Department of Physics Faculty of Science Ci Ui tiCairo University · 2020. 6. 3. · Ci Ui tiCairo...

36
Department of Physics Faculty of Science C i Ui it Cairo University Ohio State University (12-26 Oct. 2011)

Transcript of Department of Physics Faculty of Science Ci Ui tiCairo University · 2020. 6. 3. · Ci Ui tiCairo...

Page 1: Department of Physics Faculty of Science Ci Ui tiCairo University · 2020. 6. 3. · Ci Ui tiCairo University Ohio State University (12-26 Oct. 2011) Tp f D Atomic Str ct re Theor

Department of Physics Faculty of Science

C i U i itCairo University

Ohio State University (12-26 Oct. 2011)

Page 2: Department of Physics Faculty of Science Ci Ui tiCairo University · 2020. 6. 3. · Ci Ui tiCairo University Ohio State University (12-26 Oct. 2011) Tp f D Atomic Str ct re Theor

T p f DAtomic Str ct re Theor for The

Topics of Discussion1. Atomic Structure Theory for The

Calculation of Atomic Properties and the interaction of atoms with interaction of atoms with electromagnetic field.

2. Electron Impact Excitation, Ionization, Recombination and De excitation Rate Recombination and De-excitation Rate Coefficients.

3. Experimental Activities.

4. Future Work.

Page 3: Department of Physics Faculty of Science Ci Ui tiCairo University · 2020. 6. 3. · Ci Ui tiCairo University Ohio State University (12-26 Oct. 2011) Tp f D Atomic Str ct re Theor

11. Atomic Structure Theory for The Calculation . Atomic Structure Theory for The Calculation of Atomic Properties and the interactionof Atomic Properties and the interactionof Atomic Properties and the interaction of Atomic Properties and the interaction

of atoms with electromagnetic field of atoms with electromagnetic field Atomic data such as

1. Energy levels,2. Line Strengths,3. Oscillator strengths, 3 Osc ato st e gt s,4. Transition probabilities: E1, E2, M1, etc..

are needed in many areas such as for: Laser produced Plasmas:ase p oduced as as

which produce ions with different ionization stages and need interpretations and identification of line spectrum.

The determination of plasma conditions:The determination of plasma conditions:electron density and plasma temperature, etc.

The development of controlled thermonuclear fusion.p

Astrophysics.

In environmental clean up problems:In environmental clean-up problems:where heavy elements are gaining importance.

Page 4: Department of Physics Faculty of Science Ci Ui tiCairo University · 2020. 6. 3. · Ci Ui tiCairo University Ohio State University (12-26 Oct. 2011) Tp f D Atomic Str ct re Theor

• The atomic structure theory used for the computation of the atomic y pproperties would be reviewed.

• For a multi-electron system, in non-relativistic LS coupling calculations, the normal starting point is Shrödinger’s equation calculations, the normal starting point is Shrödinger s equation where the Hamiltonian, in atomic units is given as:

21 1( ) .2

N N

iZH = − ∇ − +∑ ∑

• Stationary state of N-electrons is described by a wave function Ψ(q1,…..,qN), where qi=(ri ,si) represents the space

1 2i i ji i jr r= >∑ ∑

(q1, ,qN), qi ( i , i) p pand spin coordinates of the electron i.

1 1( . . . . . . , ) ( . . . . . . , )N NH q q E q qψ ψ=

• The wave function is assumed continuous w.r.t. the space variables and is a solution to the wave equation.

1 , 1 ,( , ) ( , )N Nq q q qψ ψ

variables and is a solution to the wave equation.

Page 5: Department of Physics Faculty of Science Ci Ui tiCairo University · 2020. 6. 3. · Ci Ui tiCairo University Ohio State University (12-26 Oct. 2011) Tp f D Atomic Str ct re Theor

• In the multi configuration approximation the wave functions • In the multi-configuration approximation, the wave functions for a state labeled αJMJ are expanded in terms of configuration state functions

1

( ) ( )M

J i i i i ji

J M c L S J Mψ α φ α=

= ∑

• Where α represents the configuration and the set of quantum numbers required to specify the state.

• By using the multi configuration approximation model one • By using the multi-configuration approximation model one can calculate correlation relativistic corrections (correlation means here interaction between electrons) to the non-relativistic Hamiltonian by considering the Breit-Pauli relativistic Hamiltonian by considering the Breit-Pauli operator.

