV.10. Mechanicalaerators

    IV.11. Flowsheetforoxidationditch

    IV.12. Schematicofaeratedandaerobicanaerobiclagoon

    VI.1. Chlorinationflowdiagram

    VI.2. DistributionofHOCLandOCLatdifferentpHsandtemperatures

  • 7/26/2019 Design of Sewage Treatment Plants Course

    4/56

    2

    VI.3. Residualchlorinecurve

    VIII.1. Schematicofaconventionalsinglestagedigester

    Viii.2. Schematicofaconventionaltwostagedigester

    VIII.3. Crosssectionofastandardratedigester

    VIII.4. Planandsectionofatypicalsludgedryingbed

    Listoftables

    II.1. Valuesof

    IV.1. Operationalcharacteristicsoftricklingfilters

    IV.2. Designparametersforactivatedsludgeprocesses

    IV.3. Operationalcharacteristicsofactivatedsludgeprocesses

    IV.4. Designparametersforstabilizationponds

    V.1. Applicationdataforadvancedtreatmentprocesses

    VIII.1.Sludgequantitiesproducedfromdifferenttreatmentprocesses

    VIII.2.Solidsloadingrateformechanicalthickeners

    VIII.3.Solidsloadingrateforflotationthickener

    VIII.4.Arearequiredfordryingbeds

  • 7/26/2019 Design of Sewage Treatment Plants Course

    5/56

    3

    I. INTRODUCTION

    Sewagetreatmentplants,alsocalleddomesticwastewatertreatmentplants,aredesignedtoconverta

    rawsewageintoanaccessiblefinaleffluent,andtodisposeofthesolidsremovedintheprocess. Itis

    thereforerequiredtodeterminethecharacteristicsoftherawsewageandtherequiredcharacteristics

    oftheeffluentortherequiredtreatment,beforeproceedingwiththedesignofthetreatmentplant. It

    isgenerallynecessarytoobtaintheapprovalofaregulatorybodybeforeproceedingwithconstruction

    ofanysewagetreatmentplant. Theregulationsoftheagencyusuallyestablishmanyofthebasicdesign

    considerations.Manystateshaveestablishedclassificationsforvariousstreamswithintheirboundaries.

    Theseclassificationsgenerallyestablishtreatmentstandardsoreffluentstandardswhichlimitthe

    pollutionmaterialintheeffluent. Thetreatmentstandardortheeffluentstandardsareestablishedtakingintoaccounttheabilityofthereceivingwaterstoassimilatethewasteandtheusestowhichthe

    receivingwatersareput.

    Periodsofdesignfortreatmentplantsvary. Anormaldesignperiodwouldrequiretreatmentunitstobe

    designedforpopulationandsewageflowsanticipatedsome15to20yearsaftercompletionof

    construction. Unitsaredesignedtobereadilyexpandableasthepopulationincreases.

    Waterconsumptionrecords,whereavailable,areagoodbasisfordeterminingdomesticflowrates.

    About70to80%ofdomesticwaterconsumptionmaybeexpectedtoreachthesewer. Intheabsence

    ofanybetterbasis,manyregulatoryagenciesacceptarateof100gallonspercapitaperday(gpcd). If

    commercialsewageflowisquitesmallincommunities,thecommercialflowisincludedasdomestic

    flow. Thedesignaverageflowrateistheaverageflowduringsomemaximumsignificantperiodsuchas

    4,8,12,or16hr,dependingoncircumstances.

    Determinationofimportantcharacteristicsofsewageisessentialtotheproperdesignoftreatment

    works.Whereonlypopulationdataareavailable,acceptableequivalentsfordesignoftreatmentworks

    are0.20lbofsuspendedsolids(SS)perdaypercapitaor250partspermillion(ppm)and0.17lbof

    biochemicaloxygendemand(BOD)perdaypercapitaor200ppm. Sewagetreatmentprocessesmaybe

    classifiedaspreliminary,primary,secondaryoradvanced(tertiary). Thepurposeofpreliminary

    treatmentistoremovedeleteriousmaterialswhichwoulddamageequipment,interferewiththe

    satisfactoryoperationofaprocessorequipment,orcauseobjectionableshorelineconditions. Primarytreatmentcanusuallybeexpectedtoremove50to60%suspendedsolidsand25to35%BOD.

    Secondarytreatmentusingconventionalbiologicalprocessesmayremoveupto90%ofsuspended

    solidsand75to90%BOD. Differentbiologicalprocessunitsaredeployedinsecondarytreatment.

    Tertiaryoradvancedtreatmentmaybeexpectedtoremoveover95%ofbothBODandSSinadditionto

    reducingsomeundesirablechemicals.

  • 7/26/2019 Design of Sewage Treatment Plants Course

    6/56

    4

    Priortodisposingoftheeffluent,itissubjectedtodisinfectionbyinjectingchlorineorozoneintothe

    effluentorpassingultravioletraysintotheeffluent.

    Theeffluentdisposalmethodsinuseare:dischargetostreamsandrivers,landdisposaltoirrigate

    certaincrops,deepwelldisposal,andsubmarineoutfallsextendingintotheocean.

    Sludgeiscollectedandsubjectedtothefollowingtreatmentpriortodisposal:thickening(eithergravity

    orflotation),digestion(aerobicoranaerobic),anddewateringusingsandbedsorequipmentsuchas

    vacuumfilterorcentrifuge.

    Dewateredsludgeisdisposedofonland,processedascompostandsoldtofarmers,depositedin

    sanitarylandfill,orincinerated.

  • 7/26/2019 Design of Sewage Treatment Plants Course

    7/56

    5

    II. PRELIMINARYTREATMENT

    Preliminarytreatmentofsewageincludesscreening,grindingandgritremoval.

    II.1ScreeningThefirstunitoperationencounteredinsewagetreatmentplantsisthefiltering

    operationorscreening. Ascreenisadevicewithopenings,generallyofuniformsize,usedtoretain

    coarsesewagesolids. Thescreeningelementmayconsistofparallelbars,rodsorwires,grating,wire

    mesh,orperforatedplate,andtheopeningsmaybeofanyshape,generallycircularorrectangularslots.

    Ascreencomposedofparallelbarsorrodsiscalledarackorabarscreen. Thematerialremovedbythe

    screeningdevicesisknownasscreeningsorrakings.

    Accordingtothemethodofcleaning,racksandscreensaredesignatedashandcleanedormechanically

    cleaned. Accordingtothesizeofopenings,screensaredesignatedascoarse,orfine.

    II.1.1RacksTheseareclassifiedundercoarsescreenandaremadeofbarsofsteelweldedintoa

    framethatfitsacrossthechannelwithopeningbetweenbarsrangingfrom3to6in. Thesearemainly

    usedinsewagetreatmentplantstoprotectpumps,valves,pipelines,andotherappurtenancesfrom

    damageorcloggingbyragsandlargeobjects. Thebarsrunverticallyorataslopevarying30to800with

    thehorizontal. Largeobjectsarecaughtontherack,carriedupbytravelingrakes,andscrapedand

    collected. Theapproachvelocityofthesewageintherakingorscreeningchannelshallnotbebelowa

    selfcleaningvalue(1.25ft/sec)orrisetoamagnitudeatwhichtherakingsorscreeningswillbe

    dischargedfromthebarsorscreens(3.0ft/sec)orthelossofheadthroughtherackorscreenshallbe

    suchasnottobackuptheflowtoplacetheentrantsewerunderpressure. FigureII.1showsahand

    cleanedandamechanicallycleanedrack.

    FigureII.1(a)Handcleanedrack (b)MechanicallycleanedRack

  • 7/26/2019 Design of Sewage Treatment Plants Course

    8/56

    6

    Hydrauliclossthroughbarracksisafunctionofbarshapeandthevelocityheadoftheflowbetweenthe

    bars. Velocitiesof2to4ft/secthroughtheopenareahavebeenusedsatisfactorily. Thefollowing

    equationisusedtocalculatetheheadloss.

    hL=(w/b)1.33hvsin..Eq.(II.1)

    wherehL=headloss,ft

    =abarshapefactor

    w=maximumcrosssectionalwidthofbarsfacingdirectionofflow,ft

    b=minimumclearspacingofbars,ft

    hv=velocityheadofflowapproachingrack,ft

    =angleofrackwithhorizontal

    Theheadlosscalculatedusingtheaboveequationisapplicableonlyifthebarsareclean. Headloss

    increaseswiththedegreeofclogging. Aminimumallowanceforheadlossthroughhandcleanedscreenis6in. Formechanicallycleanedscreensmanufacturersliteratureprovidestheallowanceforhead

    loss. Valuesof forseveralshapesofbarsaregiveninTableII.1below.

    TableII.1Valuesof

    Bartype

    Sharpedgedrectangular 2.42

    Rectangularwithsemicircularupstreamface 1.83

    Circular 1.79

    Rectangularwithsemicircularupstreamanddownstreamfaces 1.67

    ____________________________________________________________________________________

    II.1.2.FinescreenThesearemechanicallycleaneddevicesusingamediumofperforatedplate,woven

    wirecloth,orcloselyplacedbarsthroughwhichthesewageflows. Theopeningsareusually3/16inor

    less. Onevarietyoffinescreensusedisthedrumtype. Inthisscreenthefiltermediumisacylinder,

    furnishedwithamechanicalmeansofrotation,andwithselfcleaningdevices. Thedrumis

    approximately1/3to2/3submergedinthesewage. Theliquidpassesthroughthescreenandflowsout

    atoneend. Thesolidswhichareremovedfromtheliquidareraisedabovetheliquidlevelasthedrum

    rotatesandareremovedbybrushes,scrapers,and/orabackwash. Thebackwashmayutilizewater,air,orsteam.

    Anothervarietyoffinescreenisthedisktypescreen. Thesescreensconsistofaroundflatplate

    revolvingonanaxisinclined100to25

    0fromthevertical. Thesewageflowsthroughthelowertwothirds

    oftheplate. Astheplaterotates,theretainedsolidsarebroughtabovetheliquidwherebrushes

    removethemfordisposal. Commonlyamotorisusedtoprovidetherotation. Headlossthroughfine

  • 7/26/2019 Design of Sewage Treatment Plants Course

    9/56

    7

    screensmaybeobtainedfrommanufacturersratingtablesormaybecalculatedbymeansofthe

    commonorificeformula:

    hL=(1/2g)(Q/CA)2Eq.(II.2)

    WhereC=coefficientofdischarge

    Q=dischargethroughscreen,cfs

    A=effectivesubmergedopenarea,ft2

    g=accelerationduetogravity,ft/sec2

    hL=headloss,ft

    FigureII.2 showsabrushcleaneddiskscreenandabrushcleaneddrumscreen.

    FigureII.2Brushcleaneddiskscreen (d)Brushcleaneddrumscreen

    II.1.3.ComminutingdevicesAcomminutingdeviceisamechanicallycleanedscreenwhich

    incorporatesacuttingmechanismthatcutstheretainedmaterialwithoutremovalfromthesewage

    flow. Thistendstoreduceodors,flies,andunsightlinessoftenfoundaroundsewagescreeningshandledbyothermeans. Acomminutingdevicehasasubmergedrevolvingdrumwithopeningsvaryingfrom

    to3/8in. Coarsematerialiscutbycuttingteethandshearbarsattherevolvingdrumwhichpasses

    throughastationarycuttingcomb. Thecomminutedsolidsthenpass,withsewageliquor,outofthe

    bottomopeningandbackintothedownstreamchannel. Thisrequiresaspecialvoluteshapedbasinto

    giveproperhydraulicconditionsforsatisfactoryoperation. Thebasinshapemakesitsinstallationmore

    expensive. Acomminutingdeviceisoftenusedinlocationswheretheremovalofscreeningswouldbe

    difficultsuchasinaverydeeppit. FigureII.3showsplanandcrosssectionalviewsofacomminuter.

  • 7/26/2019 Design of Sewage Treatment Plants Course

    10/56

    8

    FigureII.3Planandcrosssectionalviewsofacomminuter

    II.1.4.DisposalofscreeningsLargevariationisreportedinthevolumeofscreeningsremovedper

    milliongallonsofsewage. Thefactorsaffectingthequantityofscreeningsareasfollows:

    1. Clearopeningbetweenbars

    2. Percentageofcombinedsewersinthetributarysystem

    3. Characterofindustrialwastetreated,and

    4. Habitsoftributarypopulation

    Incinerationhasbeenfoundtobeasatisfactorymeansofscreeningsdisposal.

