DESIGN OF A COMPACT UNDERWATER IMAGING AND …

30
DESIGN OF A COMPACT UNDERWATER IMAGING AND GEOLOCALIZATION PLATFORM WITH EDGE COMPUTING CAPABILITY By Zuodong Liang Senior Thesis in Computer Engineering University of Illinois at Urbana-Champaign Advisor: Professor Viktor Gruev May 2020 © 2020, Zuodong Liang

Transcript of DESIGN OF A COMPACT UNDERWATER IMAGING AND …

DESIGNOFACOMPACTUNDERWATERIMAGINGANDGEOLOCALIZATIONPLATFORM

WITHEDGECOMPUTINGCAPABILITY

By

ZuodongLiang

SeniorThesisinComputerEngineering

UniversityofIllinoisatUrbana-Champaign

Advisor:ProfessorViktorGruev

May2020

©2020,ZuodongLiang

ii

AbstractWithitsendlessdarkbluetone,theunderwaterworldisfilledwithcolor,life,andbeauty.Ithasmany

scientific imaging research opportunities. However, during the development of an underwater

geolocation instrument based on polarization imaging sensors, we noticed that the underwater

devicesarealldesignedforcinematographyapplications.Theyarebulkyandcomplicated,andthey

cannotsatisfytheever-changingscientificresearchneeds.Inthisthesis,wereportonthedesignofa

compact,expandableunderwateredgecomputingplatformbasedontheNvidiaJetsondevices.This

platformiscapableofrecordingandprocessingmorethan4hoursoffootageunderwater.Withits

modulardesign,theplatformcansupportimagesensorsupto70mm/2.75"diagonalandvirtually

anylens.Thisplatformopensuppossibilitiesforresearcherstoperformunderwaterdatacollections,

real-timemachinelearninginferences,andmarinebiologystudies.

SubjectKeywords:polarization;imaging;underwaternavigation;edgecomputing

iii

AcknowledgmentsIthankmythesisadvisor,ProfessorViktorGruev,forallowingmetobeapartofhisresearchlab.His

patience,guidance,andimmenseknowledgehelpmetobecomeabetterengineer.

Ialsothankmyfamilyandmygirlfriendfortheircontinuoussupport.Itwastheirsupporthelpedme

getthroughallthechallengesIfaced.Theysharemytearsandjoyswithme.

iv

Contents1. Introduction........................................................................................................................................................................12. Motivations.........................................................................................................................................................................32.1. OverviewofPreviousDevices.........................................................................................................................32.2. GoalsforNewPlatform......................................................................................................................................4

3. MechanicalDesign...........................................................................................................................................................53.1. Overview...................................................................................................................................................................53.2. WaterTightness....................................................................................................................................................63.3. InternalArrangement.........................................................................................................................................83.3.1. PowerSubsystem............................................................................................................................................83.3.2. ProcessingSubsystem...................................................................................................................................93.3.3. ImagingSubsystem......................................................................................................................................103.3.4. UserInterface.................................................................................................................................................123.3.5. Interconnect....................................................................................................................................................13

3.4. ThermalDesign...................................................................................................................................................143.5. ExpansionandUpgrade..................................................................................................................................143.5.1. ExternalExpansion......................................................................................................................................143.5.2. UnderwaterConnection............................................................................................................................153.5.3. InternalUpgrade...........................................................................................................................................15

4. ElectricalDesign............................................................................................................................................................164.1. Overview................................................................................................................................................................164.2. ExpansionUseCases........................................................................................................................................184.2.1. CameraandImagerConfiguration........................................................................................................184.2.2. ExternalModule............................................................................................................................................194.2.3. ExternalMonitor...........................................................................................................................................194.2.4. ContinuousRecording................................................................................................................................204.2.5. UnderwaterPanoramic..............................................................................................................................20

5. ConclusionandFutureWork...................................................................................................................................23References..................................................................................................................................................................................24AppendixA.ProcessingSystemComparisons............................................................................................................26

1

1. IntroductionNowadays,weallhavesmartphones.Theembeddedglobalpositioningsystem(GPS)receptioninside

our smartphones has significantly simplified our lives by providing accurate geolocalization

informationtous.However,whenweareunderwater,theGPScannotprovidereliableservicedue

tothehighreflectivityofthewater-airboundaryandthehighelectromagneticlossesunderwater[1].

Nevertheless,geolocationiscriticalformanyunderwateractivities,forexamplesubmarines.Modern

submarines are equipped with multiple geolocalization and navigation instruments, and two

commonlyusedsystemsareactivesoundnavigationranging(SONAR)andinertialnavigationsystem

(INS).However,eachsystemhasitslimitationsanddrawbacks.ActiveSONARwillrequiredetailed

hydrographic data; hence it can only be used in the charted area and often is further limited to

friendlywatersasitcanbedetectedandtrackedbyanenemy[2].INSisasystemthatcalculatesthe

locationbaseonaknowninitialstateandintegrationofmovements.However,INSusuallysuffers

fromunboundederrorsduetosensornoiseanddrift,causinggeolocalizationerrorsovertime[3].

Hence,INSrequiresfrequentcalibrationbyGPSorotheraccurategeolocalizationsystems[4].

Humans developed SONAR technology by learning how bats navigate with their echolocation

capability[5].Similarlybioinspired,wehaveturnedourfocustothemantisshrimp,acrustaceanthat

isknownforitsuniquevisionsystemthatiscapableofsensingthepolarizationoflight[6].Studies

haveshownthatmanymarineanimals, includingmantisshrimp,areusingpolarizationvisionfor

communication,preydetection,andpotentiallyfornavigation[7].

Inpreviousworks,researcherswereabletodevelopapolarizationimagingsensorandintegrateit

intoacamera.Thentheymodifiedanunderwatercinematographysystemtoperformunderwater

geolocalizationtasksbasedoncelestialpolarizedlight.Usingthissystem,theyprovedthefeasibility

ofusingpolarizationforunderwatergeolocalizationandnavigationandachievedanaverageof61

kmofaccuracy[8,9].

Machinelearninghasbenefitedmanyindustriesinrecentyears.Itisalsoconsideredtobeafeasible

method for further improving the accuracy of polarization-based underwater geolocalization.

However, suchamethodwill require a large amountof real-worlddata tohelp the algorithm to

"learn" the features presented in celestial polarization images. The current underwater data

collectiondevicewasnotdesignedforresearch,anditposesmanychallengesanddangersformass

datacollection.

This thesis reports on the design of a compact, modular, and expandable underwater research

platformthatcansuitdatacollectionandresearchneeds.Chapter2analyzestheissueswithseveral

2

current underwater data collection devices and proposes the design goals for the newplatform.