B P N R F S R SH H H H= + +B P N R F S R S

HNR is the ordinary non-relativistic many electron Hamiltonian21 1N NZ∑ ∑2

1

1 1( ) .2N R i

i i ji i j

ZHr r= >

= − ∇ − +∑ ∑

Page 6: Department of Physics Faculty of Science Ci Ui tiCairo University · 2020. 6. 3. · Ci Ui tiCairo University Ohio State University (12-26 Oct. 2011) Tp f D Atomic Str ct re Theor

The fine-structure operator H consist of three termsThe fine-structure operator HFS consist of three terms

F S S O S O O s sH H H H= + +

2

31

1 .2

N

S O i ii i

ZH sr

α=

= ∑ l SpinSpin--Orbit termOrbit term

2

3 ( 2 )2

Ni j i

S O O i ji j i j

r PH s s

<

×= − +∑ SpinSpin--OtherOther--Orbit termOrbit term

23 2

( . ) ( . )1 [ 3 ]N

i i j j i jS S i j

i j i j i j

s r s rH s s

r rα

<

= −∑ SpinSpin--Spin termSpin term

Page 7: Department of Physics Faculty of Science Ci Ui tiCairo University · 2020. 6. 3. · Ci Ui tiCairo University Ohio State University (12-26 Oct. 2011) Tp f D Atomic Str ct re Theor

H is the relativistic shift operatorHRS is the relativistic shift operator

1 2R S M C D D O O S S CΗ = Η + Η + Η + Η + Η1 2R S M C D D O O S S C

2 † 21 N

∑ 2 † 22

1

1 ( )M C i iiα =

Η = − ∇ ∇∑

22 1NZα ∑

Mass Correction termMass Correction term

21

1

1( )8D i

i i

Zr

α=

Η = − ∇∑2

2 1Nα ∑

OneOne–– body Darwin termsbody Darwin terms

Two Two –– body Darwin termsbody Darwin terms22

1( )4D i

i j irα

<

Η = ∇∑

2 ( )P P P P⎡ ⎤

Two Two –– body Darwin termsbody Darwin terms

2

3

. ( . )2

Ni j i j i j i j

O Oi j i j i j

P P r r P Pr r

α<

⎡ ⎤Η = − +⎢ ⎥

⎢ ⎥⎣ ⎦∑ OrbitOrbit--Orbit termOrbit term

28 ( . ) ( . )3

N

S S C i j i ji j

s s r rπ α δ<

Η = − ∑ SpinSpin--Spin contact Spin contact termterm

Page 8: Department of Physics Faculty of Science Ci Ui tiCairo University · 2020. 6. 3. · Ci Ui tiCairo University Ohio State University (12-26 Oct. 2011) Tp f D Atomic Str ct re Theor

• The weighted oscillator strength for the transition between Ψand Ψ′ is defined asand Ψ is defined as

2 ( )3ug f E S= Δ

The strength of a line is defined as the square of the reduced dipole matrix element

22

1'

N

ii

S rψ ψ=

= ∑ur

Allowed Electric Dipole Decay Rates (E1):S is related to the transition probability according to ( j=0 ±1 L = 0 ±1 S = 0 parity changes )( j=0,±1, L = 0, ±1, S = 0, parity changes.)

4 2 230

,6 4 ( )

3u lu

e aA S Eh g

π= Δ

The radiative lifetime τ of an atomic level k is related to the sum of transition probabilities to all levels i lower in energy than k:than k: 1

k k ii

Aτ−

⎛ ⎞= ⎜ ⎟⎝ ⎠∑

Page 9: Department of Physics Faculty of Science Ci Ui tiCairo University · 2020. 6. 3. · Ci Ui tiCairo University Ohio State University (12-26 Oct. 2011) Tp f D Atomic Str ct re Theor

Hartree-Fock Relativistic (HFR) Cowan (in 1981)

ATOMIC STRUCTURE PACKAGE

1. A relativistic Hartree-Fock program enables the calculation of all atomic data required (energy levels, wavelengths, log gf, transition probabilities and lifetimes), taking into consideration the correlations of the electrons and the relativistic effects included by the Breit- Pauli approximation.

Page 10: Department of Physics Faculty of Science Ci Ui tiCairo University · 2020. 6. 3. · Ci Ui tiCairo University Ohio State University (12-26 Oct. 2011) Tp f D Atomic Str ct re Theor

2 All the relevant radial integrals have been 2. All the relevant radial integrals have been computed.

3. Then, the radial parameters were fitted in a least square optimizing program fitting the eigen values of the Hamiltonian to the available experimental energy levels. These optimized integrals were used to compute the wavelengths and the transition rates.

