DC Digital Communication PART6

152
Matched Filters By: Andy Wang

Transcript of DC Digital Communication PART6

Page 1: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 1/152

Matched Filters

By: Andy Wang

Page 2: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 2/152

What is a matched filter? (1/1) A matched filter is a filter used in communications to³match´ a particular transit waveform.It passes all the signal frequency components while

suppressing any frequency components where there isonly noise and allows to pass the maximum amount of signal power.The purpose of the matched filter is to maximize thesignal to noise ratio at the sampling point of a bit stream

and to minimize the probability of undetected errorsreceived from a signal.To achieve the maximum SNR, we want to allow throughall the signal frequency components, but to emphasizemore on signal frequency components that are large and

so contribute more to improving the overall SNR.

Page 3: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 3/152

Deriving the matched filter (1/8) A basic problem that often arises in the study of communication systems isthat of detecting a pulse transmitted over a channel that is corrupted bychannel noise (i.e. AWGN)Let us consider a received model, involving a linear time-invariant (LTI) filter of impulse response h(t).The filter input x(t) consists of a pulse signal g(t) corrupted by additivechannel noise w(t) of zero mean and power spectral density No/2.The resulting output y(t) is composed of go(t) and n(t), the signal and noisecomponents of the input x(t), respectively.

)()()(

0),()()(

t nt g t y

T t t wt g t x

o!ee!

LTI filter of impulseresponse

h(t)

White noisew(t)

Signalg(t)

y(t)x(t) y(T)

Sample attime t = TLinear receiver

Page 4: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 4/152

Deriving the matched filter (2/8)Goal of the linear receiver

To optimize the design of the filter so as to minimizethe effects of noise at the filter output and improve the

detection of the pulse signal.Signal to noise ratio is:

? A)(

|)(||)(|2

2

2

2

t n E

T g T g SNR o

n

o !!

W where |go(T)|2 is the instantaneous power of the filtered signal, g(t) atpoint t = T, and n

2 is the variance of the white gaussian zero meanfiltered noise.

Page 5: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 5/152

Page 6: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 6/152

Deriving the matched filter (4/8)Examine n

2:

? A ? A ? A

? A ? A

´́!!

!!!!

d f f S d f e f S

t nt n

t nt nt n

nn

f j

nn

n

n

n

10

0var 2

2

22

22

X T

X

W

W but this is zero mean soand recall that

autocorrelation is inverseFourier transform of power spectral density

autocorrelation at 0!X

Page 7: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 7/152

Deriving the matched filter (5/8)Recall:

? A

´´

´ ´!

!!!!

!

df f H N

df e f G f H SNR

sodf f H N df f H N Rt n E

f H N

f S

o

f T j

oonn

on

2

2

2222

2

||

2

|)()(|

||2

||2

0)(

||2

)(

T

W

H (f)

filter

SX(f) SX(f)|H (f)|2 = SY(f)

In this case, SX(f) is PSD of white gaussian noise,Since Sn(f) is our output:

2)( o

X N f S !

Page 8: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 8/152

Deriving the matched filter (6/8)To maximize, use Schwartz Inequality.

g*

g*

´́ d x x

d x x

22

2

1

||

|| Requirements: In thiscase, they must be finitesignals.

´ ´´

e d x xd x xd x x x 22

21

221 ||||||

This equality holds if 1(x) =k 2*(x).

Page 9: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 9/152

Deriving the matched filter (7/8)We pick 1(x)=H (f) and 2(x)=G(f)e j2 fTand want to make thenumerator of SNR to be large as possible

oo

oo

fT

fT j fT

N

d f f

N

d f f

S NR

d f f N

d f f d f f

d f f N

d f e f f

d f e f d f f d f e f f

´´´

´´´

´́ ´ ´

!e

e

e

22

2

22

2

2

2222

|)(|2

2

|)(|

|)(|2

|)(||)(|

|)(|2

|)()(|

|)(||)(||)()(|T

T T

maximum SNR

according to Schwarzinequality

Page 10: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 10/152

Deriving the matched filter (8/8)Inverse transform

Assume g(t) is real. This means g(t)=g*(t)If _ a

_ a f Gt g F

f Gt g F

!!

