Delaunay Triangulation and Tetrahedrilization
Embed Size (px)
description
Transcript of Delaunay Triangulation and Tetrahedrilization

Delaunay Triangulation and Tetrahedrilization
Marc van KreveldSlides DDM
1

Triangulations and their quality
• When going from points on a surface to triangles representing that surface, there are many ways to form the triangles
• Some ways are better than others
2

Triangulations and their quality
• This is not just true visually, but also when the triangulation is the interpolator for a terrain with elevation measurements
3

Triangulations and their quality
4

Triangulations and their quality
• Triangulations are good if they– do not have long edges– do not have triangles with both short and long edges– do not have triangles with very small angles– do not have triangles with obtuse angles– do not have vertices with high degree– …
5

Voronoi diagrams
• For a set of points (sites), the Voronoi diagram is the subdivision of the plane (space) with faces where exactly one of the sites is closest, among all sites
6

Voronoi diagrams
• Voronoi vertices “often” have degree 3, but it can be much larger
• Voronoi edges can be bounded or unbounded
7
Voronoi edge
Voronoi vertex

Voronoi diagrams
• With n point sites, there are < 2n Voronoi vertices and < 3n Voronoi edges
8
Voronoi edge
Voronoi vertex

Voronoi diagrams
• The average number of edges bounding a Voronoi cell is six (or slightly less), but a single cell could be bounded by up to n – 1 edges
9
Voronoi edge
Voronoi vertex

Voronoi diagrams
• Voronoi diagrams have the empty circle property for every Voronoi vertex and Voronoi edge
10

Voronoi diagrams
• Efficient algorithms exist to construct 2D Voronoi diagrams of n point sites, namely O(n log n) time algorithms (as fast as sorting! [mergesort, quicksort])
11

Voronoi diagrams
• 3D Voronoi diagrams with n point sites can have up to (n2) Voronoi vertices (0D), Voronoi edges (1D), and Voronoi facets (2D) but of course just n cells (3D)
• The descriptive complexity can be anything between linear and quadratic in n
12

Voronoi diagrams
• 3D Voronoi diagrams with n point sites often have linearly many Voronoi vertices (0D), Voronoi edges (1D), and Voronoi facets (2D)
13

Delaunay triangulation
• For a set of points in the plane, suppose we compute its Voronoi diagram and use it to make an embedded planar graph G as follows:– all points are vertices of the graph G– for all points whose Voronoi cells share a Voronoi edge,
we have an edge in G– faces of G are implied by the vertices and edges of G
14

Delaunay triangulation– all points are vertices of the graph G– edges in G correspond to edge-adjacent Voronoi cells– faces of G are implied by the vertices and edges of G
15

Delaunay triangulation– all points are vertices of the graph G– edges in G correspond to edge-adjacent Voronoi cells– faces of G are implied by the vertices and edges of G
16

Delaunay triangulation
• This graph is called the Delaunay graph• Notice that an edge of the Delaunay graph does not
necessarily intersect the corresponding Voronoi edge
17

Delaunay triangulation
18
• The Delaunay graph is a triangulation of the original points if and only if all Voronoi vertices have degree 3 there is no circle through more than 3 sites and with no sites inside

Delaunay triangulation
• Any (planar) completion of the Delaunay graph to a triangulation is a Delaunay triangulation of the original points
19

Delaunay triangulation
20
• The empty-circle property for Voronoi diagrams transfers to Delaunay triangulations– for each triangle, its circumcircle
contains no other pointsfrom the set inside
– for each edge, a circleexists through itsendpoints that hasno other points of the set inside

Delaunay triangulation
• A Delaunay triangulation of n points has at least n – 2 and at most 2n – 5 triangles (Delaunay triangles)
• A Delaunay triangulation of n points has at least 2n – 3 and at most 3n – 6 edges (Delaunay edges)
• The empty-circle property is “if and only if”: if three points have a circumcircle with no points inside or other points on the boundary, then they make a Delaunay triangle(a similar statement holds for edges)
21

Delaunay triangulation
• When a Delaunay graph is not a triangulation, the non-triangular faces have all vertices on a circle
22

Delaunay triangulation
23

Delaunay triangulation
24

Delaunay triangulation
25

Delaunay triangulation
26

Delaunay triangulation
27

Delaunay triangulation
• When we know four Delaunay edges that form an empty convex quadrilateral, we will have one of the two diagonals as a Delaunay edge
• The circumcircles of the triangles of one choice will contain the fourth points, but not for the other choice
28

Delaunay triangulation
• The Delaunay triangulation maximizes the smallest occurring angle, over all triangulations of the point set
• In other words, any other triangulation will have a smaller (or the same) smallest angle
29

Delaunay triangulation
• The Delaunay triangulation often connects points close together, e.g., every point is connected to its nearest neighbor
• But it does not minimize total edge length
30