Page 11: Department of Physics Faculty of Science Ci Ui tiCairo University · 2020. 6. 3. · Ci Ui tiCairo University Ohio State University (12-26 Oct. 2011) Tp f D Atomic Str ct re Theor

Transition probabilities for Si XII (Refaie 2010)Transition λ [cal](Å) Log gf A [cal] (Sec-1) NIST

[Nahar, TOPbase]( ) g g ( )

1s22p 2P1/2 - 1s23d 2D3/2 43.95 0.131 1.166E+12 1.15E+12 2.13E+12

1s22p 2P1/2 - 1s24d 2D3/2 32.834 -0.61 3.800E+11 3.81E+11 6.91E+11

1s22p 2P1/2 - 1s25d 2D3/2 29.395 -1.042 1.751E+11 1.77E+11 3.19E+11

1s22p 2P1/2 - 1s26d 2D3/2 27 813 1 352 9 595E+10 9 55E+10 1 75E+111s 2p P1/2 1s 6d D3/2 27.813 -1.352 9.595E+10 9.55E+10 1.75E+11

1s22p 2P1/2 - 1s27d 2D3/2 26.939 -1.594 5.853E+10 5.82E+10 1.07E+11

1s22p 2P1/2 - 1s28d 2D3/2 26.401 -1.794 3.843E+10 3.82E+10 7.01E+10

1s22p 2P1/2 - 1s29d 2D3/2 26.044 -1.966 2.660E+10 2.65E+10 4.86E+10

1s22p 2P 1s210d 2D1s22p 2P1/2 - 1s210d 2D3/2 25.795 -2.115 1.921E+10 3.51E+10

1s22p 2P3/2 - 1s23d 2D3/2 44.108 -0.57 2.308E+11 2.28E+11 4.24E+11

1s22p 2P3/2 - 1s23d 2D5/2 44.094 0.385 1.386E+12 1.37E+12 2.54E+12

1s22p 2P3/2 - 1s24d 2D3/2 32.922 -1.31 7.540E+10 7.45E+10 1.37E+11

1s22p 2P3/2 - 1s24d 2D5/2 32.919 -0.355 4.525E+11 4.56E+11 8.22E+11

1s22p 2P3/2 - 1s25d 2D3/2 29.466 -1.742 3.478E+10 3.52E+10 6.30E+10

1s22p 2P3/2 - 1s25d 2D5/2 29.464 -0.788 2.087E+11 2.11E+11 3.79E+11

1s22p 2P3/2 - 1s26d 2D3/2 27.876 -2.051 1.906E+10 1.90E+10 3.45E+10p 3/2 3/21s22p 2P3/2 - 1s26d 2D5/2 27.876 -1.097 1.144E+11 1.14E+11 2.08E+11

1s22p 2P3/2 - 1s27d 2D3/2 26.998 -2.294 1.163E+10 1.16E+10 2.11E+10

1s22p 2P3/2 - 1s27d 2D5/2 26.998 -1.34 6.977E+10 6.94E+10 1.27E+11

1s22p 2P3/2 - 1s28d 2D3/2 26 458 2 494 7 635E+09 7 59E+09 1 38E+101s 2p P3/2 1s 8d D3/2 26.458 -2.494 7.635E+09 7.59E+09 1.38E+10

1s22p 2P3/2 - 1s28d 2D5/2 26.457 -1.54 4.582E+10 4.56E+10 8.33E+10

1s22p 2P3/2 - 1s29d 2D3/2 26.099 -2.666 5.278E+09 5.26E+09 9.58E+09

1s22p 2P3/2 - 1s29d 2D5/2 26.099 -1.711 3.173E+10 3.16E+10 5.77E+10

1s22p 2P 1s210d 2D1s22p 2P3/2 - 1s210d 2D3/2 25.849 -2.815 3.818E+09 6.92E+09

1s22p 2P3/2 - 1s210d 2D5/2 25.849 -1.861 2.292E+10 4.17E+10

1s23p 2P1/2 - 1s23d 2D3/2 4766.376 -1.222 4.400E+06 5.00E+06 7.38E+06

1s23p 2P1/2 - 1s24d 2D3/2 126.377 0.066 1.215E+11 1.22E+11 2.22E+11

Page 12: Department of Physics Faculty of Science Ci Ui tiCairo University · 2020. 6. 3. · Ci Ui tiCairo University Ohio State University (12-26 Oct. 2011) Tp f D Atomic Str ct re Theor

22. . Electron Impact Excitation, Ionization, Electron Impact Excitation, Ionization, R bi ti d DR bi ti d D it ti R t it ti R t Recombination and DeRecombination and De--excitation Rate excitation Rate

CoefficientsCoefficients

Page 13: Department of Physics Faculty of Science Ci Ui tiCairo University · 2020. 6. 3. · Ci Ui tiCairo University Ohio State University (12-26 Oct. 2011) Tp f D Atomic Str ct re Theor

1. Rate Coefficients:• The electronic ⎜p⟩ → ⎜n⟩ and ⎜p⟩ → ⎜i⟩ transitions in an atom • The electronic ⎜p⟩ → ⎜n⟩ and ⎜p⟩ → ⎜i⟩ transitions in an atom

have been considered, where p and n are the (effective) principal quantum numbers of initial and final states ⎜p⟩ and ⎜ ⟩ d ⎜i⟩ d t th i d t t ⎜n⟩, and ⎜i⟩ denotes the ion ground state.