Chapter3and4discussesthemechanicalandelectricaldesignofthenewplatformindetail.Finally,

chapter5explainsthecurrentprogressandfutureworkofthisproject.

3

2. Motivations2.1. OverviewofPreviousDevicesPowell [9] describes the first-generation underwater geolocalization system. The system was

modifiedbaseon a Light andMotionBluefinVX2000underwaterhousing thatwasdesigned for

camcorders.AnAquatica4-inchunderwaterglassdomeportwasattachedtothehousingtoensure

high-qualityimages.AcustomCCDcamerawasusedtosensethepolarizationinformation,andaPNI

TCM-MBelectroniccompassmodulewasusedtorecordthedevice'sgestureandheading.AnADL

Single-Board Computer (SBC) with 2nd generation Intel Core-i7 processor was used for system

control and data logging. This computer provided enough computation power to record the

uncompressed image data to a solid-state drive at around 20MB/swhile streaming a real-time

previewtotheunderwatermonitor.ThisdevicecouldaccommodatealargeCanonzoomlensandan

81.4Whbatterypack,allowingthedevicetooperateforaround2hours.

Laterthisdevicewasupgradedbytheauthorandhiscolleaguetoaccommodateanewerimaging

subsystem.ThenewimagingsubsystemutilizesaFLIRBFS-U3-51S5P-Cmachinevisioncamera.This

camera contains a Sony IMX250-MZR 5.0 MP polarized monochrome sensor. A Fujinon

FE185C057HA-1185° field-of-view fish-eye lenswasused tocollect thecelestial image.Thenew

imagingsubsystemwillnowproducearound150MB/sofuncompressedimagedata.Toaddressthis

higherthroughput,theauthorupgradedtheprocessingunittoanADL120SSBCwitha6thgeneration

IntelCore-i7processor.Thefinaldevicemeasuresabout40cmlong,25cmwide,and30cmtall.The

underwaterhousingandunderwatermonitorassemblyweigharound15kg.When traveling, the

complete device and accessories were put into a heavy-duty case, causing the final weight to

approach30kg.

SamuelPowelllaterjoinedaresearchlabattheUniversityofQueensland,whereheandcolleagues

developedanewunderwaterdevicereportedin2019[10].ThisdevicewasbuiltwithinaNikonDSLR

underwaterhousingwitha6-inchdomeport.TheyutilizedanNvidiaJetsonTX1System-on-Module

(SoM) toperform thedata collection anddataprocessing tasksunderwater. Three Sony IMX219

image sensors and190° field-of-view fish-eye lenseswereused to createoverlappingpanoramic

imagesunderwater.Theywereabletoachievea4houroperationtimewiththisdevice.

Allthreeofthesedeviceswerebuilttoaccommodateunderwatercinematographyhousings.These

housingsarebuiltaroundaspecificcommercialcameraorcamcorder;hencetheyareverybulky,

anditishard,ifnotimpossible,tomodifythesehousingstofitresearchneeds.

4

2.2. GoalsforNewPlatformIn order to collectmore underwater celestial polarization images and prepare for the upcoming

machinelearningtasks,anewunderwaterresearchplatformwasproposedbytheauthor.

Thenewplatformneedstobecompact.Asthebuoyantforceisproportionaltothevolumeofthe

platform,havingacompactplatformalsomeansalightweightplatform.Duringseveralpreviousdata

collectiontrips,thecompletedeviceweighedaround30kg,makingtravelingwiththedevicecostly

anddifficult.

Thenewplatformalsoneedstosustainwaterpressure.Thegoal is todesignaplatformthatcan

sustain up to 50 meters of water pressure. Previous research has shown that polarization

informationcanbeobservedasdeepas200meters[11].However,duetotheauthor'sscubadiving

licenserestriction,hecanonlyreachasdeepas40meters.

Furthermore, thenewplatformneeds tosuit the imagingandgeolocalizationneeds.The imaging

subsystemneeds tobeable to accommodateawidevarietyof imagersand cameras.Theoptical

centerofthesensorshouldbepreciselyalignedtotheexteriorglassdomeport.Thegesture,location,

andtimedatawillbenecessaryformachinelearningtasks.Thesystemshouldincludeanintegrated

inertialmeasurementunit(IMU)tomeasurethegestureandtheheadingoftheplatform.Itshould

also integrate the GPS receiver to provide accurate time and ground truth geolocation to the

processingsubsystem.

Asascientificresearchplatform,thenewdeviceshouldbemodularandupgradable.Whenwemake

newdiscoveries,wemaychangeourdevicetoaddmoresensorsandrecordawidervarietyofdata.

Theolddeviceswereunable to fulfill ourever-changing researchneeds, and that isoneprimary

motivationforustodesignthisnewplatformfromscratch.

Thenewplatformalsoneedstohaveapowerfulprocessingunit.Itneedstobeabletoperformhigh-

throughputdatarecording,processing,andstreaming.Inthelongrun,italsoneedstoperformreal-

time inference of the machine learning model to demonstrate the geolocalization capability

underwater.

5

3. MechanicalDesignInordertofulfillalltherequirementsposedinthepreviouschapter,theauthorfirststartedwiththe

mechanicaldesignofthenewunderwaterresearchplatform.Thischapterintroducesthedesignby

providing an overviewof theplatform, and then explainsmultiple factors consideredduring the

designprocess.

3.1. OverviewAsshowninFigure1,thefinaldesigncanbedividedintothreecompartments:thecover,themain

housing,andthelenscompartment.

Duringtheunderwaterdatacollectionprocess,weneedtoadjusttheexposureoftheimagerandthe

headingofthedevice.Havinganunderwatermonitoriscrucialforperformingthistask.However,in

previousgenerationsoftheunderwatergeolocalizationdevices,wewereunabletointegratemonitor

intothedeviceduetotheconstructionofboththeunderwaterhousingandtheoff-the-shelfmonitor.

Havinganexternalunderwatermonitor forcesus tocarryanextra5 to10kgofweight,and the

danglingmonitorcableposeshazardsduringtheunderwaterdatacollectionprocess. In thisnew

platformdesign,theauthordecidedtointegrateamonitorintothehousing.Theauthorchoosesa

WF50DTYA3MNN05-inchMobileIndustryProcessorInterface(MIPI)DSILCDpanelwith1280by

720pixelsresolution.Thisscreenhasthesamesizeandresolutionastheoneusedintheprevious

generations.Thescreenhashighenoughresolutions toensure thatdiverscanobserve thevideo

streamandsystemstatusunderwater,whileitssmallsizecanensuretheoverallcompactnessofthe

newplatform. Inorder toviewthescreen, thecovercompartmenthasa6mmthick transparent

acrylicviewingwindowthatcansustainhighwaterpressurewhileprovidingawideviewingangle

Figure1.Overviewofmechanicaldesign.Imageontheleftshowstheleftsideviewofthedevice.Imageontherightshowsthecornerviewofthedevice.Redsectionrepresentsthelenscompartment;Greensectionrepresentsthemainhousing;Bluesectionrepresentsthecover.