    Screeningsgrindershavebeenusedfordisposalofscreenings. Thematerialisreducedinsizeand

    returnedtotherawsewage. Thegrindersarelocatednearthesourceofscreeningstobeprocessed.

    Grindersusedarethehammermilltypeorthedisintegratortype. Acomminutingdeviceisnota

    substituteforagrinder. Screeningsfromagrinderareusuallydisposedofasrawsludge.

  • 7/26/2019 Design of Sewage Treatment Plants Course

    11/56

    9

    Anothermethodofdisposingofscreeningsisbyburial. Ifthismethodischosen,suitableandsufficient

    areamustbeavailable.

    II.1.5.GritremovalMinutepiecesofmineralmatterlikesand,andgravel,andmaterialsthatarenotof

    mineraloriginlikecoffeegrounds,seeds,andsimilarmaterialconstitutegrit. Gritinsewagehastwo

    characteristics:(1)Theyarenonputrescibleand(2)theyhavesubsidingvelocitiessubstantiallygreaterthanthoseoforganicputresciblesolids.

    Gritchambersarelocateddownstreamofscreenchambers. Thepurposeofagritchamberisthree

    fold:(1)theprotectionofmovingmechanicalequipmentfromabrasionandaccompanyingabnormal

    wear,(2)thereductionofpipecloggingcausedbydepositionofgritparticlesorheavysludgeinpipes

    andchannels,particularlyatchangesindirectionofconduits,and(3)reductionoffrequencyofdigester

    andsettlingtankcleaningrequiredasaresultofexcessiveaccumulationofgritintheseunits.

    Therearetwotypesofgritchambers: horizontalflowandaerated. Inthehorizontalflowtype,theflow

    passesthroughthechamberinahorizontaldirection. Aconstantvelocityofflowthroughthegrit

    chambermustbemaintainedat1ft/secforalldepthsofflowinordertopreventsettlingoforganic

    solids. Thisisaccompaniedbymeansofprovidingasutroweiroraproportionalflowweir.

    FigureII.4showscrosssectionofthetwoweirs.

    FigureII.4Crosssectionof(a)sutroweir(b)proportionalflowweir

  • 7/26/2019 Design of Sewage Treatment Plants Course

    12/56

    10

    Theaeratedtypeconsistsofaspiralflowaerationtank,thespiralvelocitybeingcontrolledbythe

    dimensionsandthequantityofairsuppliedtotheunit. Thedetentionprovidedis3minutesatthe

    maximumflowrate.

    Thegritsolidsarerakedbyarotatingmechanismtoasumpatthesideofthetank,fromwhichtheyare

    movedbyareciprocatingrakemechanism. Thequantitiesofgritvaryfromonelocationtoanotherdependingonthetypeofseweragesystem,thecharacteristicsofthedrainagearea,theconditionofthe

    sewers,thefrequencyofstreetsanding,thetypeofindustrialwastes,thenumberofgarbagegrinders

    served,andtheproximityanduseofsandybathingbeaches. Thereisawiderangeinthequantityof

    gritvaryingfrom1/3ft3to24ft

    3permilliongallonofsewagetreated. Becauseofthewidevariation,a

    factorofsafetymustbeusedincalculationsconcerningtheactualstorage,handling,ordisposalofthe

    grit.

    Commonmethodofgritdisposalisasfill,coveredifnecessarytopreventobjectionableconditions. Grit

    alsoisincineratedwithsludge. Incoastalcitiesgritandscreeningsarebargedtoseaanddumped.

    Generallythegritmustbewashedbeforeremoval.

    II.1.6.PretreatmentPretreatmentisusedtoremovematerialsuchasgreaseandscum,fromsewage

    priortoprimarysedimentationtoimprovetreatability. Pretreatmentmayincludeskimming,grease

    traps,preaerationandflotation.

    Askimmingtankisachambersoarrangedthatfloatingmatterrisesandremainsonthesurfaceuntil

    removedwhiletheliquidflowsoutcontinuouslythroughdeepoutlets. Thismaybeaccomplishedina

    separatetankorcombinedwithprimarysedimentation. Theobjectistoseparatethelighterfloating

    substancesfromsewage. Thematerialremovedincludesoil,grease,soap,piecesofcork,andvegetable

    debrisandfruitskins.

    Greasetrapsaresmallskimmingtanks. Theyaresituatedclosetothesourceofgrease,whichmaybe

    anindustry,ahousesewer,orasmalltreatmentplant. Theinletissituatedjustbelowthesurfaceand

    theoutletatthebottom. Detentiontimesof10to30minareused. Theymustbecleanedperiodically.

    Preaerationofsewagepriortoprimarysedimentation,ifpracticed,isclassifiedaspretreatment. The

    objectiveofpreaeratingsewageistoimprovetreatabilityandtocontrolodor. Detentiontimesofpre

    aerationtanksrangefrom10to45min. Tankdepthsaregenerally15ftandairrequirementsrange

    from0.1to0.4ft3/galofsewage.

  • 7/26/2019 Design of Sewage Treatment Plants Course

    13/56

    11

    III. PRIMARYTREATMENT

    Primarytreatmentconsistsofsettlingthesewageinasedimentationtank.Wheneveraliquid

    containingsolidsinsuspensionisplacedinarelativelyquiescentstate,thosesolidshavingahigher

    specificgravitythantheliquidwilltendtosettle,andthosewithlowerspecificgravitywilltendtorise.

    Theseprinciplesareutilizedinthedesignofsedimentationtanks. Theobjectiveoftreatmentby

    sedimentationistoreducethesuspendedsolidscontentbyremovingreadilysettleablesolidsand

    floatingmaterial.

    Efficientlydesignedandoperatedprimarysedimentationtanksshouldremovefrom50to65%ofSSand

    25to40%ofBOD. Sedimentationtanksarenormallydesignedonthebasisofasurfaceloadingrateat

    theaveragerateofflow,expressedasgallons/day/ft2ofhorizontalarea. Theeffectofsurfaceloading

    rateanddetentiontimeonSSremovalvarieswidelydependingonthecharacterofthesewage,proportionofsettleablesolids,concentrationofsolids,andotherfactors.Whentheareaofthetankhas

    beenestablished,thedetentionperiodinthetankisgovernedbywaterdepth.

    Surfacesettlingratesnotfollowedbysecondarytreatmentshallnotexceed600gallonsperdayper

    squarefoot(gpd/ft2)fordesignflowof1mgdorless. Higherratesmaybepermittedforlargerplants.

    Normally,primarydetentiontanksaredesignedtoprovide90to150minofdetentionbasedonthe

    averagerateofsewageflow.Weirloadingsshouldnotexceed10,000gallons/linearft/dayforplants

    designedforaverageflowsof1MGDorless. Forplantsdesignedforhigherflows,theweirloadingrate

    canbeincreaseduptoamaximumof15,000gallons/linearft/day.Weirrateshavebeenfoundtohave

    lesseffectonefficienciesofremovalthanoverflowrates. Aminimumwaterdepthof7ftisrecommended.

    III.1.Tanktype,sizeandshapeAlmostallsedimentationtanksaredesignedasrectangularorcircular

    tankswithmechanicalcleaningmechanism. Theselectionoftheshapeisgovernedbythesizeofthe

    installation,byrulesandregulationsofpermittingauthorities,bylocalsiteconditionsandtheestimate

    ofcost. Twoormoretanksshouldbeprovidedinorderthattheprocessmayremaininoperationwhile

    onetankisoutofserviceformaintenanceandrepairwork.

    III.1.1.Rectangulartanks Thelengthofrectangulartanksisrestrictedto300ft. Tankwidthsmaynot

    bemorethan80ft,butitshouldbedividedinto4bayssothatthecleaningmechanismcanbeinstalled

    ina20footwidthbay. ArectangulartankisshowninFigureIII.1.

  • 7/26/2019 Design of Sewage Treatment Plants Course

    14/56

    12

    FigureIII.1Rectangularsedimentationtank

    Attachedtothechainatintervalsof10ft,are2inthickcrosspiecesofwood,orflights,6to8indeep,

    extendingthefullwidthofthetankorbay. Linearconveyorspeedsof2to4ft/minarecommon. The

    solidssettlinginthetankarescrapedtosludgehoppersinsmalltanksandtotransversetroughsinlarge

    tanks. These,inturn,areequippedwithcollectingmechanisms(crosscollectors),ofthesametypeas

    thelongitudinalcollectors,whichconveysolidstooneormoresludgehoppers. Screwconveyorsmay

    alsobeusedinsteadofcrosscollectors.Wherecrosscollectorsarenotprovided,multiplehoppersmust

    beinstalled. Ifacommonwithdrawallineisused,provisionismadetoisolateandcontrolthe

    withdrawalfromeachhopperindividually. Itisdesirabletolocatethesludgepumpingfacilitiescloseto

    thehoppers.

    Rectangulartanksareusedwheregroundareaisatapremium. Theyarealsousedwheretankroofsor

    coversarerequired.

    Theinletarrangementisanimportantelementinthedesignofrectangulartanks. Influentchannels

    mustbeprovidedacrosstheinletend.Withmultipleunits,theflowisdistributedtoeachunitas

    uniformlyaspossibletoobtainmaximumefficiency. Oneeffectivemethodistheuseofdistribution

    boxesorchambersaheadofthesedimentationunitswithgatesororificestoadjusttheflowbetween

    theunits. Baffleboardsinfrontoftheinletsareusedtodistributesewageflowslaterallyandvertically

    andtopreventshortcircuiting. Bafflesareinstalledapproximately2to3ftinfrontoftheinletsand

    submerged18to24in.

    Outletstructuresincludeeffluentchannelsandweirslocatedneartheeffluentendofthetank. Effluent

    weirsareadjustableforlevelingandsufficientlylongtoavoidhighheadswhichresultinupdraft

    currents. Thecrestisfrequentlyprovidedwith900Vnotchestoprovideuniformdistributionatlow

    flows.

  • 7/26/2019 Design of Sewage Treatment Plants Course

    15/56

    13

    Scumisusuallycollectedattheeffluentendofrectangulartanks. Thescumremovalmethodconsistsof

    achainandflighttypeofcollectorthatcollectsthescumatonesideofthetankandscrapsitupashort

    distancefordepositinscumhoppers,whenceitisusuallydisposedofwiththesludgeproducedatthe

    plant.

    III.1.2.CirculartanksThediameterofroundtanksvariesfrom10to180ftwithnosinglefactor

    influencingtheselectionotherthanthesizeoftheplant. Thesidewalldepthvariesfrom7to14ft.

    Floorsaredeepestatthecenterandsloperadiallyupwardstothetankwallsatarateof1inperft. The

    slopefacilitatessludgewithdrawalanddrainageofthetank.

    Inonetypeofcirculartanks,thesewageiscarriedtothecenterofthetankinapipesuspendedfroma

    bridgeorencasedinconcretebeneaththetankfloor. Atthecenterofthetank,sewageentersacircular

    welldesignedtodistributetheflowequallyinalldirections. Theremovalmechanismmoves

    continuouslyataperipheralspeedof5to8ft/minandmayhavetwoorfourarmsequippedwith

    scrapers. Thearmsalsosupportbladesforscumremoval. Inthesecondtype,asuspendedcircular

    aluminumbaffleatashortdistancefromthetankwallformsanannularspaceintowhichthesewageis

    distributedinatangentialdirection. Thesewageflowsspirallyaroundthetankandunderneaththe

    baffle,theclarifiedliquidbeingskimmedoffoverweirsonbothsidesofacentrallylocatedweirtrough.

    Greaseandscumareconfinedtothesurfaceoftheannularspace. Intervalsofpumpingthesludgevary

    fromoncein30mintooncein12hoursdependinguponthevolumetobepumpedandtheplant

    operatingschedules.

    Thevolumeofsludgeproduceddependsupon:

    1. Characteristicsoftherawsewage

    2.

    Periodofsedimentation

    3. Conditionsofthedepositedsolids,and

    4. Periodbetweensludgeremovaloperations.

    ExampleIII.1showsatypicaldesignofaprimarysedimentationtank.

    ExampleIII.1

    Designaprimarysedimentationtankgiventhefollowingdata:Sewageflow=5mgd,surfaceoverflow

    rate=600gpd/ft2,depthoftank=10ft,removalefficiency=60%,SSinrawsewage=200mg/L,specific

    gravityofthesludge=1.03,andmoisturecontentofsludge=95%,weirloadingrate=15,000gpd/ft.Sludgeispumpedoutofthehoppers3timesadayfor30minutesdurationeachtime.