• The following notation is used : Epi and Epn = En - Ep are the ionization, excitation (for En > Ep) and de-excitation (En < Ep) , ( n p) ( n p)energies, Ee and E are the incident electron and the energy transfer to the atom, respectively.

a Ionization ratea. Ionization rateThe ionization rate coefficient (in cm3s-1) is given by:

(1)piekT ε )exp()(1056.9 5.16× −− ( )

Where εpi is the transfer energy and is expressed in eV.pipipi

pieipK

εεε 32.138.4

)p()(72.133.2 ++

=

b. Recombination rateThe recombination rate coefficient is (in cm6s-1) given by:

(2)e

pipi kT

E=ε

pgkT )()(10173 327 −− (2)pipipi

i

pe

ipg

gkTK

εεε 32.138.4

)()(1017.372.133.2

327

++

×=

Page 14: Department of Physics Faculty of Science Ci Ui tiCairo University · 2020. 6. 3. · Ci Ui tiCairo University Ohio State University (12-26 Oct. 2011) Tp f D Atomic Str ct re Theor

Where gp and gi are the statistical weights of level ⎜p⟩ and of the ion ground state ⎜i⟩.

c. Excitation rateAn empirical formula which represents the numerical rate coefficients (in cm3s-1) for the excitation rate with transfer coefficients (in cm3s 1) for the excitation rate with transfer energy εpn is:

(3)( ) ( )

⎥⎤

⎢⎡

+⎟⎞

⎜⎛ Δ+×

−×=

−epne B

kTA

kTK

3.0ln

exp106.1 5.07 ε(3)⎥

⎦⎢⎣

+⎟⎠

⎜⎝

Δ+×Γ+

= pnpnpnpne

pn BR

AkT

K ln

pnpn kT

E=ε

1

5.0

5.1

2

236.08.03.06.161131ln

⎟⎟⎠

⎞⎜⎜⎝

⎛−+++×

⎥⎥⎦

⎢⎢⎣

⎡⎟⎟⎠

⎞⎜⎜⎝

⎛+⎟

⎟⎠

⎞⎜⎜⎝

⎛+=Γ s

sn

sns

ps

RkTp

R epn

Where, kTe is in eV , R is Rydberg energy (in eV).e

pn kTε ⎠⎝⎥⎦⎢⎣ ⎠⎝⎠⎝ ssp

59513 pnsRznRzpR ××

(4)

.,,,595.13 pnsERznE

RzpRni

effpi

eff −=×=×==

pnpn

pn fERA ⎟

⎞⎜⎝

⎛= 2

(4)p ⎠⎝pnf

2

206.0expnp

sAB

pn

pnpn +⎟

⎟⎠

⎞⎜⎜⎝

⎛−=Δ

4324

2

23

2 55.016.151.07.0ln4.13414

ppppppband

E

Eb

EE

EnRB p

pn

pip

pn

pi

pnpn −+−−=

⎟⎟

⎜⎜

⎛++=where

Page 15: Department of Physics Faculty of Science Ci Ui tiCairo University · 2020. 6. 3. · Ci Ui tiCairo University Ohio State University (12-26 Oct. 2011) Tp f D Atomic Str ct re Theor

d. De-excitation rateThe de-excitation rate is given by:

(5)( )⎥⎦

⎤⎢⎣

⎡+⎟

⎞⎜⎝

⎛ Δ+×Γ+

×=

npnpe

npp

ne

pn BRkT

AkT

ggkT

K3.0

ln106.1 5.07

2. Population Densities

⎦⎣ ⎠⎝Γ+ npe RkT

npΓ npΔ pnΔpnΓp n

Level population can be calculated by solving the steady-state rate equations

(6)⎞⎛⎤⎡ ⎞⎛ (6)∑∑ ∑∑ ∑ ∑ +

⎟⎟

⎜⎜

⎛+=

⎥⎥⎦

⎢⎢⎣

⎟⎟

⎜⎜

⎛++

jiiji

ji ji

diji

eijie

ji ji ji

eji

djiejij ANcNcNNccNAN

fp fp f f

where Nj is the population of level j, Aji is the spontaneous decayrate from level j to level irate from level j to level i.