Delaunay triangulation
• In a triangulation, when two triangles form a convex quadrilateral, their shared edge can be replaced by one other edge
• This is called an edge flip
31
flip

Computing the Delaunay triangulation
• Approach: insert points one-by-one, and restore the Delaunay triangulation after every insertion
32
1. Locate the triangle t con-taining the next point p
2. Connect p to t’s vertices3. Restore the Delaunay
triangulation by flipping non-Delaunay edges
pt

Computing the Delaunay triangulation
• Locate: Recall that we store triangulations in some convenient structure (triangle-neighbor structure, half-edge structure)
• From any access point (triangle, half-edge), walkalong a straight line to thelocation of the p, finding the triangle t containing p
• The details of the walk depend on the mesh structure used
33
p

Computing the Delaunay triangulation
• Connect: Make edges from p to t’s vertices; this replaces t by three new triangles
• Adapt the mesh representationstructure accordingly
Claim: These three new edges are Delaunay
34
p

C
Computing the Delaunay triangulation
• Proof of claim:– Triangle t was Delaunay before the insertion of p,
so there was an empty circle C through its vertices
35
pt
v

C
Computing the Delaunay triangulation
• Proof of claim:– Triangle t was Delaunay before the insertion of p,
so there was an empty circle C through its vertices– Consider the edge between p and
any vertex v of t, there is always acircle through p and v completely inside C (grow a small circle fromv tangent to C at v, until it hits p)
36
pt
v

C
Computing the Delaunay triangulation
• Proof of claim:– Triangle t was Delaunay before the insertion of p,
so there was an empty circle C through its vertices– Consider the edge between p and
any vertex v of t, there is always acircle through p and v completely inside C (grow a small circle fromv tangent to C at v, until it hits p)
– Since v and p have an empty circle,they define a Delaunay edge
37
pt
v

Computing the Delaunay triangulation
• Restore: The three new edges are always Delaunay, but the three new triangles need not be …
38
p
p
Delaunay
maybe not Delaunay

Computing the Delaunay triangulation
• In the picture: triangle qrs had an empty circle C(q,r,s) before the insertion of p, but maybe p lies inside now test p C(q,r,s), and if so, edge-flip qr to ps
39
p
Delaunay
maybe not Delaunay
q
rs
pq
rs
C(q,r,s)

Computing the Delaunay triangulation
• If flipped, the edges pq, pr, and also ps must be Delaunay, but maybe pqs and prs are not Delaunay triangles … recurse on them, using the triangles opposite qs and rs
40
p
Delaunay
maybe not Delaunay
q
rs
pq
rs
Delaunay
maybe not Delaunay

Computing the Delaunay triangulation
• Code for recursive flipping (restore algorithm):
41
TestFlipEdge (p, qr)
Let s p be the third point of the triangle incident to qrif p is inside C(q,r,s){ flip: delete qr and insert ps in the triangulation
TestFlipEdge(p, qs)TestFlipEdge(p, sr)
}

Computing the Delaunay triangulation
• Comments:– The edge flip must be done in our triangle-mesh
representation structure (triangle-neighbor, half-edge, …)– With suitable triangle-mesh structure, a flip takes O(1) time
(with an indexed mesh, a flip takes O(n) time)– Every edge flip connects p to an extra vertex
on the average, about 3 flips are needed– The main geometric test is the so-called in-circle test: does
a point p lie inside the circle defined by three points q,r,s?
42

The in-circle test
• The in-circle test: does a point p lie inside the circle defined by three points q,r,s? (1) The bad way:– Compute the bisectors of q,r and r,s– Intersect them to get the center c of C(q,r,s)– Compute dist(c,p) and dist(c,q) (the radius of C(q,r,s));
if the former is smaller, then p lies inside C(q,r,s)
43

The in-circle test
• The in-circle test: does a point p lie inside the circle defined by three points q,r,s? (2) The good way:– Compute the plane through (qx, qy, qx
2 + qy2), (rx, ry, rx
2 + ry2),
and (sx, sy, sx2 + sy
2)
– Test whether the point (px, py, px2 + py
2) lies above or below this plane: below p is inside; above p is outside
44

The in-circle test
• The in-circle test: does a point p lie inside the circle defined by three points q,r,s? (2) The good way:– Compute the plane through (qx, qy, qx
2 + qy2), (rx, ry, rx
2 + ry2),
and (sx, sy, sx2 + sy
2)
– Test whether the point (px, py, px2 + py
2) lies above or below this plane
• This is equivalent to computing the sign of the 4x4 determinant:
45
negative inside

The whole algorithm
• Initialization: we want to make sure that the next point p is always in some triangle of the current triangulation start with a suitable bounding box
46
(triangulated)

The whole algorithm
• The four extra vertices need special treatment when they are involved in an in-circle test (because they do not count for the empty-circle property)
47