    Solution

    Surfacearea=5,000,000/600=8,333oruse8,340ft2

    Totalvolume=10x8,340=83,400ft3

  • 7/26/2019 Design of Sewage Treatment Plants Course

    16/56

    14

    Provide4rectangulartankseach120ftlongand20ftwidewhichgivesalengthtowidthratioof6:1and

    atotalvolumeof96,000ft3.

    Two75ftdiametercirculartankswithatotalvolumeof88,313ft3alsowillbesuitable.

    Designflow/tank=5,000,000/4=1,250,000gpd

    Weirlength/tank=1,250,000/15,000=83linearft

    Weightofdrysolidsremoved/milliongallons=200x8.34x1x(60/100)=1,000lb

    Volumeofsludge/milliongallonofsewage=1,000/{8.34x1.03x(5/100)}=2,330gallons

    Volumeofsludge/5mgdofsewage=2,330x5=11,650gpd

    Sludgevolumepumpedeachtime=11,650/3=3,883oruse3,890gallons

    Adding10%forscum,volumetobepumped=3,890x1.1=4,668gallons

    Pumpingrate=4,668/30=155.6oruse160gpm

    Checkfordetentiontime

    Usingrectangulartanks:Flow=5,000,000gallons/day=208,333gal/hr

    Volumeoftank=96,000ft3=718,000gal

    Detentiontime=718,080/208,333=3.45hrs

    Usingcirculartanks:Flowasbefore=208,333gal/hr

    Volumeoftank=660.581;Detentiontime=660,581/208333=3.17hr

    Squaretanksarealsousedbuttheyarefewerinnumber. Thedesignfeaturesaresameasforcircular

    tanks.

    FigureIII.2showsatypicalcircularsedimentationtank.

    FigureIII.2Typicalcircularsedimentationtank

  • 7/26/2019 Design of Sewage Treatment Plants Course

    17/56

    15

    IV. SECONDARYTREATMENT

    Secondarytreatmentofsewageinvolvesbiologicalprocessesthatconvertthefinelydividedand

    dissolvedorganicmatterintoflocculentsettleablesolidsthatcanberemovedinsedimentationtanks.

    Thecommonbiologicalprocessesare:

    1.

    Tricklingfilter

    2.

    Activatedsludge

    3. Aeratedlagoons

    4. Stabilizationponds

    IV.1.TricklingfilterAtricklingfilter,consideredasattachedgrowthsystem,consistsofabedwith

    highlypermeablemediatowhichmicroorganismsareattachedandthroughwhichsewageispercolated.

    Thefiltermediausuallyconsistsof,rocks,varyinginsizefrom1to4in.indiameter. Thedepthofrock

    varieswitheachparticulardesign,usuallyfrom3to8ft;anaveragedepthis6ft. Tricklingfilters

    employingaplasticmediahavebeenbuiltwithdepthsof30to40ft. Thefilterbedisusuallycircular,

    andthesewageisdistributedoverthetopofthebedbyarotarydistributor. Eachfilterhasanunder

    drainsystemforcollectingthetreatedeffluentandanybiologicalsolidsthathavebecomedetached

    fromthemedia. Theunderdrainsystemhastwofunctions:oneasacollectingunitfortheeffluentand

    theotherasaporousstructurethroughaircancirculate. FigureIV.1showsacutawayviewofatrickling

    filter.

    FigureIV.1Cutawayviewofatricklingfilter

    Thetricklingprocessdependsonbiochemicaloxidationofcomplexorganicmatterinthesewage. Soon

    afterafilterisplacedinoperation,thesurfaceofthemediabecomescoatedwithzooglea,aviscous

    jellylikesubstancecontainingbacteriaandotherbiota. Underfavorableconditionsthezoogleaabsorbs

  • 7/26/2019 Design of Sewage Treatment Plants Course

    18/56

    16

    andutilizesuspended,colloidal,anddissolvedorganicmatterfromthesewagewhichpassesina

    relativelythinfilmoveritssurface. Eventuallypopulationequilibriumisreached. Asbiotadie,they,

    togetherwiththemoreorlesspartlydecomposedorganicmatter,aredischargedfromthefilter. This

    dischargeistermedsloughing. Thesloughingmayoccurperiodicallyorcontinuously. Secondarysettling

    isprovidedtoretainthesettleablesolidssloughedfromthefilter.

    Tricklingfiltersareexpectedtoremove70to80%ofBOD. Theypredominateinsmallerplants. They

    havetheabilitytorecoverfromshockloadsandtoprovidegoodperformancewithaminimumofskilled

    technicalsupervision. Theyareclassifiedbyhydraulicororganicloadingashighrateandlowrate. The

    hydraulicloadingisthetotalvolumeofliquid,includingrecirculation,perdaypersquareunitofthe

    filterarea. Thegeneralpracticeistousemilliongallonsperacreperday(mgad). Organicloadingisthe

    poundsof5day,200C,BODperdaypercubicunitofthefiltermedia. TheTenStateStandardshas

    sponsoredpoundsperdayper1,000ft3. Therangeofloadingsencounteredandotheroperational

    characteristicsforthehighrateandlowratefiltersareshowninTableIV.1

    TableIV.1Operationalcharacteristicsofhighrateandlowratetricklingfilters

    Alowratefilterisalsocalledastandardrateoraconventionalratefilterandisrelativelysimpledevice

    andishighlydependable,producingaconsistenteffluentqualitywithvaryinginfluentstrength. Alarge

    populationofnitrifyingbacteriaisprevalent. Headlossthroughthefiltermaybe5to10ft. Odorsarea

    commonproblem,especiallyifthesewageisstaleorseptic. Nuisancecausingfilterflies(Psychoda)may

    breedinthefiltersunlesscontrolmeasuresareemployed.

  • 7/26/2019 Design of Sewage Treatment Plants Course

    19/56

    17

    Filtereffluentorfinaleffluentisrecirculatedinhighratefiltersresultinginhigherorganicloadings.

    FlowdiagramsforvarioushighratetricklingfilterconfigurationsareshowninFigureIV.2.

    FigureIV.2Highratetricklingfilterflowsheetswithvariousrecirculationpatterns(a) singlestagefilters(b)twostagefilters

    Recirculationoffiltereffluentaroundthefilterresultsinthereturnofviableorganismsandimproves

    treatmentefficiency. Recirculationalsoaidsinpreventingpondinginthefilterandinreducingthe

    nuisanceduetoodorsandpsychodaflies.

    EquationsareavailabletopredicttheBODremovalsintricklingfilters.Mostcommonlyusedequationis

    byTheNationalResearchCouncil,anempiricalformula,whichisshownbelowforthefirststagefilter:

    E1=1/{1+0.0085(W/VF)0.5..Eq.(IV.1)

    whereE1=fractionalefficiencyofBODremovalforprocess,includingrecirculationandsedimentation

    W=BODloadingtofilter,lb/day

    V=volumeoffiltermedia,acreft.

    F=recirculationfactor

    Therecirculationfactoriscalculatedbymeansofthefollowingformula:

  • 7/26/2019 Design of Sewage Treatment Plants Course

    20/56

    18

    F=(1+R)/{1+(R/10)}2 Eq.(IV.2)

    whereR=recirculationratioQr/Q

    Therecirculationfactorrepresentstheaveragenumberofpassesoftheinfluentorganicmatterthrough

    thefilter

    ExampleIV.1illustratestheuseoftheNRCformulasinthedesignoftricklingfilters.

    ExampleIV.1

    Atownisconsideringtheuseofatricklingfilterfortreatmentofitssewage. Atwostagefilteris

    contemplated. Theinfluentflowis2mgdwithasettledBODcontentof200mg/liter. ThedesiredBOD

    intheeffluentqualityis30mg/liter. Ifthefilterdepthsare6ftandtherecirculationratiois4:1,what

    arethefilterdiametersassumingthefractionalBODremovalefficienciesarethesameinboththe

    filters.

    Solution

    1. ComputeE1andE2,theBODremovalefficiencies

    Overallefficiency=(20030)/200=85%

    E1+E2(1E1)=0.85

    E1=E2=0.615

    2. Computetherecirculationfactor

    F=(1+R)/{1+(R/10)}2=(1+4)/1.42=5/1.96=2.55

    3. ComputetheBODloadingforthefirstfilter

    W=200x8.34x2=3,334lb/day

    4. Computethevolumeforthefirststagefilter

    E1=1/{1+0.0085(W/VF)0.5}

    0.615=1/{1+0.0085(3,334/2.55V)0.5}

    V=0.1acreft

    5. Computethediameterofthefirstfilter

    Area=0.1/6=0.017acres=726ft2

    Diameter={(726x4)/3.14}0..5=30ft

    6.

    ComputetheBODloadingforthesecondfilter

    W=(IE1)W=0.385x3,334=1,284lb/day

    E2=1/[1+{0.0085/(1E1)}x(W/VF)0.5]

  • 7/26/2019 Design of Sewage Treatment Plants Course

    21/56

    19

    0.615=1/{1+[0.0085/(10.615)]x(1284/2.55V)o.5}

    V=1.39acreft.,Area=1.39/6=0.23acresor10,020ft2;diameter=113ft.

    IV.1.1.PhysicalfacilitiesFactorsthatmustbeconsideredinthedesignoftricklingfiltersinclude:

    (1)thetypeanddosingcharacteristicofthedistributionsystem,(2)thetypeoffiltermediatobeused,

    (3)theconfigurationoftheunderdrainagesystem,(4)provisionforadequateventilation,and(5)the

    designoftheadequatesettlingtanks.

    IV.1.1.1.DistributionsystemsThecommonarrangementofdistributionsystemistoprovidetwoor

    moreofrotaryarms. Theyaremountedonapivotinthecenterofthefilterandrevolveinahorizontal

    plane. Thearmsarehollowandcontainnozzlesthroughwhichthesewageisdischargedoverthefilter

    bed. Thedistributorassemblyisdrivenbythedynamicreactionofthesewagedischargingfromthe

    nozzlesorbyanelectricmotor. Thespeedofrevolutionnormallyis1revolutionin10minutesorless.

    Clearanceof6to9inshouldbeallowedbetweenthebottomofthedistributorarmandthetopofthe

    bed. Nozzlesarespacedunevenlysothatgreaterflowperunitoflengthisachievedattheperiphery

    thanatthecenter. Theheadlossthroughthedistributorwillbeintherangeof2to5ft.

    Dozingtanksprovidingintermittentoperationorrecirculationbypumpingmaybeemployedtoensure

    thattheminimumflowwillbeadequatetorotatethedistributoranddischargethesewagefromall

    nozzles.

    Fixednozzledistributionsystemisalsoinuse. Itconsistsofaseriesofspraynozzleslocatedatthe

    pointsofequilateraltrianglescoveringthefilterbed. Asystemofpipesplacedinthefilterdistributes

    thesewageuniformlytothenozzles. Specialnozzleshavingaflatspraypatternareused.

    IV.1.1.2.FiltermediaTheidealfiltermediashouldhavehighsurfaceareaperunitofvolume,should

    belowincost,hasahighdurability,anddoesnotclogeasily. Themostsuitablematerialiscrushedrock

    orgravelgradedtoauniformsizeof1to3in. Othermaterialssuchasslag,cinders,orhardcoalhavealsobeenused. Stoneslessthan1indiametermustbeavoidedastheydonotprovidesufficientpore

    spacebetweenthestonesforfreeflowofsewageandsloughedsolids. Pluggingofthemediaand

    pondinginsidethefilterwilloccur.

    IV.1.1.3.UnderdrainsUnderdrainsarepartofthecollectioninatricklingfilter. Thecollectionsystem

    consistsoffilterfloor,collectionchannel,andunderdrains. Theunderdrainsarespeciallydesigned

    vitrifiedclayblockswithslottedtopsthatadmitthesewageandsupportthemedia. Theunderdrains

    arelaiddirectlyonthefilterfloor,whichareslopedtothecollectionchannelata1to2percent

    gradient. Underdrainsmaybeopenatbothendstofacilitateeasyinspectionandflushingintheevent

    ofclogging. Theyalsoventilatethefloor,providingairformicroorganismsthatliveinthefilterslime.FigureIV.3providesanunderdrainsystem.

  • 7/26/2019 Design of Sewage Treatment Plants Course

    22/56

    20

    FigureIV.3Underdrainblocksfortricklingfilters

    IV.1.1.4.VentilationNaturalventilationoccursbygravitywithinthefilteranditisconsidered

    adequateifthetricklingfilterisproperlydesigned,constructed,andoperated. Forcedventilationis

    practicedatarateof1ft3perft

    2offilterareaindeeporheavilyloadedfilters. Duringperiodsof

    extremelycoldtemperaturestheairflowmustberestrictedto0.1ft3perft2inordertopreventfreezing

    ofthefilter.