eijcdijc

Page 16: Department of Physics Faculty of Science Ci Ui tiCairo University · 2020. 6. 3. · Ci Ui tiCairo University Ohio State University (12-26 Oct. 2011) Tp f D Atomic Str ct re Theor

““Electron Impact Excitation, Ionization, Recombination and DeElectron Impact Excitation, Ionization, Recombination and De--excitation Rate Coefficients and Electron Densities excitation Rate Coefficients and Electron Densities

Calculations for LithiumCalculations for Lithium--Like Si XII and S XIVLike Si XII and S XIV””Objective:Objective:• To calculate the absolute electron impact excitation, ionization,

recombination and de-excitation rate coefficients of about 13 configurations for the doublet state for lithium like ions Si XII and S XIVconfigurations for the doublet state for lithium-like ions Si XII and S XIV.

• Oscillator strengths for allowed and forbidden transitions including relativistic effects in Breit-Pauli approximation were calculated by using the Cowan code and also by using the available data in literature These the Cowan code and also by using the available data in literature. These oscillator strengths are used in the calculations of the rate coefficients.

• To calculate the level populations as functions of the electron density and the plasma temperature for the configurations 1s22s, 1s22p, 1s23s, and the plasma temperature for the configurations 1s 2s, 1s 2p, 1s 3s, 1s23p, 1s23d, 1s24s, 1s24p, 1s24d, 1s24f, 1s25s, 1s25p, 1s25d and 1s25f for each ion.

Results and Discussion:Results and Discussion:a. Rate Coefficients• The calculations include all forbidden and allowed transitions that are

necessary for the calculations Therefore in addition to the dipole necessary for the calculations. Therefore, in addition to the dipole transitions we have introduced the quadrupole transitions in the calculations.

• The rate coefficients are determined for 1s22s (2S ) 1s22p (2P ) • The rate coefficients are determined for 1s 2s ( S1/2), 1s 2p ( P1/2), 1s23s (2S1/2-), 1s23p(2P1/2), 1s23d (2D3/2), 1s24s (2S1/2), 1s24p (2P1/2), 1s24d (2D3/2), 1s24f (2F5/2), 1s25s (2S1/2), 1s25p (2P1/2), 1s25d (2D3/2) and 1s25f (2F5/2) excited atomic states in Si XII and S XIV.

Page 17: Department of Physics Faculty of Science Ci Ui tiCairo University · 2020. 6. 3. · Ci Ui tiCairo University Ohio State University (12-26 Oct. 2011) Tp f D Atomic Str ct re Theor

Ionization rate coefficient vs. temperature for Si XII and S XIV(Refaie 2006)

3 s-1)

1e-7

1e-6

2s 2S 2p 2P3s 2S

1e-8

1e-7

2s 2S 2s-1

)

n co

effic

ient

(cm

3

1e-10

1e-9

1e-8 3p 2P3d 2D4s 2S4p 2P4d 2D4f 2F5s 2S

1e-11

1e-10

1e-92p 2P 3s 2S 3p 2P 3d 2D 4s 2S 4p 2P 4d 2D n

coef

ficie

nt (c

m3 s

Ioni

zatio

1e-12

1e-11

5s S5p 2P5d 2D5f 2F

1e-14

1e-13

1e-12 4f 2F 5s 2S 5p 2P 5d 2D 5f 2F

Ioni

zatio

n

Fig. 1. Ionization rate coefficients for Si XII ion.Temperature (eV)

0 100 200 300 400 500 6001e-13

0 100 200 300 400 500 6001e-15

Temperature (eV)Fig. 2. Ionization rate coefficients for S XIV ion.

Page 18: Department of Physics Faculty of Science Ci Ui tiCairo University · 2020. 6. 3. · Ci Ui tiCairo University Ohio State University (12-26 Oct. 2011) Tp f D Atomic Str ct re Theor

3. Experimental activity

Page 19: Department of Physics Faculty of Science Ci Ui tiCairo University · 2020. 6. 3. · Ci Ui tiCairo University Ohio State University (12-26 Oct. 2011) Tp f D Atomic Str ct re Theor

A schematic diagram of the experimental set up is shown. A Q-switched Nd:YAG laser type Brilliant B from Quantel was

d t th f d t l l th 1064 used at the fundamental wavelength 1064 nm. The energy per pulse 670 mJ was measured at the target surface delivering measured at the target surface delivering 6 ns laser pulses with adjustable repetition rate 10 Hz. This corresponds to repetition rate 10 Hz. This corresponds to power density of 5.6×1010 W/cm2 for a laser focal spot radius of ~ 0.25 mm. The laser was focused on the target using 10 cm quartz lens and constant opening gate dj t d t 2 adjusted at 2 µm .