6

underwater.Thecovercompartmentalsohostsau-bloxCAM-M8QGNSSmodulethatcanprovide

consumer-gradeGPS,Galileo,GLONASS,andBeiDousignalreceptionwhenthediverabovewater.

Themainhousinghoststheimagesensor,processingsubsystem,andpowersubsystem.Compare

withtheolddesign,thenewdesignhighlyutilizesalltheinternalspaceswhileensuringuserscan

upgrade and expand the system based on their research needs in the future. Themain housing

connectstothecoverviaacustom-designedhingeonthebottomofthesystem,anduserscaneasily

openthecovertoswapbatteriesandstoragemediasviaaleveronthetopofthedevice,asshownin

Figure2.Theinternaldesignisfurtherexplainedinthefollowingsections.

Inpreviousdevices, the lensof the imagingsubsystem isenclosed inside themainhousing.Such

designcausesalotofunusedspacesaroundthelens.Inthisnewdesign,theauthordesignsamodular

externaldomeportadapterinterfacetoensuretheexpandabilityoftheimagingsubsystem.Users

canuseoff-the-shelfextensionringstocreateasmallcompartmentthatdedicatestothelens.Sucha

designcansavethefabricationcostbyusingmoreoff-the-shelfpartsandreducingthesizeofthe

mainhousing.Theimagingsubsystemdesignisfurtherexplainedinsection3.3.3.

3.2. WaterTightnessFor anunderwater researchplatform, itswater tightness is crucial for its normal operations. As

showninFigure3,thenewdesignutilizes12O-ringsacrossthesystemtoensurethewater-tightness

ofthedevice.TheauthorfirstdesignstheO-ringgroovebaseonthedesignguidelines[12],thenthe

authordeterminesinnerandouterdiametersbasedonthecontourofthegroove.

ThedesignguidelineencouragesusingO-ringswithlargercross-sectionareas.Theauthoruses-2xx

O-ringswhereverpossibleinthedesign.Whenalargecross-sectionO-ringisnotapplicabledueto

otherlimitations,theauthorusessmalldoubleO-ringstoensurethedesigncansustainatleast50-

meterofwaterpressure.

Figure2.Latchingmechanismonthetopofthehousing.Picturesfromlefttorightdemonstratetheopeningprocess.

7

Thedurometer,orthe"toughness,"oftheO-ringwillalsoimpactthewater-tightnessofthesystem.

The author uses hard O-rings with 70A durometer wherever possible in the design, with the

exceptionofusingsoft50AdurometerO-ringsbetweenthecoverandthemainhousing.ThesoftO-

ringsensuretheusercaneasilyopenandclosethecover.

DifferentO-ringmaterialscansustaindifferentchemicals,butluckilyawidevarietyofmaterialscan

sustain thecorrosionof saltwater.Theauthorpicks thenitrileBuna-NO-ringsdue to theirhigh

availabilityandlowcost.

The saltwater will corrode not only the O-rings but also the housing itself. 6061 aluminum is

commonlyusedtoconstructunderwaterequipmentduetoitscorrosion-resistantcharacteristics.All

thestructuralcomponents in thedesignaremachined from6061aluminum.Machinedpartswill

thengothroughthebead-blastprocesstoremovetoolmarksandimprovesurfaceroughness.Then

thepartswillgothroughType-IIIanodizationprocess,creatingahardabrasionresistantcoatingon

thealuminumsurfacetoensurethelong-termdurabilityofthesystem.

Inordertoensurethehousingcansustain50-meterofwaterpressure,theauthorensuresthatthe

minimum thickness around thehousing is at least 5mm.This value is referenced frommultiple

underwatercameraandmonitorhousings,anditisaconservativevalueduetotheauthor'slackof

accesstothefiniteelementanalysis(FEA)tools.

Figure3.O-ringsaroundthehousing.HardShore70AO-ringsareshowninred.SoftShore50AO-ringsareshowningreen.

8

Most underwater housings use a circular or oval shape to maximize their pressure-resistance.

However, the author notices that such shapes will pose challenges to the internal component

organization and decides to use a rectangular shaped design. The author addsmultiple support

structuresinsidethehousingtoimproveitsrigidity,asshowninFigure4.

3.3. InternalArrangement

3.3.1. PowerSubsystemTheinternalspaceofthemainhousingcanbefurtherdividedintofoursections,asshowninFigure

5.Thepowersubsystem,asshowninred,consistsoftwobatterypacksandaprintedcircuitboard

(PCB)thatregulatesthepowerconversionanddistributionforthesystem.Insideeachbatterypack,

therearethree18650industrialstandardlithium-ionrechargeablebatteriesandanotherPCBthat

monitorsthebatterystatus.WecommonlyrefertothePCBinsidethebatterypackasthe"Battery

Board"andreferthepowerregulationPCBinsidethehousingasthe"PowerBoard."

Figure4.Mainhousingexteriorshellviewingfrombackside.Theredsectionsaredesignedtoimprovetheoverallrigidityofthedevice.

Figure5. Internalarrangementinsidemainhousing.Leftandrightpictureshowsthesystemfromtwoperspectis.Redsectionrepresentsthepowersubsystem;yellowsectionrepresentstheprocessingsubsystem;greensectionrepresentstheimagingsubsystem;bluesectionrepresentstheuserinterface.

9

Batterypacksaremagneticallyattachedtothesystemsothatuserscanquicklychangebatteries.

Dual-battery design allows users to swap batterieswithout interrupting the system's operation.

Three18650batteriesarespark-wieldedtoanickelstrip,andaconductivewireissolderedbetween

theBatteryBoardandthenickelstip.

TheBatteryBoardand thePowerBoardare connectedwithaSamtecSIR1-10-S-S spring-loaded

powerconnector.ThisconnectorissolderedontothePowerBoard,andtherearetencorresponding

contactpadsontheBatteryBoardtoensureproperconnection.

Batterypacksaredesignedtobe theonlyplasticcomponent inside theunderwaterhousing,asa

metalbatteryenclosurecanposehazardstousers.Batterypackenclosureneedstobeabletosustain

highimpactforcegiventhepossibilityofaccidentaldropping;hencebatterypacksaredesignedto

be3D-printedwithAccuraXtremeWhite200SLAresin.Suchresinhasalowwaterabsorptionrate,

iscorrosionresistanttosaltwater,andismorerigidcomparewithother3D-printingmaterials[13].