    Filtersshouldbedesignedsuchthattheentiremediacanbefloodedwithsewageandthendrained

    withoutcausinganyoverflows. Floodingisaneffectivemethodforflushingafiltertocorrectponding

    andtocontrolfilterflylarvae.

    IV.2.Activatedsludgeprocess Activatedsludgeisdefinedassludgeflocproducedinaraworsettled

    sewagebythegrowthofzooglealbacteriaandotherorganismsinthepresenceofdissolvedoxygen,and

    accumulatedinsufficientconcentrationbyreturningflocpreviouslyformed. Thisisconsideredasa

    dispersegrowthsystem.

    Activatedsludgeprocessisdefinedasabiologicalsewagetreatmentprocessinwhichamixtureof

    sewageandactivatedsludgeisagitatedandaerated. Theactivatedsludgeissubsequentlyseparated

    fromthetreatedsewage(mixedliquor)bysedimentation,andwastedorreturnedtotheprocessas

    needed. Thetreatedsewageoverflowstheweirofthesettlingtankinwhichseparationfromthesludge

    takesplace.

    Activatedsludgeflocsarecomposedofasyntheticgelatinousmatrixinwhichfilamentousand

    unicellularbacteriaareimbedded,andonwhichprotozoaandsomemetazoancrawlandfeed.

    Activatedsludgediffersfromothersludgeinappearance,physicalcharacteristics,andbiological

    composition. Goodactivatedsludgehasadistinctivemusty,earthyodorwhileincirculationinthe

  • 7/26/2019 Design of Sewage Treatment Plants Course

    23/56

    21

    aerationbasin. Itisalightbrown,flocculantprecipitatethatsettlesrapidlyinitsmotherliquor,leaving

    asupernatantliquidthatisclear,colorless,odorlessand,sparkling.

    Theadvantagesofthisprocessareproducingaclear,sparklingand,nonputrescibleeffluent,freedom

    fromoffensiveodorsduringoperation,removingmorethan90%ofBODandSS,relativelylow

    installationcost,somecommercialvalueinthesludgeand,therequirementofhydraulicheadandsurfaceareafortheplantisless. Thedisadvantagesincludeuncertaintyconcerningtheresultstobe

    expectedunderallconditions,sensitivitytochangesinthequalityoftheinfluent,highcostofoperation,

    thenecessityforconstantskilledattendance,anddifficultyindewateringanddisposingofthelarge

    volumeofsludgeproposed.

    Theeffluentfromtheactivatedsludgeprocessisnormallyclear,odorless,sparkling,highindissolved

    oxygen,andlowinBOD. Itcanbeexpected,ingeneral,thattheeffluentwillcontainfrom10to20mg/l

    ofBODandSS.

    Theconventionalactivatedsludgeprocesstogetherwiththesixmodificationsarelistedbelowandthey

    aredescribedindetail: DesignparametersfortheseprocessesarefurnishedinTableIV.2

    1. Conventionalactivatedsludgeprocess

    2.

    Completemixactivatedprocess

    3. Taperedaerationactivatedsludgeprocess

    4.

    Stepaerationactivatedsludgeprocess

    5. Modifiedaerationactivatedsludgeprocess

    6.

    Contactstabilizationactivatedsludgeprocess

    7. Extendedaerationactivatedsludgeprocess

    TableIV.2Designparametersforactivatedsludgeprocesses

    BODloading

    Process lbBOD/1000ft3 lbBOD/day/ Sludgeage Aerationperiod Returnsludge

    perday lbMLSS days hours percent

    ____________________________________________________________________________________Conventional 2040 0.20.4 515 48 2550

    Completemix 50120 0.20.6 515 35 25100

    Taperedaeration 3040 0.20.5 515 67.5 30

    Stepaeration 3050 0.20.5 515 57 50

    Modifiedaeration 75100 1.55.0 0.20.5 1.53 515

    Contactstabilization3050 0.20.5 515 69 100

  • 7/26/2019 Design of Sewage Treatment Plants Course

    24/56

    22

    Extendedaeration 1030 0.61.5 510 2030 100

    IV.2.1.ConventionalactivatedsludgeprocessThisistheearliestactivatedsludgesystem. Theflow

    diagramforthisprocessisshowninFigureIV.4

    FigureIV.4Flowdiagramplusoxygendemandandsupplyforconventionalactivated

    sludgeprocess

    Theaerationbasinisalongrectangulartankwithairdiffusersononesideofthetankbottomtoprovide

    aerationandmixing. Settledsewageandreturnactivatedsludgeentertheheadofthetank,getaerated

    forabout6hoursandflowdownitslengthinaspiralflowpattern. Constantaerationisprovidedby

    diffusedairormechanicalmeans.Duringthisperiod,adsorption,flocculation,andoxidationofthe

    organicmattertakeplace. Themixedliquorissettledintheactivatedsludgesettlingtank,andsludgeis

    returnedatarateofapproximately25to50percentoftheinfluentflowrate. Theaboveprocessis

    illustratedinExampleIV.2.

    ExampleIV.2

    Data: Volumeofaerationtank=120,000ft3or0.898mg

    Settledsewageflow=3.67mgd

    Returnsludgeflow=1.27mgd

    Wastesludgeflow=18,900gpdor0.0189mgd

    MLSSinaerationtank=2,350mg/l

    SSinwastesludge=11,000mg/l

    InfluentsewageBOD=128mg/l

    EffluentBOD=22mg/l

    EffluentSS=26mg/l

    Usingtheabovedatacalculatetheloadingandoperationalparameters.

    Solution

  • 7/26/2019 Design of Sewage Treatment Plants Course

    25/56

    23

    BODload=3.67x128x8.34=3,920lb/day

    MLSSinaerationtank=0.898x2,350x8.34=17,600lb

    BODloading=3,920/120=32.7lb/day/1000ft3

    BODloading=3,920/17,600=0.22lb/day/lbofMLSS

    Sludgeage=(2,350x0.898)/(26x3.67+11,000x0.0189)=7days

    Aerationperiod=(0.898x24)/3.67=5.9hr

    Returnsludgerate=(1.27x100)/3.67=35%

    BODremoval={(12822)x100}/128=83%

    Sludgeproduction=(0.0189x11,000x8.34)/3,920=0.44lbSSwasted/lbBODapplied

    IV.2.2.CompletemixactivatedprocessProcessflowdiagramforthisprocessisshowninFigureIV.5

    FigureIV.5Flowdiagramplusoxygendemandandsupplyforcompletemixactivatedsludgeprocess

    Thesettledsewageinfluentandthereturnsludgeflowareintroducedatseveralpointsintheaeration

    tankfromacentralchannel. Themixedliquorisaeratedasitpassesfromthecentralchanneltothe

    effluentchannelsatbothsidesoftheaerationtank. Theaerationtankeffluentiscollectedandsettled

    intheactivatedsludgesettlingtank. Theorganicloadontheaerationtankandtheoxygendemandare

    uniformfromoneendtotheother. Asthemixedliquorpassesacrosstheaerationtankfromthe

    influentportstotheeffluentchannel,itiscompletelymixedbydiffusedormechanicalaeration.

    IV.2.3.TaperedaerationactivatedsludgeprocessTheobjectiveoftaperedaerationistomatchthe

    quantityofairsuppliedtothedemandexertedbythemicroorganisms,astheliquortraversesthe

    aerationtank. Thusonlythearrangementofthediffusersandtheamountofairconsumedareaffected

    inthisprocess. Attheinletoftheaerationtankwherefreshsettledsewageandreturnactivatedsludge

    firstcomeincontact,theoxygendemandisveryhigh. Thediffusersarespacedclosetogetherto

    achieveahighoxygenationrateandthussatisfythedemand. Asthemixedliquortraversesthetank,

    synthesisofnewcellsoccurs,increasingthenumberofmicroorganismsanddecreasingthe

    concentrationofavailablefood. Thisresultsinalowerfood/microorganism(U)ratioandaloweringof

    theoxygendemand. Thespacingofdiffusersisincreasedtowardthetankoutlet,toreducethe

    oxygenationrate. Thisresultsintwoadvantages:loweringofaerationcostandavoidanceofover

    aerationcreatinginhibitionofgrowthofnitrifyingorganisms.

  • 7/26/2019 Design of Sewage Treatment Plants Course

    26/56

    24

    IV.2.4.StepaerationactivatedsludgeprocessInthisprocess,thesettledsewageisintroducedat

    severalpointsintheaerationtanktoequalizetheUratio,thusloweringthepeakoxygendemand. A

    typicalflowsheetforthisprocessisshowninFigureIV.6

    FigureIV.6Flowdiagramplusoxygendemandandsupplyforstepaerationactivatedsludgeprocess

    Theaerationtankissubdividedintofourormoreparallelchannelsthroughtheuseofbaffles. Each

    channelcomprisesaseparatestep,andtheseveralstepsarelinkedtogetherinseries. Returnactivated

    sludgeentersthefirststepoftheaerationtankalongwithaportionofthesettledsewage. Thepipingissoarrangedthatanincrementofsewageisintroducedintotheaerationtankateachstep. Flexibilityof

    operationisanadvantageinthisprocess. Otheradvantagesare:higherBODloadingsper1,000ft3of

    aerationtankvolume,solubleorganicsremovalinashortperiod,andbetterutilizationoftheoxygen

    supplied. ExampleIV.3showsthedesignofatreatmentplantusingtheaboveprocess.

    ExampleIV.3

    Data:

    Settledsewageflow=7.40mgd(989,000ft3/day)

    BODcontent=7,900lbs

    DesignmaximumBODloading=40lbs/1000ft3/day

    Designminimumaerationperiod=6hr

    Numberofaerationtanksrequired=4

    MinimumoperatingMLSS=2,000mg/l

    Numberoffinalcircularclarifiers=4

    Determine(1)thedimensionsoftheaerationtanks,and(2)thedimensionsoftheclarifiers.

    Solution

    VolumeoftankbasedonBODloading=7,900/(40/1000)=198,000ft3

    Volumeoftankbasedonaerationperiod=(7,400,000x6)/(24x7.48)=247,000ft

    3

    Usethehighervalueof247,000ft3

    NowBODloading=7,900/247=31lb/1000ft3/day

    Assumeeachaerationtanktohaveawidthof24ftandliquiddepthof13ft

    Lengthofeachtank=247,000/(4x13x24)=198ft

    Sizeofeachaerationtank=198ftx24ftx13ft

    Assumeoverflowrateof800gpd/ft2forclarifiers

  • 7/26/2019 Design of Sewage Treatment Plants Course

    27/56

    25

    Surfaceareaofeachclarifier=7,400,000/4x800=2310ft2anddiameter=54ft

    Detentiontime=(2,310x13x24)/(989,400/4)=2.7hr

    IV.2.5.ModifiedaerationactivatedsludgeprocessTheflowdiagramforthisprocessissimilartothat

    ofconventionalprocessexceptthatthisprocessusesshorteraerationtimes,usually1.5to3hours,and

    ahighfoodtomicroorganismratio. TheMLSSconcentrationisrelativelylow,whereastheorganicloadingishigh. BODremovalisintherangeof60to75percent. Thesludgehaspoorsettling

    characteristicsandtheeffluentcontainshighsuspendedsolids.

    IV.2.6.ContactstabilizationactivatedsludgeprocessFlowsheetforthisprocessisshownin

    FigureIV.7.

    FigureIV.7Flowsheetforcontactstabilizationtank

    Thisprocesscontainstwoaerationtanks;oneforaeratingthemixtureofsettledsewageandreturn

    sludgeforaperiodof30to90mincalledthecontacttankandtheotherisaseparateaerationtankto

    aeratethereturnsludgefromthefinalclarifierfor3to6hourscalledstabilizationtank. BODremoval

    occursbyadsorptioninthecontacttankandbyabsorptioninstabilizationtank. Aportionofthereturn

    sludgeiswastedpriortorecycletomaintainaconstantmixedliquorvolatilesuspendedsolids(MLVSS)

    concentration. Theaerationtankvolumerequirementsareapproximately50%ofconventional

    process. Byconvertinganexistingconventionalplantintoacontactstabilizationplantwithminor

    modificationtopiping,theplantcapacitycanbeevendoubledwithalittleadditionalcost.Thisprocess

    isexcellentfortreatingsewagenotcontainingindustrialwastes. ExampleIV.4showsthedesignofa

    contactstabilizationplant.