Page 20: Department of Physics Faculty of Science Ci Ui tiCairo University · 2020. 6. 3. · Ci Ui tiCairo University Ohio State University (12-26 Oct. 2011) Tp f D Atomic Str ct re Theor

Basic Experimental Arrangement

Nd:YAG Laser Quartz Beam splitter Quartz Lens

Cu TargetPlasma

Plume1 25 cm

Power t

Fiber optics1.25 cm

meter

Echelle spectrograph x, y, z

ICCD Andor Camera

axes

Remote control boxP.C. control

Page 21: Department of Physics Faculty of Science Ci Ui tiCairo University · 2020. 6. 3. · Ci Ui tiCairo University Ohio State University (12-26 Oct. 2011) Tp f D Atomic Str ct re Theor

Experimental ResultsExperimental Results

35000

30000

35000

20000

25000

y (a

.u.)

10000

15000

Inte

nsity

5000

10000

0340 390 440 490 540 590

Wavelength (nm)g ( )

Emission lines of Mercury lamp used for wavelength calibration Emission lines of Mercury lamp used for wavelength calibration

Page 22: Department of Physics Faculty of Science Ci Ui tiCairo University · 2020. 6. 3. · Ci Ui tiCairo University Ohio State University (12-26 Oct. 2011) Tp f D Atomic Str ct re Theor

60000

nm

0 .250 .5

50000

nm I 465

.112

1 2 35

30000

40000

u I 4

58.7

0

Cu I

ity (a

.u.)

5 7 8 10

20000

30000 Cu

Inte

ns

10000

460 470 4800

W avelength (nm )

Temporal evolution of the spectra in the wavelength

W avelength (nm )

p p granges of 457.9-481.9 nm. The delay times are: (1) 0.25 µs (2) 0.5 µs (3) 1 µs (4) 2 µs (5) 3 µs (6) 5 µs

(7) 7 µs (8) 8 µs and (9) 10 µs.

Page 23: Department of Physics Faculty of Science Ci Ui tiCairo University · 2020. 6. 3. · Ci Ui tiCairo University Ohio State University (12-26 Oct. 2011) Tp f D Atomic Str ct re Theor

Spectroscopic data of Cu I lines used for estimating Te

Transition Transition λλ ((nm) nm) EEmm ((eV)eV) EEnn ((eV) eV) ggmm ggnn AAmn mn ((101088ss--11))44FF--44DD 458458..7070 55..1010 77..8181 88 66 00..3232

44FF--44DD 465465..112112 55..0707 77..7474 1010 88 00..3838FF DD 465465..112112 55..0707 77..7474 1010 88 00..38 38

22PP--22DD 515515 5555 33 7979 66 1919 22 44 00 6060PP-- DD 515515..5555 33..7979 66..1919 22 44 00..6060

22PP 22DD 521521 324324 33 8282 66 1919 44 66 00 757522PP--22DD 521521..324324 33..8282 66..1919 44 66 00..7575

Page 24: Department of Physics Faculty of Science Ci Ui tiCairo University · 2020. 6. 3. · Ci Ui tiCairo University Ohio State University (12-26 Oct. 2011) Tp f D Atomic Str ct re Theor

- 15 5 . 5 6 6 . 5 7 7 . 5 8

E (eV)3 µs

Te =1.145 eV

R2 = 0.985

- 2

- 1. 5

ln(λ

I/Ag)

- 3

- 2 . 5

- 3 . 5

- 1

E (eV)8 µs

T e =0. 858 eV

R 2 = 0. 985- 2

5 5 . 5 6 6 . 5 7 7 . 5 8

- 3

Ln(λ

I/Ag)

- 5

- 4

Boltzmann plot of emission spectra of Cu I transitions at Boltzmann plot of emission spectra of Cu I transitions at 458458..7070, , 465465..112112, , 515515..324 324 and and 521521..82 82 nm in air. nm in air.

Page 25: Department of Physics Faculty of Science Ci Ui tiCairo University · 2020. 6. 3. · Ci Ui tiCairo University Ohio State University (12-26 Oct. 2011) Tp f D Atomic Str ct re Theor

4

3

2ev)

1

2

Te (

1

00 2 4 6 8 10 12

Delay time (µs)

Shows the variation of the plasma temperature measured at different delay times.