** )(

)(

then f f f f

!!

*

*

for real signal g(t)through duality

t T kg t h

df e f Gk

df e f Gk

df ee f Gk t h

t T f j

t T f j

f t j f T j

!!

!

!

´´́

T

T

T T

2

2

22)(

Find h(t) (inverse transform of H (f))

h(t) is the time-reversed anddelayed version of the inputsignal g(t).It is ³matched´ to the input signal.

Page 11: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 11/152

What is a correlation detector? (1/1) A practical realization of theoptimum receiver is thecorrelation detector.The detector part of thereceiver consists of a bank of M product-integrators or correlators, with a set of orthonormal basis functions,that operates on the receivedsignal x(t) to produce theobservation vector x.The signal transmissiondecoder is modeled as amaximum-likelihood decoder that operates on theobservation vector x toproduce an estimate, .mÖ

D etector

Signal TransmissionD ecoder

Page 12: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 12/152

The equivalence of correlation andmatched filter receivers (1/3)

We can also use a corresponding set of matched filtersto build the detector.

To demonstrate the equivalence of a correlator and amatched filter, consider a LTI filter with impulse responseh j(t).With the received signal x(t) used as the filter output, theresulting filter output, y j(t), is defined by the convolutionintegral:

X X X d t h xt y j j ! ´g

g

Page 13: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 13/152

The equivalence of correlation andmatched filter receivers (2/3)

From the definition of thematched filter, we can

incorporate the impulseh j(t) and the input signal j(t) so that:

Then, the outputbecomes:Sampling at t = T, we get:

t T t h j j *!

´

*! X X X d t T xt y j j )(

´¡

¡

! X X X d xt y j j

Page 14: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 14/152

The equivalence of correlation andmatched filter receivers (3/3)

So we can see that thedetector part of thereceiver may beimplemented using either matched filters or correlators. The output of each correlator isequivalent to the output of a corresponding matchedfilter when sampled at t =T.

Matched filters

Correlators

Page 15: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 15/152

Maximum Likelihood Receiver

Page 16: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 16/152

The transmitter sends one of M signals

s i(t), for i=1,2,«,MThe M signals forms a constellation in thesignaling space

s 1

s 2

s 3

s 4

s 5

s 6s 7

Page 17: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 17/152

The received signal x(t) = si(t) + n(t) is

decomposed to its components in thesignal space.

X

] (t)

X

] (t)

X

] 2 (t)

xt)

xi=si1+n1

x2=si2+n2

xN=siN+nN

D ecisionRule

i(t)

Page 18: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 18/152

? A ? A

? A ? A

¼¼½»

¬¬«!

!!

!!

0

2

0

0

exp1

2var var

N s x

N x f

N n x

sn E s x E

ij X

j j

ij jij j

j T

Since xi are independent Gaussian distributed random variabletheir joint density function is given by:

¼¼½

»

¬¬«

! §!

N

i

jii N j N s X N

s x N s x x x f j

1 0

22

021| exp|,...,, T

T

TT

An ML receiver selectss j that maximizef X|sj .D efine:

¼

¼

½

»

¬

¬«

§!

N

i

jii N

N

s x N

1 0

22

0 expT To be the likelihoodfunction

Maximizing the likelihood function is equivalent to minimizing thequantity

2

1

,minÖ §!

!! N

i jii j s j s x s xd s

j

TTT

T

Page 19: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 19/152

The maximum Likelihood receiver picks the signal that is closed to thereceived signal in the signal space

s 1

s 2s 3

s 4

s 5

s 6s 7

x dmin

Page 20: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 20/152

EECE 477/545

Communication Sys tem II(Digital Communication s)

Dr. X. L i

Lectu r e 6: S ection 3.1,3.2(Matched Filte r, ML D etecto r)S eptembe r 11, 2008

Page 21: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 21/152

Review: we have knownBaseband demodulation ± General procedure, system model, signal model ± Signal space representation of signals & noise

± Matched filter as the optimal demodulation filter Optimize output SNRTo study today: ± Matched filter (MF): signal-space MF design

±O

ptimal detector Note: book¶s approach is limited to binary case.O ur description include more general cases. But the final resultsare identical in binary case.