3.3.2. ProcessingSubsystemTheprocessingsubsystemshowninyellowinFigure5 isthebrainofthenewresearchplatform.

Sincethisplatformwillbeusedtoperformreal-timeinferenceofthemachinelearningmodel,the

authordecidestouseNvidiaJetsonSystem-on-Modules(SoMs)astheprocessingunit.JetsonSoMs

arewidelyusedinindustrialapplicationsasanedgecomputingdevice.Thesemodulescannotonly

perform traditional data recording and processing tasks but also provide machine learning

accelerationthroughNvidia'spowerfulgeneral-purposeGraphicsProcessingUnits(GPU).Adetailed

comparisonbetweenNvidiaJetsonSoMsandtheoldIntelCPUscanbefoundinAppendixA.

In this design, the processing subsystem section can accommodate three out of four currently

availableJetsonSoMs.JetsonNanoistheentry-levelSoMthathastheleastprocessingpower,andit

isidealforsimpledatacollectiontasks.JetsonTX2isoneofthemostwidelyusedSoMsintheindustry.

Itprovidesmoderateprocessingpowerandreal-timeinferencecapability.JetsonXavierNXisthe

latest andmostpowerful SoM that can fit inside thisnew researchplatform. It includesNvidia's

uniqueTensorCoresandNVDLAdeeplearningaccelerator.

TheJetsonSoMsisconnectedtoacustom-designedPCBthatwecallthe"CarrierBoard."JetsonNano

andJetsonXavierNXsharethesamefootprintandpinout;hencetheycanshareasameCarrierBoard

design.JetsonTX2usesaunique400-pinconnector,whichrequiresadifferentCarrierBoarddesign.

However, all of these three JetsonModules can fit into the same position, share similar thermal

solutions,andprovidesimilarconnectivity.

10

In order to protect the Carrier Board from bending and twisting during the assembly and

maintenanceprocesses,theauthordesignsacustomaluminumframethatattachestotheCarrier

Board.ThismetalframesignificantlyincreasestherigidityoftheCarrierBoardandprotectsitfrom

accidentaldamage.

ThelifecycleofJetsonSoMswillalsoimpactthelifecycleofournewplatform.AccordingtoNvidia's

website,bothJetsonNanoandJetsonTX2willbeavailabletopurchaseuntil2025,whileJetsonXavier

NXwillremainavailableuntil2026[14].

3.3.3. ImagingSubsystemTheimagingsubsystemisshowningreeninFigure5.Whenoursystemcapturesimagesunderwater,

thelightmustfirstgothroughawaterproofdomeportorflatport,thengothroughalens,andfinally

hit our image sensor. This section will introduce the design considerations and possible

configurationsofthesethreecomponentsintheimagingsubsystem.

UnderwaterPorts

When the light first enters the underwater system, it will first go through an underwater port.

Underwater ports are usually made with acrylic or glass front pieces. For general underwater

photography,acrylicfrontpiecesaremorewidelyusedastheyarecheaperandmorelightweight.

However,forourunderwaterpolarizationimaging,acrylicportswillcreatepolarizationeffectswhen

theyareunderhighpressure [9].Hence, such researchplatformscanonlyusehigh-qualityBK-7

opticalglasswithanti-reflectioncoatinginoursystem.

However,thesestringentrequirementsalsomeanthatitishardtocustomordersuchglasspieces

andintegrateintooursystem.Luckilytherearequiteafewmanufacturesproduceunderwaterports

withtheseglasses,anddesignersonlyneedtofollowtheirmechanicalspecificationtomounttheir

portsontoourresearchplatform.Oneof themostwidelyusedunderwaterportstandards is the

Nauticamportsystem.Theydefinefourdifferentportdiameters:N85,N100,N120,andN200.The

letter "N" stands forNauticam and the number specifies the diameter inmillimeters at the port

bayonet.

Inthecurrentdesign,thesystemutilizestheN120ports.Adomeportisattachedtothemainhousing

withacustom-designedportadapter.Bychangingtheportadapter,thesystemcanaccommodate

differentport standards.To ensure theprecise optical center alignment, the authordesigns four

alignmentpinsontheportadapterandfouralignmentholesonthefrontplateofthemainhousing.

Duringthefabrication,techniciansaretoldtoensureasnugfitbetweentheportadapterandthe

frontplate.

11

Lenses

Therearemanylenschoicesonthemarket,andtheycomewithdifferentsizes,bayonets,andoptical

characteristics.Itishardtodesignanenclosurethatcanfitalllenses.However,asthenewdesign

utilizestheNauticamportsystem,theresearchplatformwillbeabletophysicallyaccommodateany

lenssupportedbyNauticam.

Whenabaresensordirectlymountstotheunderwaterhousingfrontplate,acustom-designedlens

bayonet can bemounted to the port adapter to ensure the precise optical center alignment and

accurate focaldistance.The lenscanthenbemountedto the lensbayonet toensure idealoptical

performance.Currently,theauthorwasabletosuccessfullyimplementtheCanonEFmount,Cand

CSmount,andPLmountlensbayonetadapter.

Whenacompletecameramoduleismountedinsidethemainhousing,userscansimplypurchasea

lensbayonetconvertertoproperlymountthelens.

Imagers

Whenanimagingdeviceisdesignedfromscratch,theimagesensoranditscarrierPCBcanbedirectly

mountedtothefrontplateofthemainhousing.Thefrontplatewillbeabletofitanimagesensor

withupto70mmdiagonalsize.Similartotheportadapterdesign,severalprecisionalignmentpins

werereservedtoensuretheoptimalopticalcenteralignment.

Whenanoff-the-shelfcameramoduleisdesired,userscanmountthemoduletoacustom-designed

slider,asshowninFigure6.Theslidersitsontopofa"V"shapedbasetoensureprecisealignment,

andthesliderpositioncanbeeasilyadjustedwithalongadjustmentscrew.Twolinearballbearing

Figure6.Imagingsubsystemassembly.AFLIRBlackFlySMachineVisonCameraandFujinonFE185C057HA-1isshown.Thecameraisattachedtoaslidersystemwhosepositioncanbeadjustedwiththelonggreyscrewattheback.

12

assembliesonthebasecanensurethesmoothoperationoftheslider.Thebaseisthenattachedtoan

"L"shapedbracket,andthebracketisattachedtothefrontplate.Again,multiplealignmentholesand

alignment pinsweredesignedbetween theseparts to ensure theoptical center of the camera is

preciselyalignedtotheexternaldomeport.

