Degeneracy - University of Michigan

8
Nils Walter: Chem 260 Degeneracy Energy only determined by J ß ß ß all m J = -J,…,+J share the same energy ß ß ß 2J+1 degeneracy Selection rule: m J = 0, ± ± ±1 J=3 J=2 m J = m J = m J = J, J-1,…, -J

Transcript of Degeneracy - University of Michigan

Page 1: Degeneracy - University of Michigan

Nils Walter: Chem 260

DegeneracyEnergy only

determined by J����

all mJ = -J,…,+Jshare the same

energy����

2J+1 degeneracy

Selection rule: ∆∆∆∆mJ = 0, ±±±±1

J=3

J=2

mJ =mJ =

mJ = J, J-1,…, -J

Page 2: Degeneracy - University of Michigan

Nils Walter: Chem 260

Total relativepopulation∆∆∆∆J = ±±±±1

The allowed rotational transitions of arigid linear rotor and their intensity

2J + 1degenerate

states ����increasinglydegenerate

B large B small

2J + 1

E = hBJ(J+1)

Boltzmanndistribution

kTE

lower

upper eNN ∆−

=

Page 3: Degeneracy - University of Michigan

Nils Walter: Chem 260

Rotational Raman spectroscopy

Experimentalsetup:

laser

Gross selection rule:anisotropic polarization

(example: H-H!)

Specific selection rules:∆∆∆∆J = +2 (Stokes lines)

∆∆∆∆J = -2 (anti-Stokes lines)

Page 4: Degeneracy - University of Michigan

Nils Walter: Chem 260

The vibration of molecules

Morse potential

νhE ��

���

� +=21vv

Solution for the harmonicoscillator:

���

����

�=

µπν k

21

2)(21

eRRkV −=

BA

BA

mmmm

+=µeffective

(reduced) mass

A B B

zero point energy

springconstant

Page 5: Degeneracy - University of Michigan

Nils Walter: Chem 260

���

����

�=

µπν k

21

���� 300-3000 cm-1 = Infrared

Vibrational transitions:Infrared spectroscopy

Gross selection rule:the electric dipole

moment of themolecule must changeduring the vibration

Page 6: Degeneracy - University of Michigan

Nils Walter: Chem 260

Specific selection rulesIn reality:

anharmonic oscillator

D0

Deq

ev xhhE νν2

21v

21v �

���

� +−��

���

� +=

xe = anharmonicity constant

∆∆∆∆v = ±±±±1, ±±±±2, ±±±±3,...

∆∆∆∆v = ±±±±1

harmonic oscillator

hνννν

Page 7: Degeneracy - University of Michigan

Nils Walter: Chem 260

The vibrating rotor

Born-Oppenheimer approximation:The energies of rotations and vibrations are so

different that Etotal = Erot. + Evib.

∆ ∆ ∆ ∆J = -1 ∆ ∆ ∆ ∆J = +1

Page 8: Degeneracy - University of Michigan

Nils Walter: Chem 260

Vibrations of polyatomic molecules:How many are there?Each atom can move along one of three axes:

���� 3N possible displacements (= degrees of freedom)����

Three of these degrees of freedom correspond to translational motion:���� 3N - 3 degrees of freedom left

����

Three (/two) degrees of freedom correspond to rotations:���� 3N - 6 (3N - 5 for linear molecule) degrees of freedom left for vibrations