The whole algorithm
1. Initialize a triangulation T with a bounding box2. For each point pi
i. Locate the triangle t of T containing pi by traversing the triangle-mesh structure from some access point
ii. Connect pi to the vertices of t
iii. (Restore) For each edge e of t, TestFlipEdge(p, e)
48

Efficiency of the algorithm
• Locate: if the points are distributed “reasonably”, a line typically intersects O(n) triangles(certainly true if the points lie in a regular square grid pattern)
• Worst-case O(n) time49some fixed starting point

Efficiency of the algorithm
• Connect: obviously O(1) time in the triangle-neighbor structure and half-edge structure
• Restore: typically 3 flips are needed: the average degree of a vertex in a triangulation is 6, connect leads to a starting degree of 3 for pi, and every flip increases the degree of pi by 1 typically O(1) time, but worst-case O(n) time
50

Efficiency of the algorithm
• Initialization O(n) time• Insertion of the i-th point takes worst-case O(i) time
but typically O(i) time
• Worst-case O(n2) time algorithm• Typically O(nn) time algorithm
Note: worst-case O(n log n) time algorithms exist; these are more complicated
51

Delaunay tetrahedrilization
• Global approach the same• The in-circle test becomes an in-sphere test
(solved with a 5x5 determinant)• The edge-flip becomes a bi-stellar flip: 2 3 tetrahedra
52

Delaunay tetrahedrilization
53

Terrains and 2D/3D Delaunay
• Note the difference:– A polyhedral terrain (triangular mesh representing
elevation) obtained by computing the Delaunay triangulation of the (x,y) points and using the triangles in 3D
– A 3D Delaunay tetrahedrilization of the (x,y,z) points
• A triangle in the first case does not necessarily occur as a triangular facet in the second case (the 2D circle can be small when the 3D ball is huge)
54

Constrained Delaunay triangulation
• Variation on the Delaunay triangulation where certain edges must be included (even if they are not Delaunay)
• Endpoints of such constraining edges are also vertices of the constrained Delaunay triangulation
55

Constrained Delaunay triangulation
• Useful when known linear features must be included in the triangulation– some polygon boundary– lake boundaries in a terrain with elevation values known
56

Constrained Delaunay triangulation
• Input: set of points and set of edges (constraints)
57

Constrained Delaunay triangulation
• Input: set of points and set of edges (constraints)
58
constrained Delaunay triangulation

Constrained Delaunay triangulation
• Input: set of points and set of edges (constraints)
59
normal Delaunay triangulation

Constrained Delaunay triangulation
• Relaxed empty-circle property: three points define a circle in the constrained Delaunay graph if and only if their circumcircle has no other points (including constraint endpoints) inside or on the boundary, with the possible exception of points on the other side of constraints that cut the circle fully
60

Constrained Delaunay triangulation
• To compute the constrained Delaunay triangulation, first compute the normal Delaunay triangulation of the points and constraint endpoints
• Then insert the constraints one by one, removing the intersected edges/triangles, and re-triangulating the holes
61

Constrained Delaunay triangulation
62
Build Delaunay triangulation

Constrained Delaunay triangulation
63
Insert constraining edge by removing intersected edges and triangles

Constrained Delaunay triangulation
64
Note: all other edges and triangles remain in the CDT, because the empty circle of the DT will also be an empty circle with the constraint added

Constrained Delaunay triangulation
65
Triangulate the cavity by shrinking a circle through the constraint endpoints until it reaches a vertex

Constrained Delaunay triangulation
66
Make two new edges to this vertex from the other points defining the circle, and recurse

Constrained Delaunay triangulation
67

Constrained Delaunay triangulation
• A constrained Delaunay triangulation can be constructed in O(n log n) time in the worst case(for n points and constraints)
• The given algorithm takes O(n3) time in the worst case but one expects much better performance
68

Constrained Delaunay in 3D
• Constrained Delaunay tetrahedrilizations do not always exist
• We would need to subdivide constraining facets using extra vertices and edges
69

Steiner points in triangulations
• The Delaunay triangulation of the given points may not give sufficiently well-shaped triangles add extra points (Steiner points)
• Useful for point sets with or without constraints
70

Steiner points in triangulations
• Steiner points can lower the maximum vertex degree and improve the smallest occurring angle
• Steiner points placed on a constraint can break it into several shorter constraints
71

Steiner points in triangulations
• A common example is triangulating a simple polygon with Steiner points on the edges and inside
72

Questions1. Prove that edge ps (slide 38/39) is always Delaunay, using the
empty circles known from the situation before p was inserted2. Why is the running time of inserting all constraints
incrementally into a constrained Delaunay triangulation cubic in the number of points and constraints?
3. Why do we expect much better performance than cubic when inserting all constraints?
73