3.3.4. UserInterfaceTheuser-accessibleinputs/outputs(IO)areshowninblueinFigure5.Adetaileduser-accessibleIOs

diagram is shown in Figure 7. Since this underwater imaging platform is designed for research

purpose, users may frequently modify and debug the software on this platform. To facilitate

developmentneeds, theauthor includesmultiplecommonlyused IOs.Userscanaccess these IOs

whenthecoverisopened.ThesedebugIOsincludesahigh-definitionmultimediainterface(HDMI)

1.2connector,anRJ45connectorthatsupportsIEEE802.3ab1000Base-TGigabitEthernetstandard,

andauniversalserialbus(USB)3.2Gen1Type-Aconnector.TheHDMIconnectorallowsusersto

connect the system toanexternalmonitor for easydebugaccess.Theethernet connectorallows

userstoconnectJetsonmoduletoalocalareanetworkfordebuggingorconnecttotheinternetfor

systemandsoftwareupdates.TheUSBconnectorallowsuserstoplugkeyboardandmousetothe

system.

Inadditiontothedebugaccess,userIOsalsoincludeapush-buttonforsystempoweron,andaUSB

TypeCPowerDeliveryconnector forupto100-watt fastchargingforthebattery.Twogroupsof

light-emittingdiodes(LED)arealsoavailabletoindicatebatterystatus.

Intheoldunderwatersystem,datawerestoredinanon-removableM.2solid-statedrive,posinga

significantchallengewhenuserswanttotransferdataontheboat.Inthisnewdesign,theauthor

adoptsthenewCompactFlashAssociationCFexpress2.0TypeBremovablestoragestandard.This

newstandardutilizesNon-VolatileMemoryExpress(NVMe)specificationasthedatatransmission

protocol,allowuserstowritetoCFexpressremovablecardsatupto2GBpersecondspeed[15].

Currently,thisstoragesolutionwillallowuserstohaveamaximumof2TBofstoragespaceinside

thenewsystem,buttheCFexpresscardmanufacturesmayproducehighercapacityvariantsinthe

future.InadditiontotheCFexpresscard,userscanalsouseaSecureDigitalCard(SDCard)tostore

Figure7.Userinterfaceinsidethemainhousing.ThenameofeachIOislabeledonthepicture.

13

the system and software configuration files. This feature allows users to quickly swap between

multiplesoftwareversionsorconfigurationswhentheyareoutinthefield.

Alloftheconnectorsandsocketsmentionedabovearesolderedtothe"IOBoard."Thisdesigngives

users the flexibility of migrating to other emerging specifications or changing to a different IO

combinationinthefuture.

3.3.5. Interconnect

AsshowninFigure8,subsystemsmentionedaboveareconnectedbya“BridgeBoard”.TheCarrier

BoardisconnectedtothisBridgeBoardwithaSamtecERx8ruggedhigh-speedconnector.TheIO

BoardconnectstotheBridgeBoardandtheCarrierBoardviaapairofSamtecHSEC8ruggededge

cardconnector.ThePowerBoardconnectstotheBridgeBoardviaanotherHSEC8connector.

TheimagingsubsystemcanconnecttotheIOBoardviaaninternalUSB3.2Gen1Type-Aconnector,

or itcanconnect to theMIPI-CSI2compatibleconnectorontheCarrierBoardviaacustom-made

flexible cable. In addition, an inertial measurement unit (IMU) is mounted inside the imaging

subsystemsectionandisconnectedtotheBridgeBoardwithaflexiblecable.

Figure 8. Overall system architecture. Green blocks represent internal connectors; blue blocks represent externalconnectivity;redlinerepresentconnection;greyblocksrepresentmoduleorprintedcircuitboard.

14

3.4. ThermalDesignElectronicsneedtobekeptinanacceptabletemperaturerangetoensuretheiroptimaloperation.In

thenewunderwaterresearchplatform,fourmaincomponentswillgenerateasignificantamountof

heat.

ThefirstcomponentisJetsonModule.Inthenewdesign,theauthorstrictlyfollowstheJetsonDevice

ThermalDesignGuidelinepublishedbyNvidia, andefficientlydump theheat into theoutermost

housing.Thehousingcanthenbecooledbyseawater.AdetailedthermalstackupisshowninFigure

9.

CFexpressCards,powerregulatorsonthePowerBoard,andimagerorcameramodule insidethe

imagingsubsystemwillalsocreateasignificantamountofheat.Eachofthesecomponentsisattached

toametalplateandtheheatwillbeconductedtotheexteriorandtheheatwillbedumpedintothe

seawater.

3.5. ExpansionandUpgrade3.5.1. ExternalExpansionsThisnewunderwaterresearchplatformisdesignedwithfutureexpansionandupgradeinmind.At

thebottomsideofthemainunderwaterhousing,fiveexternalmountingpointsallowuserstodesign

custombottomplatestofitdifferentneeds.

Theweightof thesystemmaychangeafter futuremodifications.Hence,additionalweightcanbe

attachedtothecustombottomplatetoensurethesystemremainnegativelybuoyant.Oneortwo

handlescanalsobeattachedtoacustombottomplatetoensureeasydevicehandlingduringthedata

collectionprocessunderwater.Duringmost of ourdata collection trips so far, thedevicewill be

attached to a tripod underwater. A quick-release bottomplate can also be attached to a custom

designedbottomplatetohelpdiversexpeditethedevicesetupprocessunderwater.

Thismountingoptionalsoenablesthepossibilityofattachingthenewsystemtoaremotelyoperated

underwatervehicle(ROV)toexploreandrecorddataindangerousareas.

Figure9.Jetsonmodulethermalstackupinsidethesystem.Allyellowblocksrepresentthermalinterfacematerials.

15

3.5.2. UnderwaterConnectionsAlthough thenewsystemhasanembeddedmonitorandotherexternal connectionsareunlikely

under current research requirements, the author still reserved two 26 mm diameter external

connectionports.

ThesetwoportsarelargeenoughtofitaNauticamUnderwaterHDMIorSerialDigitalInterface(SDI)

connector,allowuserstohaveanadditionalmonitorunderwaterortransmitthevideotoaboat.

Thesetwoportscanalsoaccommodateunderwaterethernet,power,andcoaxialcablesdesignedby

SubConn[16].Afurtherdiscussionofpotentialusecasesiscoveredinsection4.2.

Users can also design expansion modules that directly attach to these two ports. An expansion

modulewithbuttoninputs,waterdepthsensor,andwatertemperaturesensorisproposedandwill

beimplementedbytheauthor.

3.5.3. InternalUpgradesItisalsopossibletoupgradetheinternalcomponentsofthesystem.Inthecurrentdesign,thepower

subsystem,theprocessingsubsystem,andtheuserinterfacemoduleareallattachedtoabaseplate.

Thisbaseplateisattachedtothefrontplateofthemainhousingviaonlyfivemountingscrews.Hence,

itwould be straightforward to upgrade and reuse the housing to fulfill other research needs by

redesignthebaseplate.