    ExampleIV.4

    Acitywithapopulationof2,000personshasbuiltacontactstabilizationplantfortreatingitssewage

    withthefollowingdata:

    Volumeofaerationtank=2,500ft3

    Volumeofreaerationtank=5,000ft3

    Volumeofaerobicdigester=4,500ft3

    Volumeofsedimentationtank=3,660ft3andsurfacearea=300ft

    2

    CalculatetheBODloading,aerationperiods,anddetentiontimes.

  • 7/26/2019 Design of Sewage Treatment Plants Course

    28/56

    26

    Solution

    Hydraulicload=2,000x100gal/person/day=200,000gal/day

    BODload=2,000x0.2lb/person/day=400lb/day

    BODloadingonaerationtanks=400/(2,500+5,000)=0.05lb/ft3/day

    Aerationperiodinaerationtank=(2,500x7.48x24)/200,000=2.25hrAerationperiodinstabilizationtank=(5,000x7.48x24)/200,000=4.5hr

    Detentiontimeinsedimentationtankwith1005recirculation=(3,660x24x7.48)/(2x200,000)

    =1.64hr

    IV.2.7.ExtendedaerationactivatedsludgeprocessFlowsheetforthisprocessisshowninFigureIV.8

    FigureIV.8Flowsheetforextendedaerationtank

    Thisprocessoperatesintheendogenousphaseofthegrowthcurve,whichnecessitatesaloworganic

    loadingandlongaerationtimeof24hrorgreater. Henceitisapplicabletosmalltreatmentplantless

    than1mgdcapacity. Theprocessisstableandcanacceptvariableloading. Finalsettlingtanksare

    designedforalongdetentiontimeandalowoverflowratevaryingfrom200to600gpd/ft2. The

    processisextensivelyusedforprefabricatedpackageplants. Primarysedimentationisomittedand

    separatesludgewastingisgenerallynotprovided.

    IV.2.8.AerationdevicesTherearetwomethodsofprovidingaeration,oneisdispersingdiffusedair

    andtheotherisusingmechanicalmeans. Indiffusedaeration,bubbleairdiffusersareusedandthey

    aresetatadepthof8ftormoretoprovideadequateoxygentransferanddeepmixing. Thediffusers

    aremadeofhallowporousstainlesssteeltubes12ftinlengthorhallowporousdisksabout6in.in

    diameter. Theindividualdiffusersareattachedalongasubmergedairheaderabout10ftinlength

    attachedtoanairsupplyhangerpipewhichisdesignedwithrotatingjoints. Fromdataobtainedfrom

    existingplants,theaveragepowerconsumptionisfoundtobe0.563kwhrperlbofBODremoved.

    FigureIV.9showsacrosssectionofanaerationtankwithfinebubblediffusersystem.

  • 7/26/2019 Design of Sewage Treatment Plants Course

    29/56

    27

    FigureIV.9Crosssectionofanactivatedsludgeaerationtankwithdiffuser

    Mechanicalaeratorsareofverticaldrafttubetype. Flowthroughthedrafttubeisinducedbyamotor

    drivenpropeller,coneorotherrotarydevice. Theseaeratorsaredesignedforinstallationin14to30ft2,

    hexagonal,orsquaretanks8to18ftdeep. Fromdataobtainedfromexistingplants,theaveragepower

    consumptionisfoundtobe0.446kwhrperlbofBODremoved. FigureIV.10showsthreevarietiesofmechanicalaerators.

    FigureIV.10Mechanicalaerators(a)surfaceaerator,(b)simplexcone,(c)turbineaerator

  • 7/26/2019 Design of Sewage Treatment Plants Course

    30/56

    28

    IV.2.9.OperationalcharacteristicsanddesignparametersTheoperationalcharacteristicsforthe

    differentactivatedsludgeprocessesareshowninTableIV.3

    TableIV.3Operationalcharacteristicsofactivatedsludgeprocesses

    IV.2.10.OperationaldifficultiesTwomostcommonoperatingproblemsinactivatedsludgeplantsare

    risingsludgeandbulkingsludge. Occasionally,denitrificationofgoodsettlingsludgetakesplaceina

    sedimentationtankafterrelativelyashortsettlingperiod. Thenitritesandnitratesinthesewageare

    convertedtonitrogengasmuchofwhichistrappedinthesludgemass. Ifenoughgasisformed,the

    sludgemassbecomesbuoyantandrisesorfloatstothesurface. Risingsludgeproblemcanbe

    overcomeby(1)increasingtherateofreturnactivatedsludge,(2)decreasingtherateofflowof

    aerationliquor,(3)increasingthespeedofsludgecollectingmechanisminthesedimentationtanks,and

    (4)decreasingthemeancellresidencetimebyincreasingthesludgewastingrate.

    Bulkedsludgehaspoorsettlingcharacteristicsandpoorcompactability. Twotypesofsludgebulking

    havebeenidentified. OneiscausedbythegrowthoffilamentousmicroorganismssuchasSphaerotilus

    andtheotheriscausedbyboundwaterinwhichthebacterialcellscomposingtheflocswellthroughthe

    additionofwatertotheextentthattheirdensityisreducedandtheywillnotsettle. Bulkingofsludgeis

    causedbyfluctuationsinflowandstrength,ph,temperature,nutrientcontent,airsupplycapacity,

    sedimentationtankdesign,returnsludgepumpingcapacitylimitation,shortcircuitingorpoormixing,

    lowdissolvedoxygenintheaerationtank,andoverloadingtheaerationtanks. Tocontrolthebulking,at

  • 7/26/2019 Design of Sewage Treatment Plants Course

    31/56

    29

    least2mg/ldissolvedoxygenmustbemaintainedintheaerationtank,food/microorganismratiomust

    bemaintainedfrom0.2to0.4perday

    Anotherproblemencounteredinsewagetreatmentplantsisfoamformationduetothepresenceof

    soap,detergentsandothersurfactants. Largequantitiesoffoammaybeproducedduringstartupof

    theprocess,whentheMLSSarelow,orwheneverhighconcentrationsofsurfactantsarepresentinthesewage. Thefoamingactionproducesafroththatcontainssludgesolids,grease,andmicroorganisms.

    Thefroth,besidesbeingunsightly,isahazardtoworkmen,becauseitisslipperyevenaftercollapse. To

    controlfoamformation,screenedeffluentorclearwaterissprayedthroughnozzlesmountedalongthe

    topoftheedgeoftheaerationtankcontinuouslyorintermittentlybyaclockcontrolledprocess.

    Anotherapproachistoaddasmallquantityofantifoamingchemicalattheinletoftheaerationtankor

    intothespraywater.

    IV.3.OxidationditchThisisanextendedaerationprocessinaclosedloopreactorandisgoodforsmall

    communities. AflowsheetforatypicaloxidationditchisshowninFigureIV.11

    FigureIV.11Flowsheetforanoxidationditch

    Itconsistsofanelongatedovalchannelabout3ftdeepwithverticalwallsandacenterdividingwall.

    Horizontalbrushrotorsareplacedacrosstheditchtoprovideaerationandcirculation. Thescreened

    sewageenterstheditch,isaeratedbytherotors,andcirculatesatabout1to2ft/sec. Theoperation

    canbeeitherintermittentorcontinuous.

    IV.4.StabilizationpondsAstabilizationpond,alsocalledanoxidationpond,isarelativelyshallow

    bodyofwatercontainedinanearthenbasinofcontrolledshape. Pondsarepopularwithsmall

    communities. Stabilizationpondsareclassifiedasaerobic,aerobicanaerobic,andanaerobic.

    IV.1.AerobicpondsAerobicstabilizationpondscontainaerobicbacteriaandalgaeinsuspension.

    Aerobicconditionsprevailthroughoutthedepth. Therearetwotypesofaerobicponds. Inthefirsttype

    thedepthislimitedto6to18in.inordertoprovidemaximumproductionofalgae. Inthesecond

    variety,thedepthmaybeupto5ftsothatmaximumoxygencanbeproduced. TheBODremovalisup

    to95percent. Aerobicpondsareusedprimarilyforthetreatmentofsolubleorganicwastesand

    effluentsfromwastewaterplants. Stabilizationpondsmaybeemployedinparallelorseries

    arrangementtoachievespecialobjectives. Parallelunitsprovidebetterdistributionofsettledsolids.

  • 7/26/2019 Design of Sewage Treatment Plants Course

    32/56

    30

    Recirculationofpondeffluenthasbeenusedeffectivelytoimprovetheperformanceofpondsystemsin

    series. Thepondisdesignedonthebasisof100personsperacreperdaywithadetentionperiodof200

    days.

    IV.2.AerobicAnaerobicpondsThreezonesexistintheseponds:(1)asurfacezonewhereaerobic

    bacteriaandalgaeexistinasymbioticrelationship,(2)ananaerobicbottomzoneinwhichaccumulatedsolidsareactivelydecomposedbyanaerobicbacteria,and(3)anintermediatezonethatispartlyaerobic

    andpartlyanaerobic,inwhichthedecompositionoforganicwasteiscarriedoutbyfacultativebacteria.

    Becauseofthis,thesepondsarealsoreferredtoasfacultativeponds. TheSSinthewastewaterare

    allowedtosettletothebottomandalgaepresenceisnotarequirement. Thesepondsalsocanbe

    operatedinseriesorparallel. Thedesignparametersaresameasforaerobicponds. Incoldclimates

    duringthewintermonths,aportionoftheincomingBODisstoredintheaccumulatedsludge. Asthe

    temperatureincreaseinspringandsummer,theaccumulatedisanaerobicallyconverted,andthe

    oxygendemandofacidsandgasesproducedmayexceedtheoxygenresourcesoftheaerobicsurface

    layerofthepond. InsituationswhereBODstoragewillbeaproblem,surfaceaeratorsare

    recommended. Theaeratorsshouldhaveacapacityadequatetosatisfyfrom175to275%ofincomingBOD.

    IV.3.AnaerobicpondsThesepondsareanaerobicthroughouttheirdepth. Tomaintainanaerobic

    conditions,pondsareconstructedwithdepthsupto20ft. Stabilizationisbroughtaboutbya

    combinationofprecipitationandtheanaerobicconversionoforganicwastestoCO2,CH4,andother

    gaseousproducts,organicacids,andcelltissues. BODremovalisupto70%.

    IV.4.AeratedlagoonsAnaeratedlagoonisabasininwhichsewageistreatedonaflowthroughbasis.

    Oxygenissuppliedbymeansofsurfaceaeratorsordiffusedaerationunits. Dependingontheamountof

    mixing,lagoonsareclassifiedasaerobicoraerobicanaerobic. Dependinguponthedetentiontime,the

    effluentwillcontainabout1/3tothevalueoftheincomingBODintheformofcelltissues. Beforethe

    effluentisdischarged,solidsmustberemovedbysettling. Asettlingtankisanormalcomponentofthis

    system,

    Inthecaseofaaerobicanaerobiclagoon,thecontentsofthebasinarenotcompletelymixed,anda

    largeportionoftheincomingsolidsandthebiologicalsolidsproducedfromwasteconversionsettlesto

    thebottomofthelagoon. Asthesolidsbegintobuildup,aportionundergoesanaerobic

    decomposition. Themeancellresidencetimevariesfromabout3to6days. Theamountofoxygen

    requiredvariesfrom0.7to1.4timestheamountofBODremoved. Iceformationmaybeaproblemin

    somepartofthecountryinwintermonths. Theproblemcausedbyiceformationcanbeminimizedby

    increasingthedepthofthelagoon. Ifthedepthisincreasedbeyond12ft,drafttubeaeratorsmustbe

    used.

    FigureIV.12showsschematicofaeratedlagoonandaerobicanaerobiclagoons.

  • 7/26/2019 Design of Sewage Treatment Plants Course

    33/56

    31

    FigureIV.12Schematicof(a)anaeratedlagoon

    (b) anaerobicanaerobiclagoon

    DesignparametersforthedifferentformsofthestabilizationpondarefurnishedinTableIV.4.

    TableIV.4Designparametersforstabilizationponds

    IV.5.DesignofphysicalfacilitiesThefollowingmustbeconsideredwhiledesigningthephysical

    facilities:(1)locationofinfluentlines,(2)outletstructuredesign,(3)dikeconstruction,(4)liquiddepth,

    (5)treatmentoflagoonbottom,and(6)controlofsurfacerunoff.

  • 7/26/2019 Design of Sewage Treatment Plants Course

    34/56

    32

    Forsmallponds,acenterinletispreferred. Forponds10acresormore,theinletcanbeinstalled400ft

    fromthedike. Forlargeaerobicanaerobicponds,multipleinletsaredesirabletodistributethe

    settleablesolidsoveralargerarea.