Page 22: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 22/152

IV. Matched filter: signal space representation1) Time-domain signal & Signal space representation

2) Use basis as matched filters

1( ) ( )

( ) ( ) ( )

N i ij j j

i

s t a t

r t s t n t

] !!

! § 1

1 1

( , , )

( , , ) ( , , )i i i N

i i i N N

a a

a a n n

!! !

s

r s n

L

L L

)(1t T

)( t T N ]

1 1 1ir a n!

N iN N r a n! ar)(t r

)}({ t j]

Page 23: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 23/152

Why does the figure give the matched filter output?

thCo nsider th e ma tch ed fil ter ,

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )

(

= ( ) ( ) (

) (

) ( )

)

i

i i

j j

j j

j j

i i

j i

i j j

j

y t h t r t r h t d

r y T r d r d

s d

h t T t

h T

r a

n

n

d

X X X

X X X X

X ] X X X

]

X ] X

] X X

gg

g gg g

g gg g

! !

@ !

!

! !

!

@

´´ ´

´ ´

Page 24: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 24/152

3) Convenience of using basis as matched filter

Matched filter & sampler becomes transparent: wheninput is signal space vector, output just equals to thatsignal space vector Matched filters are normalized, so noise componentshave variance (power) N0/2 only.

as if none

Matchedfilter

Samplerr(t) z(T)

r r

Signal spacevector

samplingvalue

Continuous time discrete time

transparent

Page 25: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 25/152

5) Example 6.1 (Same problem as Example 5.1-5.3,

but do it in signal space): Binary PAM transmission(100 bps, A=1 volt). AWGN with PSD 10-3 W/H z.Find the sampling values after demodulation andthe SNR.

b

t

−At

s1(t)

s2(t)

A

Tb

T

Page 26: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 26/152

3.2.1 Maximum LikelihoodD etector I. General introduction

1) Where is the detector

2) What is a detector? Detector is a decision-making device that makes decisions of the

transmitted symbols based on the received signal samples (or,map PAM samples z(T) into symbols or binary digits).

3) H ow does a detector work? Detector works based on the statistical property of the received

samples and the transmitted symbols Detector is important because of random noise Objective is to minimize decision error probability

Öi s( ) z T ! r

Page 27: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 27/152

II. Maximum likelihood detector

± Maximum likelihood detector is a detector thatminimizes decision error probability by choosingthe symbols that most likely produce thereceived samples.

³Most likely ´: quantified by likelihood function ± Likelihood function for si: the probability of the

received samples when the transmitted symbolis si

Example, if tossing a die, what is the likelihood of

obtain ³1´, etc?In our case, if 1 is transmitted, what is the likelihoodthat 0.5 or -.4 is received (due to noise)?

Page 28: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 28/152

III. Binary PAM transmission case1) Input to the detector (use signal space

representation)

simpli y n ot at io n0

00 0

0

2

( ) ( ) ( )

wh ere ( ), 1, 2, is de termined by symb o l

no ise: Gaussian, zer o mean, varian c e2

i

i b

i

i

z T a T n z a nT

a E i s N

n W

! p

! s !!

!

Be careful: some slight abuse of notations:s i denotes symbol, a i denotes signal space value of s in or n 0 both denote AWGN signal space value,sometimes y sometimes z is used as MF output

Page 29: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 29/152

2) D istribution of z can be written as a pdf conditionedon the transmitted symbols s

1and s

2The meaning is: if s1 is transmitted, then the probability of having sampling value z is p(z| a1)

Obviously, if s1 is sent, then z more likely lies around a1. If s2is sent, then z more likely lies around a2.

If the actually received value z is near a1, then we wouldbetter say that s1 is sent. O therwise, we say s2 is sent.