16

4. ElectricalDesignAfterfinalizingthemechanicaldesign,theauthorbreaksoutthesignalscomingfromNvidiaJetson

Moduleandassignsallthesignalstodifferentprintedcircuitboards(PCB).Section4.1providesan

overviewoftheelectricaldesign.Section4.2coversseveralexamplesofpossiblefutureusecases.

4.1. OverviewAsmentionedinprevioussections,thenewunderwaterresearchplatformconsistsofsevendifferent

PCBs.SuchamodulardesignallowsuserstomodifyoneormorePCBstosuittheirneedswithout

redesignthewholesystem.

Figure10showssomecommon interfaces Jetsonmodulesprovide. JetsonTX2willprovidemany

additionalinterfacesduetoitsdense400-pinconnector.JetsonNanoandJetsonXavierNXwillbe

limitedtotheinterfacesshowninthefigure[17].

Figure10.Jetsoninterfacesandcorrespondingendpointsinourdesign.Greyboxesrepresentprintedcircuitboards;greenboxesrepresentconnectionendpoints;yellowboxesrepresentactivecomponents;blueboxesrepresentdifferentsignalsfromJetson;redlinesdemonstratethesignalpath.

17

JetsonModulesdirectlyattachetotheCarrierBoard,makingtheCarrierBoardthemostcomplexPCB

inthesystem.JetsonModulesonlyprovideoneGigabitEthernet(GbE)interface,butthenewdesign

requiresoneGbEreservedontheExpansionBoardwhilehavinganotherGbEconnectoravailablefor

debuggingandsoftwareupdateaccess.ThenewdesignutilizesaGbEswitchtosplittheinterface

intotwotofulfillsystemneeds.Inaddition,aMIPICSI-2x4interfaceisreservedontheCarrierBoard,

allowusers touse theMIPI interface camera inside the system.An Inter IntegratedCircuit (I2C)

interfaceandaSerialPeripheralInterface(SPI)isalsoreservedontheCarrierBoardforpotential

upgrade.AReal-TimeClock(RTC)moduleisplacedonthecarrierboardtoprovidetheJetsonModule

accuratetimewhenthesystemisnotpoweredup.

MostofsignalsfromJetsonModulearepassedtotheBridgeBoard,IOBoard,andExpansionBoard.

TherearetwopossibleroutesforsignalstotravelfromtheCarrierBoardtotheIOBoard.Thefirst

setofsignalsgoesdirectlyfromtheCarrierBoardtotheIOBoard.Thissetofsignalsincludefour

PeripheralComponentInterconnectExpress(PCIe)channelsforCFexpressstoragecardsandaGbE

foruseraccess.Thesesignalsarehighspeeddifferential signalsandusuallyhaveahighersignal

integrityrequirement.DirectlyroutethesesignalsfromtheCarrierBoardtotheIOBoardcanensure

highersignalquality.ThesecondsetofsignalsgoesfromtheCarrierBoardtotheIOBoardviathe

BridgeBoard.Thissetofsignals includea fewlowspeedsignals likeSPIandI2C,anda fewlow-

priorityhighspeedsignals likeHDMIandUSB.Thisdesign isdue to the limitedspace inside the

housing, and the Carrier Board to the IO Board interface has a limited pin-count on the edge

connector.Havingasecondsignalpathisnotidealbutistheonlysolutionforthenewsystem.

ThePowerBoardisattachedtotheBridgeBoardinthesystem.AstheBridgeBoardisconnectedto

boththeCarrierBoardandtheIOBoard,powerfromthebatterycanbeeasilydivided.ThePower

Board features a microcontroller unit (MCU) that can talk with Jetson Module via Universal

AsynchronousReceiver-Transmitter(UART)interface.TheMCUonthePowerBoardactasapower

managementunitthatswitchesthepowersourcebetweenbatteryA,batteryB,andexternalpower.

ItcanalsowakeupandshutdownJetsonModulewhennecessary.ThePowerBoardalsofeaturesa

USBTypeCPowerDeliverycapableconnector.Thisuser-accessibleinterfaceprovidesupto100W

ofpower,allowuserstochargetwobatterieswhenthesystemisrunning.

TheBatteryBoardisinsideallbatterypacks.ThereisanIContheBatteryBoardthatcontrolsthe

charginganddischargingprocessofthebattery.Thischipwillalsomonitorthebatteryhealthstatus,

thebatterytemperature,andthebatteryusecycles.ItwillalertthepowermanagementMCUand

JetsonModulewhenthebatteryabnormallyoccurs.Thisdesignguaranteesthebatterysafetyand

canpreventmost,ifnotall,battery-relatedsafetyhazardinthesystem.

18

TheCoverBoardmainlyservestheMIPIDSIscreenandtheGPSmodule.TheMIPIscreencanhelp

usersunderstandthesystemoperatingstatuswhenuser isunderwater,andtheGPSmodulecan

provideaccuratetimeandlocationwhenuser isabovewater.However, JetsonXavierNXmodule

doesnotprovideaMIPIDSIsignal,hencethesystemneedstoconvertHDMIsignaltoMIPIsignal.As

userswillnotusetheembeddeddisplaywhentheHDMIisaccessible,aHDMIswitchisplacedonthe

IOBoard. JetsonModule can switch between twopossibleHDMIdownstreamport by toggling a

General-Purpose InputOutput (GPIO) pin. One of the downstreamHDMI port connects toHDMI

connector, allowusers to connect the system toanexternalmonitor fordebugaccess.Theother

downstreamHDMIportconnectstoaHDMItoMIPIDSIconverter.Convertedsignalthengoestothe

embeddedscreen.

Lastly, the Expansion Board features a lot of reserved interfaces. Next section introduces a few

possibleusecasesinvolvetheExpansionBoard.

4.2. ExpansionUseCases

4.2.1. CameraandImagerConfiguration

Figure 11 shows two possible imaging configurations in the system.When a camera module is

desired,thereservedUSBType-Aconnectorinsidetheimagingsubsystemcompartmentcanbeused

toconnectthecamera.Whenabareimagerisdesired,userscancreateathree-boardstacktohandle

thedatatransmission.Animagerboardcanbemountedtothefrontplateoftheunderwaterhousing,

asdescribedinsection3.3.3.ThenaFieldProgrammableGateArray(FPGA)boardcanbeattached

totheImagerBoard.FPGAcanbeusedtoperformimagerreadoutsequence,imageprocessing,and

MIPItransmission.ThentheMIPIsignalcanbetransmittedtotheCarrierBoardviatheTransmitter

Board.ThisdesignallowsustoreusetheFPGABoardandImagerBoardinotherconfigurationor

application, such as the underwater panoramic application mentioned in section 4.2.5. The

TransmitterBoardandtheCarrierBoardcanbeconnectedwithaI-PEXmicrocoaxialcable[18].