Page 26: Department of Physics Faculty of Science Ci Ui tiCairo University · 2020. 6. 3. · Ci Ui tiCairo University Ohio State University (12-26 Oct. 2011) Tp f D Atomic Str ct re Theor

Density Determination from The Line iWidth

Th f ll h lf idth Δλ f St k b d d The full half width Δλ1/2 of a Stark broadened line is related to the electron density by

( )1

14332 3 5 1e e en n nA A Nλ

−⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎡ ⎤Δ +⎜ ⎟ ⎜ ⎟ ⎜ ⎟o( ) 316 16 161

232 3.5 1 410 10 10

e e eDA w A N wλ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎡ ⎤Δ = + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠ ⎝ ⎠ ⎝ ⎠

is the electron impact parameter, is the electron impact parameter, wAN

p p ,p p ,

i th i i i th i i i t b d i ti t b d i tis the number of particles in the Debye sphere andis the number of particles in the Debye sphere and

w

The first term gives the contribution from electron The first term gives the contribution from electron DN is the ionic is the ionic ––impact broadening parameter.impact broadening parameter.

broadening, and the second term is the ion broadening, and the second term is the ion broadening correction. broadening correction.

Page 27: Department of Physics Faculty of Science Ci Ui tiCairo University · 2020. 6. 3. · Ci Ui tiCairo University Ohio State University (12-26 Oct. 2011) Tp f D Atomic Str ct re Theor

Density Determination from TheDensity Determination from The Line Width

Th t ib ti i l t ti l d t l t The contribution is almost entirely due to electron impact, and therefore the half width of the Stark-broadened transition can be estimated bybroadened transition can be estimated by

)(2 161eNw=Δ λ )10(2 16

21 wΔ λ

Page 28: Department of Physics Faculty of Science Ci Ui tiCairo University · 2020. 6. 3. · Ci Ui tiCairo University Ohio State University (12-26 Oct. 2011) Tp f D Atomic Str ct re Theor

4E+16

4E+16

3E+16

4E 16

2E+16

3E+16

(cm

-3)

2E+16

Ne

5E+15

1E+16

01 2 3 4 5 6 7 8 9

Delay time (µs)

Electron density of plasma obtained for Cu I Electron density of plasma obtained for Cu I at 465.112 nm

Page 29: Department of Physics Faculty of Science Ci Ui tiCairo University · 2020. 6. 3. · Ci Ui tiCairo University Ohio State University (12-26 Oct. 2011) Tp f D Atomic Str ct re Theor

i ii i ( )( ) AA (( --11))

Transition probabilities for Cu II (Refaieet al. 2008)

Transition LevelsTransition Levels λλ (nm)(nm) AAjiji (sec(sec 11))

LowerLower UpperUpper This Work(This Work(Theo.)Theo.) Exp. WorkExp. Work33dd99 55p p 33DD11 33dd99 55d d 33PP00 698698..65216521 55..950950E+E+0606 44..757757E+E+0606

33dd99 55p p 33FF22 33dd99 55d d 33FF33 699699..65436543 11..359359E+E+0606 11..315315E+E+0606

33dd99 55p p 33FF22 33dd99 55d d 33DD33 705705..35233523 11..977977E+E+0505 11..892892E+E+0505

33dd99 55p p 33PP00 33dd99 55d d 33SS11 708708..37763776 44..420420E+E+0505 22..987987E+E+0505

33dd99 55pp 11FF33 33dd99 55dd 33FF44 712712 68176817 66 117117E+E+0505 99 096096E+E+040433dd 55p p FF33 33dd 55d d FF44 712712..68176817 66..117117E+E+0505 99..096096E+E+0404

33dd99 55p p 33FF22 33dd99 55d d 33PP11 712712..703703 11..280280E+E+0606 11..205205E+E+0606

33dd99 55p p 11FF33 33dd99 55d d 33FF33 713713..17431743 33..735735E+E+0404 11..612612E+E+0505

33dd99 55s s 33DD33 33dd99 55p p 33DD22 715715..77577757 11..753753E+E+0606 66..257257E+E+0505

33dd99 55p p 11PP11 33dd99 55d d 33PP11 718718..94549454 77..113113E+E+0606 55..253253E+E+0606

33dd99 55p p 11FF33 33dd99 55d d 33DD33 719719..09550955 11..940940E+E+0606 11..889889E+E+0505

33dd99 55p p 11PP11 33dd99 55d d 33PP22 719719..93239323 22..420420E+E+0404 11..575575E+E+0404

33dd99 55pp 33DD11 33dd99 55dd 33DD22 726726 07840784 22 332332E+E+0404 11 932932E+E+040433dd 55p p DD11 33dd 55d d DD22 726726..07840784 22..332332E+E+0404 11..932932E+E+0404

33dd99 55p p 11FF33 33dd99 55d d 33PP22 727727..74557455 99..498498E+E+0505 11..122122E+E+0505

33dd99 55s s 33DD22 33dd99 55p p 33DD22 732732..60066006 55..206206E+E+0707 22..276276E+E+0707

33dd99 55p p 11DD22 33dd99 55d d 33DD22 739739..61516151 11..269269E+E+0505 22..387387E+E+0505