    Theoutletstructure(s)shouldpermitloweringthewaterlevelataratelessthan1ft/week. Itshouldbe

    largeenoughtoprovideeasyaccessformaintenance. Provisionforcompletedrainageofthepondisdesirable. Overflowstructuresmustbeprovided.

    Dikesmustbeconstructedsuchthatseepageisprevented. Compactioncanbedonebytheuseof

    conventionalequipment. Vegetationmustberemoved,andtheareauponwhichtheembankmentisto

    beplacedshouldbescarified. Thedikemustbewideenoughtoaccommodatemowingmachinesand

    othermaintenanceequipment. Awidthof8ftisadequate. Forouterslopesa3horizontalto1vertical

    issatisfactory. Forinnerslopes1verticalto3to4horizontalissatisfactory. Afreeboardof3ftabove

    themaximumwaterlevelisadequate. Liquiddepthsupto5ftwillhavesomeadvantage. Provisionof

    largerdepthsisnecessaryforlargerponds.

    Thebottomofpondsmustbemadeasflataspossible. Thebottomshouldbewellcompactedtoavoid

    excessiveseepage.

    Pondsshouldnotreceivesignificantamountofsurfacerunoff. Ifnecessary,provisionmustbemadeto

    divertthesurfacewateraroundthepond.

  • 7/26/2019 Design of Sewage Treatment Plants Course

    35/56

    33

    V. ADVANCEDTREATMENT

    Manyofthesubstancesfoundinsewagearenotaffectedbyconventionaltreatmentoperationsand

    processes. Thesesubstancesrangefromsimpleionssuchascalcium,potassium,sulfate,nitrate,and

    phosphatetocomplexsyntheticorganiccompounds. Itisanticipatedtreatmentrequirementswillbe

    morestringentthusrequiringadvancetreatmentfacilities. Becauseoftheirimportanceinpromoting

    aquaticgrowths,compoundscontainingnitrogenandphosphorousreceiveconsiderableattention.

    Unitoperationandprocessesadoptedinadvancedtreatmentareclassifiedas:

    (1)Physical,

    (2)Chemical,and

    (3)Biological.

    Selectionofaparticularunitprocessdependsupon:

    (1)Theusetobemadeofthetreatedeffluent,

    (2)Thenatureofthewastewater,

    (3)Thecompatibilityofthevariousoperationsandprocesses,

    (4)Availablemeansfordisposingoftheultimatecontaminants,and

    (5)Theeconomicfeasibilityofthevariouscombinations.

  • 7/26/2019 Design of Sewage Treatment Plants Course

    36/56

    34

    TableV.1showstheunitprocesses,theirapplicationandremovalofthesubstances.

    TableV.1Applicationdataforadvancedtreatmentprocesses

    V.1.PhysicalunitoperationsOfthemanyphysicaloperationsthathavebeenusedinadvanced

    treatment,removalofammoniaandnitrogenshouldbegivenconsiderableattention.

    V.1.1.AirstrippingofammoniaAirstrippingofammoniaisamodificationoftheaerationprocess

    usedfortheremovalofgasesdissolvedinwater. Ammoniumionsinwastewaterexistinequilibrium

    withammonia,asshowninthefollowingequation:

    NH3+H2O NH4++OH

    Eq.(V.1)

  • 7/26/2019 Design of Sewage Treatment Plants Course

    37/56

    35

    AsthepHisincreasedto7,theequilibriumisshiftedtotheleftandtheammoniumionisconvertedto

    ammonia,whichmayberemovedasagasbyagitatingthewastewaterinthepresenceofair.

    V.1.2.FiltrationFiltrationcanbeusedtopreparethewastewaterforsubsequenttreatmentprocesses

    orfordirectreuseashighlyclarifiedwater. Itmaybedirectlyappliedtothesecondarytreatmentplant

    effluentorfollowingcoagulationsedimentationprocess. Theobjectiveoffiltrationistoproduceaneffluentthatconsistentlymeetstheestablishedtreatmentcriteriaatminimumcost. Thefollowing

    typesoffiltersareinuse:

    Dualormixedmediafilters Inrecentyears,sandfiltershavebeenreplaced,inmany

    casesbydualormixedmediafilters. Thesefiltersconsistofdifferentdensitymediaofvaryingsize

    inanattempttoapproximatereversegradation. Twoofthemostcommonlyappliedschemesin

    mixedmediafiltrationare:

    (1) Dualmedia,composedofacoarseanthracitecoalapproximately12indeep;

    (2) Mixedmediaconfigurationwhichutilizescoal,silicasand,andgarnetsand.

    Bothofthesefiltersattempttocreateamoreidealfiltrationmechanismbyprovidingmediainwhich

    thelargestparticlesareonthetopandthesmallestparticlesonthebottom.

    GranularmediafiltersThesefiltersmaybeusedwithorwithoutpretreatment(bycoagulationand

    sedimentation)forremovalofsolids.

    V.1.3.OtheroperationsThefollowingoperationsarealsopracticedasappropriate:

    a. DistillationThisisaunitoperationinwhichthecomponentsofaliquidsolutionareseparated

    byvaporizationandcondensation. Volatilecontaminantssuchasammoniagasandlowmolecularweightorganicacidscanberemovedbythisprocess. Amongthevariousdistillation

    processes,multistageflashevaporation,multipleeffectevaporation,andvaporcompression

    distillationappearmostfeasible.

    b. Flotation Flotationisusedforremovaloffinelydividedcolloidalandsuspendedmatterin

    treatedsewage. Itsuseisincreasingespeciallyinconjunctionwiththeuseofpolymers.

    c.

    FoamfractionationThisoperationinvolvestheseparationofcolloidalandsuspendedmaterial

    byflotationanddissolvedorganicsbyadsorption.

    d. FreezingThisisanoperationofphysicalseparationsimilartodistillation.Wastewateris

    sprayedintoachamberoperatedundervacuum. Aportionofthewastewaterevaporatesand

    thecoolingeffectproducescontaminantfreeicecrystalsintheremainingliquid. Theiceisthenremovedandmeltedbyusingtheheatofcondensationofthevaporsfromtheevaporation

    stage.

    e. ReverseosmosisThisisaprocessinwhichwaterisseparatedfromdissolvedsaltsinsolution

    byfilteringthroughasemipermeablemembraneatapressuregreaterthantheosmotic

    pressurecausedbythedissolvedsalts.

  • 7/26/2019 Design of Sewage Treatment Plants Course

    38/56

    36

    f. SorptionThisisaprocessdevelopedtoremovevariousformsofphosphate. Activated

    aluminaisusedbypassingastreamofwaterthroughthesorptioncolumn. Regenerationofthe

    activatedaluminaforreuseisaccomplishedbyusingsmallamountsofcausticandnitricacids.

    V.2.ChemicalunitprocessesAvarietyofadvancedchemicalunitprocesseshavebeenappliedtothe

    treatmentofsewage. Somehavebeenusedtobothtreatedanduntreatedsewagewhilesomeothers

    havebeenusedtotreatedeffluents. Thefollowingarethemostcommonunitprocesses.

    a. CarbonadsorptionFollowingbiologicaltreatment,adsorptionhasbeenaccomplishedinfixed

    andexpandedbedcolumnsofgranularcarbonandintanksusingpowderedcarbon.

    b. ChemicalprecipitationThisprocessisusedforprecipitationofphosphorusbyadding

    coagulantssuchasalum,lime,orironsalts,polyelectrolytes,andmetalions. Chemical

    precipitationmaybecarriedoutinprimaryoractivatedsludgesettlingtanksorasaseparate

    operation.

    c. IonexchangeThisisaunitprocessinwhichionsofagivenspeciesaredisplacedfroman

    insolubleexchangematerialbyionsofadifferentspeciesinsolution. Ionexchangeoperations

    areeitherbatchorcontinuous. Exchangematerialisplacedinapackedcolumnorbedand,

    watertobetreatedispassedthroughit.

    V.2.1.OtherprocessesOtherchemicaltreatmentprocessesusedincludeelectrodialysis,oxidation,

    andreduction.

    a.

    Electrodialysis Ioniccomponentsofasolutionareseparatedthroughtheuseofsemi

    permeableionselectivemembranesinthisprocess. Applicationofanelectricalpotential

    betweenthetwoelectrodescausesanelectriccurrenttopassthroughthesolution,whichin

    turn,causesamigrationofanionstowardsthepositiveelectrodeandcationstowardthe

    negativeelectrode.

    b.

    OxidationChemicaloxidationcanbeusedtoremoveammonia,toreducetheconcentrationof

    residualorganics,andtoreducethebacterialandviralcontentofwastewaters. Chlorineor

    hypochloritecanbeaddedtoremoveammoniabyformingmonochloramineanddichloramine

    asintermediateproductsandnitrogengasandhydrochloricacidasendproducts.

    c.

    ReductionNitratemaybereducedelectrolyticallyandbytheuseofstrongreducingagents.

    Whenreducingagentsareused,thereactionusuallymustbecatalyzed. Otherreducingagents

    havebeentried. Theuseofthechemicaldependsonitsavailabilityatlowcostandshouldnot

    produceanytoxiccompounds.

    V.3.BiologicalunitprocessesThecommonbiologicalprocessunitsemployedare(a)bacterial

    assimilationand(b)nitrificationdenitrification. Theseprocesseshavebeenusedprincipallyforthe

    removalofnitrogeninvariousformsandindirectlyfortheremovalofphosphorus.

    a. BacterialassimilationForcellsproduction,nitrogenandphosphorusarerequired. About

    0.13lbofnitrogenand0.0026lbofphosphorusarerequiredforeachlbofcellsproduced. If

  • 7/26/2019 Design of Sewage Treatment Plants Course

    39/56

    37

    thefoodsourceisproperlyselectedandadjusted,itshouldbepossibletoconvertallsoluble

    formsofnitrogenandphosphorusintoorganicformscontainedinbacterialcells.

    b. NitrificationdenitrificationThisprocessseemstobethemostpromisingoneforremoval

    ofnitrogen. Ifthewastewatercontainsnitrogenintheformofammonia,firsttheammonia

    isaerobicallyconvertedtonitratenitrogen(nitrification)andsubsequentlythenitratesare

    convertedanaerobicallyintonitrogengas(denitrification). Aplugflowmixedreactor

    wouldbeusedfornitrificationanddenitrification.Meancellresidencetimeisacontrol

    factoranditvariesfrom2to4days.

  • 7/26/2019 Design of Sewage Treatment Plants Course

    40/56

    38

    VI. DISINFECTION

    Disinfectionoftreatmentplanteffluentinvolvesspecializedtreatmentforthedestructionofharmful

    (pathogenic)andotherwiseobjectionableorganisms. Disinfectionhasbeenpracticedfordestructionof

    pathogenicorganisms,moreparticularly,bacteriaofintestinalorigin. Thesurvivaltimeofpathogenic

    organismsdependsupontemperature,pH,oxygenandnutrientsupply,dilution,competitionwithother

    organisms,resistancetotoxicinfluences,abilitytoformspores,andothers. Disinfectiondoesnot

    necessarilyimplysterilization(completedestruction)ofalllivingorganisms. Elementalchlorineis

    commonlyemployedinmunicipaltreatmentapplications.Wastewaterdisinfectionisalsopracticedby

    theapplicationofheat,irradiationbyultravioletrays,andoxidantssuchashalogens,andozoneetc.

    Chlorineisshippedinliquidform,inpressurizedsteelcylindersranginginsizefrom100lbto1ton. One

    volumeofchlorineliquidyields450volumesofchlorinevapor. Themoistgasiscorrosiveandsoall

    pipinganddosingequipmentmustbenonmetalorresistanttocorrosion.

    Chlorinegasisdrawnfromthepressurizedcylinderthroughasolutionfeederwhichcontrolstherateof

    application. Theinjector,inasolutionfeedchlorinator,dissolvesthegasintothefeedwater. The

    concentratedsolutionisthenappliedtotheprocesswater. SeeFigureVI.1forachlorinationflow

    diagram.

    FigureVI.1Chlorinationflowdiagram

  • 7/26/2019 Design of Sewage Treatment Plants Course

    41/56

    39

    VI.1.Chlorine dioxideasadisinfectantChlorinedioxidemaybeproducedfromsodiumchloriteand

    acid;fromsodiumchloriteandgaseouschlorine,orfromsodiumhypochlorite. Afterproduction,

    chlorinedioxideisfedthroughPVCpipeusingadiaphragmpump. Safetyfeaturessuchaschlorinegas

    detectors,floordrains,andemergencygasmasksshouldbeavailableatthegenerationandapplication

    site. Themajoradvantageofchlorinedioxideisinitsuseasaresidualdisinfectant. Itdoesnotproduce

    measurablequantitiesofbyproductssuchastrihalomethanes,becauseitdoesnotreactwithmany

    chlorinedemandingsubstances. Otheradvantagesofchlorinedioxideincludealgaedestruction;iron

    andmanganeseremoval,andresidualandgeneraldisinfectionproperties.