Suchcablesareflexibleandaredesignedfordifferentialsignals,providesusersreliableMIPIsignal

transmission.

Figure11.Possiblecameraandimagerconfigurationsinthesystem.Figureontheleftshowsaconfigurationforimagingsensors;rightfigureshowsaconfigurationforcamera.

19

4.2.2. ExternalModule

Figure12showsapossibleexternalmoduleusecase.Astheunderwaterhousingdoesnotintegrate

anybuttoninput,usersmayhavedifficultyadjustsettingsunderwater.Thismoduleattachestoone

ofthetwounderwaterexpansionportsonthemainhousing.Theexternalexpansionmodulecontains

anMCUthatcancontrolthebuttons,LEDs,andsensorsontheexternalmodule.Theexternalmodule

canconnect to theExpansionBoardandtalkwith JetsonModule throughUART.However,as the

externalmodulehasbuttons,ithasahigherpossibilityofwaterleaking.Incaseofleaking,epoxy-

filledconnectioncanpreventanydamagetothemainhousing.

4.2.3. ExternalMonitorAlthoughtheembedded5-inchmonitorissufficientformostusecases,theremightbescenariosthat

asecondexternalunderwatermonitorisrequired.Figure13showstwopossibleexternalmonitor

configurations.The figureon the topshowsa configuration forHDMImonitors.Nauticamhasan

underwaterHDMIconnectorthatutilizetheMicroHDMIconnector.AstheExpansionBoardhasa

reservedHDMIinterface,theNauticamadaptercanbedirectlyconnectedtotheExpansionBoard.

TheotherendoftheNauticamcablegoesintotheunderwatermonitorhousingandcanbedirectly

pluggedintothemonitor.ThefigureonthebottomshowsaconfigurationforSDImonitors.HDMI

signal can converts to SDI signalwith a small Lattice FPGA. As the SDI utilize a coaxial cable to

Figure12.Exampleexternalmoduleconfiguration.

Figure 13. Two possible external monitor configurations. Figure on the top shows a possible connection with HDMImonitors.FigureonthebottomshowsapossibleconnectionwithSDImonitors.

20

transmitthedata,anadditionaldrivercircuitryisrequired.TheSDIsignalcanthengothroughthe

NauticamSDIconnector,andfeedintotheSDImonitor.

4.2.4. ContinuousRecording

Currently the new system is capable of performing continuous recording for around four hours.

However,usersmayneedtorecordthepolarizationimagescontinuouslyfordaysorweeksinthe

future. It is impossible todesignabatterypack that last severaldaysor fit adisk that can store

hundredsofterabytesofdatainsidethehousing.Thenewdesignneedstobeabletocontinuously

transmitdata toaPCabovewaterwhileprovidingpowerto thesystemfromthegroundstation.

QualcommQCA7500isachipsetthatcanperformPowerLineCommunication(PLC)[19].Itallows

us to achieve a 1000Mbps data transmission while providing power for the system through a

neutrally buoyant power cable. The PC attached to the ground stationwill be able to see Jetson

Moduleinsidetheunderwatersystemasanormalethernetdevice,andJetsonModulecantransmit

datatothePCasiftheyareinalocalareanetwork.

AsshowninFigure14,oneofthetwobatteriesinsidetheunderwatersystemcanbereplacedwith

thePLCmodule.Thismodifiedbatterywillkeeptheoriginalcontactpadssothatitcanprovidepower

to the system without modifying the power path. The ethernet signal can be connected to the

reservedGigabitEthernetinterfaceontheExpansionBoardviaaFlatPrintedCircuit(FPC)cable.

4.2.5. UnderwaterPanoramicAsmentionedinsection2.2,researchersareexploringthepossibilityofusingmultiplepolarization

cameras to create a panoramic polarization image underwater. However, having three imaging

devicefitinonehousingwillnotonlyaffecttheimagequalitybutalsoposeriskstothewholesystem

duetotheadditionalcomplexity.Inthenewsystemdesign,itispossibletousethecurrenthousing

Figure14.AnexamplediagramofusingPowerLineCommunicationtoenablelong-termcontinuousrecording.Theblackboxesandtracesrepresentthepowerpath.

21

asadatarecordingandprocessingcenterunderwaterandconnecttothreeormoreexternalcameras

toperformpanoramicrecording.

Figure15showsapossibleexpansionofthesystemthatallowsresearcherstoconnectthreeexternal

cameramodulestorecordunderwaterpanoramicimages.

On the left side of the diagram, inside themain housing, JetsonModules can record three video

streamsviatheMIPIinterface.However,eachMIPIinterfacehasatleasta16-pindifferentialsignal

connection, making connecting the MIPI signals to the outside of the main housing impractical.

Gigabit Multimedia Serial Link (GMSL) is designed to solve this issue [20]. GMSL was initially

designedtobeusedinautomobiles,andasinglecablesolutionwillmaketheautomobileassembly

processaloteasier.MIPIsignalscanbeconvertedtoaGMSLsignalviaaGMSLserializer,andaGMSL

signalcanbedeserializedtoMIPIsignalsaswell.TheGMSLsignalcanbetransmittedviaacoaxial

cable.SubConnoffersanunderwaterCoaxialCablewithSideContacts,whichcanallowustoreceive

GMSLsignalfromtheexternalcameraswhileprovidingpowertothem[16].

Inside the external camerahousing is a three-board stack.The ImagerBoard andFPGAboard is

alreadyintroducedinsection4.2.1andisreusedhere.TheTransmitterBoardreceivesthepower

fromthemainhousingwhileconvertingMIPIsignalstotheGMSLsignal.Thisdesignallowsusto

reusemostoftheimagingsystemdesignandminimizetheextraengineeringcost.

WhentheGMSLsignalarrivesinthemainhousing,theExpansionBoardcandeserializetheGMSL

signaltoMIPIsignals.However,asshownearlier inFigure10,theExpansionBoardonlyhastwo

Figure15.Anexamplediagramofconnectingthreeexternalcameramodulestoperformunderwaterpanoramicimaging.

22

MIPI interface,while theCarrierBoardhasanadditionalone.Thisconfigurationwas intendedto

benefituserswhenonlyoneMIPIinterfaceisrequired,astheydonotneedtodesignanewExpansion

Boardtofulfilltheirneed.WhenthreeMIPIinterfacesontheExpansionBoardaredesired,theuser

canuseasmall I-PEX jumpercable toconnect theCarrierBoardMIPI interface to theExpansion

Board.

23

5. ConclusionandFutureWorkThe author successfully designed a compact, waterproof, and high-performance underwater

researchplatformthat iscapableofperformingunderwatergeolocalizationtasks.Thedesignhas

been prototypedwith 3D printed technology and proved thewater-tightness of the system. The

design isuser friendlyandeasy tooperateandhasmuchpotential for futureupgrades.The final

designweighsonly3kgandmeasuresonly105by105by170mmforthemainunderwaterhousing.