33dd99 55s s 33DD33 33dd99 55p p 33DD33 739739..98759875 55..202202E+E+0707 22..763763E+E+0707

33dd99 55s s 33DD11 33dd99 55p p 11DD22 742742..05670567 99..970970E+E+0606 55..059059E+E+0606

33dd99 55p p 11PP11 33dd99 55d d 33SS11 742742..23282328 22..671671E+E+0505 11..364364E+E+0505

33dd99 55pp 33DD11 33dd99 55dd 33PP11 742742 27712771 66 463463E+E+0404 22 997997E+E+040433dd 55p p DD11 33dd 55d d PP11 742742..27712771 66..463463E+E+0404 22..997997E+E+0404

33dd99 55p p 11DD22 33dd99 55d d 33DD33 748748..15551555 11..067067E+E+0505 11..765765E+E+0505

33dd99 55s s 33DD11 33dd99 55p p 33DD11 756756..20172017 44..720720E+E+0707 33..995995E+E+0707

33dd99 55p p 11DD22 33dd99 55d d 33PP11 756756..43054305 11..019019E+E+0505 77..434434E+E+0404

Page 30: Department of Physics Faculty of Science Ci Ui tiCairo University · 2020. 6. 3. · Ci Ui tiCairo University Ohio State University (12-26 Oct. 2011) Tp f D Atomic Str ct re Theor

4. Future Work

Page 31: Department of Physics Faculty of Science Ci Ui tiCairo University · 2020. 6. 3. · Ci Ui tiCairo University Ohio State University (12-26 Oct. 2011) Tp f D Atomic Str ct re Theor

• To calculate the interaction between charged particles (electrons and ions) and external and self generated electric and magnetic fields self-generated electric and magnetic fields.

This work is a three-dimensional, fully , yrelativistic, that has successfully been applied to a number of problems, ranging from laser-plasma interaction and inertial fusion to plasma shell collisions in astrophysical scenarios.

Page 32: Department of Physics Faculty of Science Ci Ui tiCairo University · 2020. 6. 3. · Ci Ui tiCairo University Ohio State University (12-26 Oct. 2011) Tp f D Atomic Str ct re Theor

• The emergence of the high- energy density (HED) experimental facilities realized that a new class experimental facilities realized that a new class of laboratory astrophysics could be pursued.

• The new HED facilities allow matter to be placed in extreme states of temperature, density and in extreme states of temperature, density and velocity.

• Measurements of these conditions and their evolution, when diagnose, allow theoretical models computer simulation codes to be tested under the extreme conditions relevant to HED

i f t h iregimes of astrophysics.

Page 33: Department of Physics Faculty of Science Ci Ui tiCairo University · 2020. 6. 3. · Ci Ui tiCairo University Ohio State University (12-26 Oct. 2011) Tp f D Atomic Str ct re Theor

• Examples include measurements of:(i) opacities (ii) the phase, conductivity and equation of state(iii) ionization states of radiatively pumped

photoionized plasma

• Several areas of astrophysics could be described- supernovae, supernova remnants, gamma-ray p , p , g ybursts and giant planets.e. g., experiments addressing the dynamics ofsupernova remnants have demonstrated that the blast waves can be produced in laboratory experiments .

• These experiments illustrated the need for 3D simulations.

Page 34: Department of Physics Faculty of Science Ci Ui tiCairo University · 2020. 6. 3. · Ci Ui tiCairo University Ohio State University (12-26 Oct. 2011) Tp f D Atomic Str ct re Theor

• What will be established in the future is the global effect of radiative cooling as a strong shock t ditraverses a medium.

• Simulations of these high Mach number interactions show both the complexity and the need for coupled radiative nonlinear need for coupled radiative, nonlinear hydrodynamics for shock-induced star formation.

• In addition to hydrodynamics phenomena there exist a broad range of collision effects which are gresponsible for cosmic ray generation in supernova remnants.

• HED facilities might contribute to simulations of such phenomena.

Page 35: Department of Physics Faculty of Science Ci Ui tiCairo University · 2020. 6. 3. · Ci Ui tiCairo University Ohio State University (12-26 Oct. 2011) Tp f D Atomic Str ct re Theor

1. Atomic Physics provides the fundamental parameters for Physics and Astronomy.

2. Atomic Spectroscopy is the key to understanding the physical and chemical conditions in physical and astronomical objects.

3. A detailed ab initio study on radiative and collisional atomic processes is needed in physical and astrophysical plasmas.

Page 36: Department of Physics Faculty of Science Ci Ui tiCairo University · 2020. 6. 3. · Ci Ui tiCairo University Ohio State University (12-26 Oct. 2011) Tp f D Atomic Str ct re Theor