    VI.2.OzoneasadisinfectantOzoneisastrongoxidizinggasthatreactswithmostorganicandmany

    inorganicmolecules. Itismorereactivethanchlorine. Itdoesnotreactwitheffluenttoproduce

    disinfectingspeciesbutdecomposestoproduceoxygenandhydroxylfreeradicals. Thehalflifeof

    ozoneisapproximately10to30minandshorterifpHisabove8andhenceitmustbegeneratedatsite.

    Ozoneisrarelyappliedsolelyfordisinfectionbecauseofthehighcostrelativetochlorine. Inmostcases

    itsapplicationisforinactivationofmicroorganisms. Ozonedoesnotproduceanyhealthrelatedby

    products. Theozonationsystemconsistsoffourpartsasfollows:

    1. Agaspreparationsystem.

    2.

    Anelectricpowersupply.

    3. Ozonegeneratingequipment.

    4. Contactingequipment.

    TwosystemsareavailableforozoneproductiontheOttosystemandWelsbacksystem. Ozonemust

    beproducedatthetreatmentplant. Pipesleadingfromtheozonatorareusuallystainlesssteel. Ozone

    isintroducedintotheeffluentbyinjectionthroughafilterheadatthebaseofacolumncontactororby

    jettingintoanimpelleratthebaseofacontactcolumnorbydiffusionthroughvariousmediasuchas

    ceramicandstainlesssteeldiffusers. Typically,thecolumnprovides5to10minofcontacttime

    betweentheozoneandtheeffluent.

    VI.3.ChemistryofchlorinationChlorineisusedintheformoffreechlorineorashypochlorite. In

    eitherformitactsasapotentoxidizingagentandoftendissipatesitselfinsidereactionssorapidlythat

    littledisinfectionisaccomplisheduntilamountsinexcessofthechlorinedemandhavebeenadded.

    Reactionswithwater Chlorinecombineswithwatertoformhypochlorousandhydrochloricacidsas

    showinthefollowingequation:

    Cl2+H2O HOCl+H++Cl

    (VI.1)

    HypochlorousisaweakacidandpoorlydissociatesatpHlevelsbelow6. IndilutesolutionandatpH

    levelsabove4,theequilibriumshownaboveisdisplacedgreatlytotherightandverylittleCl2existsas

    suchinsolution. Hypochloritesareusedlargelyintheformofcalciumhypochlorites.Whensuch

    compoundsaredissolvedinwater,theyionizetoyieldhypochloriteionasshownbelow:

  • 7/26/2019 Design of Sewage Treatment Plants Course

    42/56

    40

    Ca(OCl)2+H2O Ca2++H2O+2OCl

    (VI.2)

    Thisionestablishesequilibriumwithhydrogenionsinaccordancewiththefollowingequation:

    OCl+H+ HOCl..(VI.3)

    TheamountsofOClionandHOClinthesolutiondependuponthepHasshowninFigureVI.2below.

    FigureVI.2DistributionofHOClandOClatdifferentpHs&temperatures

    ReactionswithAmmonia Ammoniumionsexistinequilibriumwithammoniaandhydrogenions. The

    ammoniareactswithchlorineorhypochlorousacidtoformmonochloramines,dichloramines,and

    trichloraminesdependingupontherelativeamountofeachandtosomeextentonthepHasfollows:

    NH3+HOCl NH2Cl + H2O (monochloramine)(VI.4)

    NH3+2HOCl NHCl2+2H2O (dichloramine)(VI.5)

    NH3+3HOCl NCl3+3H2O (trichloramine)(VI.6)

    Themono anddichloramineshavesignificantdisinfectingpowerandare,therefore,ofinterestinthe

    measurementofchlorineresiduals.

    Chlorinecombineswithawidevarietyofmaterials,particularlyreducingagents.Manyofthereactions

    areveryrapid,whileothersaremuchsmaller. Thesesidereactionscomplicatetheuseofchlorinefor

  • 7/26/2019 Design of Sewage Treatment Plants Course

    43/56

    41

    disinfectingpurposes. Theirdemandforchlorinemustbesatisfiedbeforechlorinebecomesavailableto

    accomplishdisinfection. Thereactionbetweenhydrogensulfideandchlorine,asshownbelow,

    illustratesthetypeofreactionthatoccurswithreducingagents.

    H2S+4Cl2+4H2 H2SO4+8HCl(VI.7)

    Fe2+,Mn

    2+,andNO2areexamplesofotherinorganicreducingagentspresentineffluents. Afeworganic

    reducingagentsmaybepresent,buttheirconcentrationsareverylow. Organiccompoundsthat

    possessunsaturatedlinkageswillalsoneedchlorineandincreasethechlorinedemand.

    Cl Cl

    C=C +Cl2 CC .(VI.8)

    H H H H

    ChlorineAmmoniareactionsThereactionsofchlorinewithammoniaareofgreatsignificancein

    disinfection.Whenchlorineisaddedtoeffluentcontainingnaturaloraddedammonia,theammonium

    reactswithHOCltoformvariouschloramineswhich,likeHOCl,retainstheoxidizingpowerofthe

    chlorine. Thereactionsbetweenchlorineandammoniaareshownbelow:

    NH3+HOCl NH2Cl+H2O (monochloramine).(VI.9)

    NH2Cl+HOCl NHCl2+H2O (dichloramine).(VI.10)

    NHCl2+HOCl NCl3+H2O (trichloramineornitrogentrichloride).(VI.11)

    Thedistributionofreactionproductsisgovernedbytheratesofformationofmonochloramineand

    dichloramine,whicharedependentonpH,temperature,time,andinitialCl2:NH3ratio. Ingeneralhigh

    Cl2:NH3ratios,lowtemperatures,andlowpHlevelsfavordichloramineformation. ItisevidentsomedichloraminecanbeanticipatedatpHlevelsbelow7. AtpHlevelsbelow7.5somenitrogentrichloride

    canbeexpected. Dependingonthefreeammoniaandorganicnitrogencontent,theleveloffree

    residualchlorinationapplied,contacttime,andpH,nitrogentrichloridecanposeaconsiderable

    problemwhichmaybedisposedbyvariousmeans.

    ChlorineResiduals: Timeofcontactandconcentrationofthedisinfectingagentareextremelyimportant

    indisinfection.Whereotherfactorsremainingconstant,thedisinfectingactionmayberepresentedby

    Kill=Cxt

    WhereC=concentrationofthedisinfectingagent

    t=timeofcontactKill=disinfectingeffect

    Withlongcontacttimes,alowconcentrationofdisinfectantsuffices,whereasshortcontacttimes

    requirehighconcentrationtoaccomplishequivalentkills.

    Ithasbecomecommonpracticetorefertochlorine,hypochlorousacid,andhypochloriteionasfree

    chlorineresidualsandchlorominesarecalledcombinedchlorineresiduals. Thereactionratebetween

  • 7/26/2019 Design of Sewage Treatment Plants Course

    44/56

    42

    ammoniaandhypochlorousacidismostrapidatpH8.3andincreasesrapidlyasthepHisdecreasedor

    increased. Forthisreason,itiscommontofindfreechlorineandcombinedchlorineresidualscoexisting

    aftercontactperiodsof10,15,oreven60min.

    Withmoleratiosofchlorinetoammoniaupto1:1,bothmonochloroamineanddichloroamineare

    formed,therelativeamountsofeachbeingafunctionofthepH. Furtherincreasesinthemoleratioof

    chlorinetoammoniaresultinformationofsometrichloramineandoxidationofpartoftheammoniato

    nitrogengas. Thesereactionsareessentiallycompletewhen2molesofchlorinehavebeenaddedfor

    eachmoleofammonianitrogenoriginallypresentinthewater. Chloraminesresidualsusuallyreacha

    maximumwhen1moleofchlorinehasbeenaddedforeachmoleofammoniaandthendeclinetoa

    minimumvalueofchlorinetoammoniaratioof2:1. Furtheradditionsofchlorineproducefreechlorine

    residuals. Chlorinationtotheextentthatalltheammoniaisconvertedtotrichloramineoroxidizedto

    freenitrogenorothergasesisreferredtoasbreakpointchlorinationbecauseofthepeculiarcharacter

    ofthechlorineresidualcurve,asillustratedinFigureVI.3

    FigureVI.3Residualchlorinecurve

    Theoretically,itshouldrequire3molesofchlorineforthecompleteconversionof1moleofammoniato

    nitrogentrichloride(trichloramine). Thefactthat2molesofchlorinearerequiredtoreachthebreakpointindicatesthatsomeunusualreactionsoccur. Nitrousoxide,nitrogen,andnitrogentrichloride

    havebeenidentifiedamongthegaseousproductsofthebreakpointreaction. Thepresenceofnitrous

    oxidecouldbeaccountedforbythefollowingreaction:

    NH2Cl+NHCl2+HOCl N2O+4HCl..(V.12)

  • 7/26/2019 Design of Sewage Treatment Plants Course

    45/56

    43

    Thetotalchlorinerequiredforformationofmonochloroamine,dichloramine,andthehypochlorousacid

    forthefinaloxidationstepcorrespondsto2molesforeachmoleofammonia. Thiswouldindicatethat

    nitrousoxideisthemajorendproductwhenammoniaisoxidizedbychlorineindilutesolutions.

    VI.4.DesigncriteriaThedesigncriteria,asrecommendedbytheRecommendedStandardforSewage

    works,

    Great

    Lakes

    Upper

    Mississippi

    River

    Board

    of

    State

    Public

    Health

    &

    Environmental

    Managers(Ten

    StateStandards),aregivenbelow:

    1. Fornormaldomesticsewage,thefollowingmaybeusedasaguideinsizingchlorination

    facilities.

    Tricklingplanteffluent10mg/l

    Activatedplanteffluent..8mg/l

    Tertiaryfiltrationeffluent..6mg/l

    Nitrifiedeffluent..6mg/l

    2.

    Standbyequipmentofsufficientcapacityshouldbeavailabletoreplacethelargestunitduring

    shutdowns.

    3. Anamplesupplyofwatershallbeavailableforoperatingthechlorinator.

    4.

    Theuseof1toncontainersshouldbeconsideredwheretheaveragechlorineconsumptionis

    over150lbs.

    5. Scalesforweighingcylindersshallbeprovidedatallplantsusingchlorinegas.

    6. Abottleof56%ammoniumhydroxidesolutionshallbeavailablefordetectingchlorineleaks.

    7.

    Pipingsystemsshouldbeassimpleaspossible.

    8. Agastightroomshallseparatethechlorinationequipmentfromanyotherportionofthe

    building.

    9.

    Acleargas,gastight,windowshallbeinstalledinanexteriordoororinteriorwallofthe

    chlorinatorroom.

    10.

    Thetemperatureoftheroomwherethechlorinationequipmentisinstalledmustbekeptat

    least600Fandforcedmechanicalventilationshallbeinstalled. Switchesforfansandlightsshall

    beoutsidetheroom.

    11. Respiratoryairpacequipmentshallbeavailableandmustbestoredataconvenientlocation.

    12.

    Thechlorinecontacttankshouldbeconstructedsoastoreduceshortcircuitingtheflow.

    13.Thedisinfectantshallbepositivelymixedasrapidlyaspossible,withthecompletemixbeing

    effectedin3secondsandaminimumcontacttimeof15minutesprovidedatpeakhourlyflow

    14.Facilitiesshallbeincludedforsamplingthedisinfectedeffluentaftercontactandequipment

    shallbeprovidedtomeasurethechlorineresidual. Equipmentshallalsobeprovidedfor

    measuringfecalcoliformusingacceptedtestprocedures.

    15.Solutionfeedvacuumtypechlorinatorsaregenerallypreferredforlargeinstallations.

  • 7/26/2019 Design of Sewage Treatment Plants Course

    46/56

    44

    VII.EFFLUENTDISPOSAL

    Ultimatedisposalofwastewatereffluentswillbebydilutioninreceivingwaters,bydischargeon

    landordesertareas,andbyevaporationintotheatmosphereaswellasseepageintotheground.