The author workedwith his colleague and finalized the power subsystem design and tested its

functionality. The power subsystem can charge and discharge the battery pack, and the power

managementMCUcancontrolthepowersubsystemtoswitchbetweenmultiplepowersources.The

powersubsystemcanacceptupto100WofpowerfromtheUSBTypeCPowerDeliveryport.

However,thisisanambitiousprojectwithmanyskillsandeffortsinvolved.Therearemanyongoing

workstoimprovethedesignfurther.Theauthoriscurrentlyworkingonaprototypeoftheexternal

modules that can take button input underwater. The author is also evaluating the design for

compatibility with various imaging systems. Also, the author is looking to further optimize the

mechanicaldesignwithfiniteelementanalysistools.

Theauthorisalsoworkingcloselywithhiscolleaguestoimplement,prototype,andtesttheelectrical

design.FirmwareandsoftwareonthePowerManagementMCUandtheJetsonModulearealsounder

development,andtheauthorisperformingvarioustestsandbenchmarksonthesystem.

24

References[1] A. I. Al-Shamma'a, A. Shaw and S. Saman, "Propagation of electromagnetic waves at MHz

frequenciesthroughseawater,"inIEEETransactionsonAntennasandPropagation,vol.52,no.11,pp.

2843-2849,Nov.2004.

[2]L.Whitcomb,D.Yoerger andH. Singh, "Advances inDoppler-basednavigationofunderwater

roboticvehicles,"inProceedings1999IEEEInternationalConferenceonRoboticsandAutomation(Cat.

No.99CH36288C),vol.1,pp.399-406,1999.

[3]D.Goshen-Meskinand I.Y.Bar-Itzhack, "Unifiedapproach to inertialnavigation systemerror

modeling,"inJournalofGuidance,Control,andDynamics,vol.15,no.3,pp.648653,1992.

[4]L.Paull,S.Saeedi,M.Seto,andH.Li,"AUVNavigationandLocalization:AReview,"inIEEEJournal

ofOceanicEngineering,vol.39,no.1,pp.131-149,2014.

[5]Kuc,Roman."EcholocationwithBatBuzzEmissions:ModelandBiomimeticSonarforElevation

Estimation,"InJournaloftheAcousticalSocietyofAmerica,vol.131,no.1,p.561,Jan.2012.

[6]H.H.Thoen,M.J.How,T.-H.Chiou,andJ.Marshall,"ADifferentFormofColorVisioninMantis

Shrimp,"inScience,vol.343,no.6169,pp.411–413,2014.

[7]D. C. Parkyn, J. D. Austin, andC.W.Hawryshyn, "Acquisition of polarized-light orientation in

salmonidsunderlaboratoryconditions,"inAnimalBehaviour,vol.65,no.5,pp.893–904,2003.

[8]S.B.Powell,R.Garnett,J.Marshall,C.Rizk,andV.Gruev,"Bioinspiredpolarizationvisionenables

underwatergeolocalization,"inScienceAdvances,vol.4,no.4,2018.

[9] S. B. Powell, "Underwater Celestial Navigation Using the Polarization of Light Fields," in

EngineeringandAppliedScienceTheses&Dissertations,no.245,2017.

[10]Marshall,Justin."Bio-inspiredGPS-freeNavigationUsingMantisShrimp(Stomatopod)Vision,"

inDefenseTechnicalInformationCenter,2019.

[11]T.H.Waterman,"Polarizationofscatteredsunlightindeepwater,"inDeepSeaResearch,vol.3,

pp.426-434,1955.

[12] O-Ring Design and Technical Quick Reference Information, webpage, accessed April 2020.

Availableat:https://www.marcorubber.com/o-ring-design-technical-index.htm

[13]MaterialsSelectionGuideforStereolithography,datasheet,3DSystems,Inc.,2020.Availableat:

https://www.3dsystems.com/sites/default/files/2019-12/3d-systems-sla-material-selection-

guide-usen-2019-11-07-web.pdf

25

[14]JetsonProductLifecycle,webpage,accessedApril2020.Availableat:

https://developer.nvidia.com/embedded/community/lifecycle

[15] The CompactFlash Association Announces CFexpress 2.0 Specification, press release,

CompactFlashAssociation,2019.Availableat:

https://cofa.memberclicks.net/assets/docs/cfapress/cfexpress_2_0_press_release_20190228.pdf

[16]SubConnUnderwaterConnectors,webpage,accessedApril2020.Availableat:

https://www.macartney.com/what-we-offer/systems-and-products/connectors/subconn/

[17]HardwareForEverySituation–NvidiaJetsonModules,webpage,accessedApril2020.Available

at:https://developer.nvidia.com/embedded/develop/hardware

[18]I-PEXMicroCoaxialCableProductPage,webpage,accessedApril2020.Availableat:

https://www.i-pex.com/products#micro-coax-discrete-wire

[19] QCA7500 - Gigabit-Class Speeds Everywhere, product brief, Qualcomm Atheros, Inc., 2020.

Availableat:

https://www.codico.com/fxdata/codico/prod/media/Datenblaetter/AKT/QCA7500%20Product%

20Brief.pdf

[20]GigabitMultimediaSerialLink(GMSL)SerDesICs,webpage,accessedApril2020.Availableat:

https://www.maximintegrated.com/en/products/interface/high-speed-signaling/gmsl-

serdes.html

26

AppendixA.ProcessingSystemComparisonsTable1.ComparisonbetweenNvidiaJetsonNano,JetsonTX2,JetsonXavierNX,andIntelCorei76700TE.

NVIDIAJETSONNANO

NVIDIAJETSONTX2

NVIDIAJETSONXAVIERNX

INTELCOREI76700TE

CPUQuad-CoreARM

A57

Dual-CoreNVIDIADenverandQuad-CoreARMA57

6-coreNVIDIACarmel64-bit

CPU

[email protected]

~60%ofi7-6700K

GPU 128-coreNVIDIAMaxwell

256-coreNVIDIAPascal

384-coreNVIDIAVoltawith48TensorCores

IntelHDGraphics530

ACCELERATOR

- -

2xNVDLAEngine

7-WayVLIWVisionProcessor

-

MEMORY 4GBLPDDR4 8GBLPDDR4 8GBLPDDR4x 64GBDDR4PERFORMANCE(TFLOPS,FL16) 0.472 1.33 1.69 0.265[1]

POWER(W) 10 15 15 35

DIMENSION(MM) 69.6x45 87x50 69.6x45 120x120[2][1]Approximatedbaseon6700TEand6700Kperformancematrix.[2]Minimumsystemsize.