    Disposalbydilutioninlargerbodiesofwater,suchaslakes,rivers,estuaries,oroceansisbyfarthe

    mostcommonmethod. Theassimilativecapacityorselfpurificationcapacityofwaterbodiesmust

    bedeterminedpriortodischargingtheeffluentintothem. Receivingwaterstandardsandeffluent

    standardsareestablishedbyregulatoryagencies. Oneofthestandardsofreceivingbodyofwateris

    tomaintainaminimumof5.0mg/lofdissolvedoxygen.

    VII.1.DisposalbydilutionSmalllakesandreservoirsarecompletelymixed. Astreamisaliving

    thingcapableofabsorbingsomepollutionbecauseoftheirabilitytopurifythemselvesthroughthe

    actionoflivingorganisms. Thesourcesofoxygenreplenishmentinariverarereaerationfromthe

    atmosphereandphotosynthesisofaquaticplantsandalgae. Inmostrivers,itisassumedthattheeffluentisevenlydistributedoverthecrosssectionoftheriver. InriveranalysistheStreeterPhelps

    equationismostcommonlyused.

    Thezonewheretherivermeetstheseaiscalledanestuary. Theebbandflowoftidesmaycause

    significantlateralmixinginthereachesoftheriversneartheestuary. Estuarinewatersarevertically

    stratified. Inmanyestuarinechannels,tidalactionmerelyincreasestheamountanddispersionof

    thewastealongthelengthofthechannel.

    Oceandisposalistypicallyaccomplishedbysubmarineoutfallsthatconsistofalongsectionofpipe

    totransporttheeffluentsomedistancefromshore. Attheendoftheoutfall,theeffluentis

    releasedinasimplestreamorjettedthroughamanifoldormultipleportdiffuser. Thedesignofan

    outfallshouldmeetapplicablereceivingwaterstandards. Bacterial,floatablematerial,nutrient,and

    toxicityrequirementswillgovernthedesignandlocationofmostoutfalls.

    VII.2.DisposalonlandEffluentdisposalonlandincludesagriculturaluse,recreationaluse,ground

    waterrecharge,spraying,andcontainment(ponding). Sprayingonirrigableland,woodedareas,

    andhillsideshasbeenused. Theamountofeffluentdisposaldependsontheclimaticconditions,

    theinfiltrationcapacityofthesoil,thetypesofgrassorcropsgrown,andthequalitystandards

    imposedwhererunoffisallowed.

    VII.3.Direct

    &

    Indirect

    reuse

    Theamountofeffluentthatcanbereusedisaffectedbytheavailabilityandcostoffreshwater,transportationandtreatmentcost,waterqualitystandards,and

    thereclamationpotentialoftheeffluent. Itcanbeusedascoolingwaterinindustries. Agricultural

    useofeffluentispracticeddependinguponthecrops. Fieldcropsthatarenormallyconsumedina

    rawstatecannotbeirrigatedwiththeeffluent.

    VII.4.RecreationaluseRecreationaluseincludesgolfcourseirrigationandparkwatering,

    establishmentofpondsforboatingandrecreation,andmaintenanceoffishandwildlifeponds.

  • 7/26/2019 Design of Sewage Treatment Plants Course

    47/56

    45

    VII.5MunicipaluseReclaimedwatercanheusedforlawnirrigationinadditiontousingforcar

    washing,drivewaywashing,toiletflushing,clotheswashingetc. Toaccomplishthis,thereshould

    beadualmunicipalwatersystem,onewithfreshwaterforcookinganddrinkingpurposesandthe

    otherwiththereclaimedwaterforallusesotherthandrinkingandcoking. Intheconstructionof

    thetwosystemscareshouldbetakentoseethatthereisnochanceofcrossconnectionbetween

    thetwosystems.

  • 7/26/2019 Design of Sewage Treatment Plants Course

    48/56

    46

    VIII. SLUDGETREATMENTANDDISPOSAL

    Forproperdesignofsludgetreatmentanddisposalfacilities,sources,quantities,andcharacteristics

    ofthesludgemustbeknown. Dataonquantitiesofsludgeproducedfromvariousprocessesand

    operationsarepresentedinTableVIII.1

    TableVIII.1Sludgequantitiesproducedfromdifferenttreatmentprocesses

    Thevolumeofsludgedependsmainlyonitswatercontentandslightlyonthesolidmatter. The

    characteristicsofsludgevarydependingonitsorigin,theamountofagingthathastakenplace,and

    thetypeofprocessingtowhichithasbeensubjected. Sludgefromprimarysedimentationtankis

  • 7/26/2019 Design of Sewage Treatment Plants Course

    49/56

    47

    usuallygreyandslimyandhasanoffensiveodor. Sludgefromchemicalprecipitationtanksisusually

    blackandhasobjectionableodor. Activatedsludgehasabrownflocculentappearance. Thissludge,

    wheningoodcondition,hasaninoffensivecharacteristicodor. Tricklingfilterhumusisbrownish,

    flocculent,andrelativelyinoffensive. Digestedsludgeisdarkbrowntoblackandcontainsalarge

    amountofgas. Itisnotoffensiveandhasodorlikethatofhottar,burntrubber,orsealingwax.

    Sludgetreatmentincludesthefollowingtreatmentprocesses:thickening,digestion,conditioning,

    anddewatering.

    VIII.1.ThickeningWasteactivatedsludgeormixtureofprimaryandwasteactivatedsludgeare

    subjectedtothickening. Theaimofthickeningisvolumereduction.Ifasludgeisthickenedfrom

    1to4percentsolids,thevolumewillbereducedto25percentoftheoriginalvolume.Mechanical

    (gravity)anddissolvedairflotationthickenersarecommonlyusedtothickensludge.

    VIII.1.2.MechanicalthickenerDiluterawprimaryorwasteactivatedsludgeisfedintothe

    thickeningtankcontinuously. Thickeningtankissimilartoacircularclarifier. FigureVIII.1shows

    schematicofamechanicalthickener.

    FigureVIII.1Schematicofamechanicalthickener

  • 7/26/2019 Design of Sewage Treatment Plants Course

    50/56

    48

    Theresultingcontinuoussupernatantflowisreturnedtotheprimarysettlingtank. Thethickened

    sludgecollectedatthebottomofthetankispumpedtothedigesters. Thethickenersaredesigned

    onthebasisofhydraulicsurfaceloadingandsolidsloading. Typicalsurfaceloadingratesare400to

    800gpd/ft2

    . SolidsloadingsareshowninTableVIII.2

    TableVIII.2Solidsloadingrateformechanicalthickeners

    Aeratedmixedliquororfinaleffluentmustbeaddedtomaintainaerobicconditions.

    VIII.1.3.FlotationthickenerTheseareusednormallywithwasteactivatedsludge. Itwillproducea

    sludgewithapproximately4percentsolids. ThesolidsloadingratesaregiveninTableVIII.3

    TableVIII.3Solidsloadingrateforflotationthickener

    VIII.2.Digestion Digestionisclassifiedasanaerobicandaerobic. Althoughanaerobicdigestionhas

    beenpracticedforoveracentury,aerobicprocesshasbeengrowinginpopularityforuse.

    VIII.2.1.AnaerobicdigestionAnaerobicdigestionisclassifiedasconventionalorstandardrateand

    highrate. Conventionaldigestioniscarriedouteitherasasinglestageortwostageprocess. See

    FiguresVIII.2andVIII.3forschematics.

  • 7/26/2019 Design of Sewage Treatment Plants Course

    51/56

    49

    FigureVIII.2Schematicofaconventionaldigesterinsinglestageprocess

    FigureVIII.3Schematicoftwostagedigestionprocess

    Thesludgeisnormallyheatedbymeansofcoilslocatedwithinthetankoranexternalheat

    exchanger. Insinglestage,thefunctionsofdigestion,thickening,andsupernatantformationare

    carriedoutsimultaneously. Acrosssectionofatypicalstandardratedigesterisshownin

    FigureVIII.4.

    Duetothestratificationandthelackofmixing,thevolumeofastandardratesinglestagedigesteris

    notmorethan50percentutilized. Recognizingtheselimitations,mostconventionaldigestersare

    operatedastwostagedigesters.

    Inthetwostageprocess,thefirsttankisusedfordigestion. Itisheatedandequippedwithmixing

    facilities. Thesecondtankisusedforstorageandconcentrationofdigestedsludgeandfor

    formationofclearsupernatant. Tanksmayhavefixedrooforfloatingcovers. Tanksareusually

    circularandthediametervariesfrom20to115ft.Waterdepthshouldbeminimum25ftatthe

    center.

  • 7/26/2019 Design of Sewage Treatment Plants Course

    52/56

    50

    FigureVIII.4 Crosssectionofastandardratedigester

    Withtheexceptionofhigherloadingratesandimprovedmixing,therearenotmanydifferences

    betweenahighratedigesterandthefirsttankinaconventionaltwostagedigester. Sludgeshould

    bepumpedcontinuously. Theincomingsludgedisplacesdigestedsludgetoaholdingtank. Typical

    volumesofdigestergas(methane)producedinanaerobicdigestionrangefrom8to12ft3/lbof

    volatilesolidsadded. Gasproductionvariesfrom0.6to0.8ft3/capitainprimaryplantstreating

    normaldomesticsewage. Insecondarytreatmentplantsthisisincreasedtoabout1.0ft3/capita.

    Heatingvalueofdigestergasisapproximately600Btu/ft3

    VIII.2.2.AerobicdigestionAerobicdigestersareusedtotreatonlywasteactivatedsludge,

    mixturesofwasteactivatedsludgeortricklingfiltersludgeandprimarysludge. Advantagesof

    aerobicdigestionare:(1)lowerBODconcentrationsinsupernatantliquor,(2)productionofan

    odorless,humuslike,biologicallystableendproduct,(3)productionofsludgewithgooddewatering

    characteristics,(4)recoveryofbasicfertilizervalues,(5)feweroperationalproblems,and(6)lower

    capitalcost. Thedisadvantagesare(1)higherpowercost,and(2)theusefulbyproduct,methane

    gas,isnotrecovered.

    Aerobicdigestionissimilartoactivatedsludgeprocess. Asthesupplyofavailablesubstrate(food)is

    depleted,themicroorganismswillbegintoconsumetheirownprotoplasmtoobtainenergyforcell

    maintenance.Whenthisoccursthemicroorganismsaresaidtobeintheendogenousphaseorauto

    oxidationphase.

    Factorsthatmustbeconsideredindesigningaerobicdigestersincludehydraulicresidentialtime,

    processloadingcriteria,oxygenrequirements,energyrequirementsformixing,environmental

    conditions,andprocessoperation. Hydraulicresidencetimevariesfrom10to12days. Volatile

  • 7/26/2019 Design of Sewage Treatment Plants Course

    53/56

    51

    solidsremovalrangesfrom45to75percent. Solidsloadingrangesfrom0.1to0.2ft3/day. Oxygen

    requirementforcompleteoxidationofBODvariesfrom1.7to1.9lb/lbofcelltissuedestroyed. If

    mechanicalaeratorsareusedformixing,horsepowerrequiredis0.5to1.0hp/1,000ft3volumeof

    thetank. Inairmixing,airrequirementisbetween20and30ft3/min/1,000ft3oftankvolume. The

    systemmayperformpoorlyifthetemperatureandpHfallbelow200Cand5.5respectively. ThepH

    shouldbecheckedperiodicallyandnecessaryadjustmentmadeifnecessary.

    VIII.3.ConditioningConditioningisperformedforthepurposeofimprovingitsdewatering

    characteristics. Additionofchemicalsandheattreatmentarethemethodsmostcommonlyused.

    Elutriation,aphysicalwashingoperation,isemployedtoreducethechemicalrequirement. The

    chemicaldosagerequiredisdeterminedinthelaboratorybyfilterleaftest. Commonchemicals

    usedareCaoandFeCl2.

    VIII.4.DewateringMethodsusedfordewateringsludgeincludespreadingondryingbeds,vacuum

    filtration,andcentrifugation. Thechoiceamongthesemethodsdependsonthecharacteristicsof

    thesludge,themethodoffinaldisposal,theavailabilityofland,andtheeconomicsinvolved.

    VIII.4.1.DryingbedsSludgeisplacedonthebedsin8to12inlayerandallowedtodry. After

    dryingthesludgeisremovedanddisposedinalandfill,orgroundforuseasafertilizer. Atypical

    sludgedryingbedisshowninFigureVIII.4.

    Thedryingareaispartitionedintoindividualbeds,approximately20ftwideand20to100ftlong.

    Theinteriorpartitionsconsistoftwoorthreecreosotedplanks,oneontopoftheother,toaheight

    of15to18instretchingbetween