2

20

( )

2

0

0

1( ) ,

2

+ , 1, 2,

likeli hood unct io n

i z a

i

i

p z a e

z a n i

W

W T !

! ! ) Likelihood of s 1p(z|a 1)

a10 z

pdf

a2

Likelihood of s 2p(z|a 2

Page 30: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 30/152

3) Such idea is mathematically defined asWith the received sample z, the decision is made in favor of si such that p(z|a i) is the largestthis gives the maximum likelihood detection rule

Example 6.2. {s1=0,s2=1} produce samples {a1=0.1,a2=-0.1}, N0/2=10-3. If the received sample z=0.05. What isthe best decision?

_ a

Ö arg max ( )

i

ia

s p za!

Page 31: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 31/152

4) Maximum likelihood decision rule can be further simplified to minimum distance decision rule

Binary minimum distance decision rule

Example 6.3. Same as Example 6.2. For z=.05, then we have(z-a1)2=(.05-.1)2=.0025, while (z-a2)2=(.05+.1)2=1.1025. Sochoose a 1 (or s1).

_ a _ a

2

2

020

1ln ( | ) ln( 2 )2

arg max ( ) is equivalen t to

( )

arg min ( )

ii

i

a

i

aii

p z a

p z

z a

z aa

W T W

!

@

2 21 2 1 1

2 21 2 2 2

i ( ) ( ) , choo se ( o r )

i ( ) ( ) , choo se ( o r )

z a z a a s

z a z a a s

® ±¯

" ±°

Page 32: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 32/152

5) Explanation of binary minimum-distancedecision rule in signal space

For binary PAM, since

γ=0

S1S2

a1a2

1 2

1 1

2 2

Wi th dec isio n th resho ld ,2

if , choo se (o r )

if , choo se (o r )

a a

z a s

z a s

K

K

K

!

"®¯

1 2 , we h ave 0ba a E K ! ! !

Page 33: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 33/152

IV. Extend BinaryD ecision Rule to M-ary1) M-ary PAM: there are M different symbols si,

which give M different ai, and hence M likelihoodfunctions p(z|ai).Minimum distance decision rule: find the signal point aithat is closest to the received value z.Exercise 6.4. D etermine the decision rule for M=4

PAM.

Page 34: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 34/152

2) QPSKWe have 2-dimensional signal space, each samplingvalue z or signal pointa i is a 2-dimensional vector.Minimum distance decision rule

In signal space plane, each symbol has a decisionregion. Samples z falling in this region are decided infavor of this symbol

2 2 21 1 2 2Fin d with min || || ( ) ( )i i i i z a z a ! a z a

1s1 decision

regioin for s

Page 35: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 35/152

V. Now we know maximum likelihood detector is equivalent to minimum distance detector ± Very simple decision rule in signal space, just

compare the distances from the receivedsample to all the signal points

± It is optimal for equally probable symbols only ± O therwise, it is only sub-optimal ± Some special cases

Binary PAM, M-ary PAM, and QPSK decision rules ± But how optimal is it? We need a metric for

evaluation

Page 36: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 36/152

ConclusionsMore on Matched filter ± Signal space representation (We like it more!)Maximum likelihood detector ± What is it? ± Can be simplified to ³minimum distance detector´,

especially useful in signal space ± D ecision rule: binary PAM case ± D ecision rule: M-ary PAM or QPSK cases

Page 37: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 37/152

and

maximumlikelihood

Xiaoan WuFeb 16, 2005

Thomas Bayes(1702-1761)

http://www.mrs.umn.edu/~sungurea/introstat/history/w98/Bayes.html

Page 38: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 38/152

O utlineAn example: count # of fish in a pondBayes ¶Theorem and maximum likelihoodAnother example: Quasar selection in SDSS

Maximum likelihood estimators: consistentand unbiased?Minimum variance bound: error estimationRelation between MLE and least-squares

fittingMy research work: mass distribution of M87

Page 39: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 39/152

An example: # of fish in a

pondQ: There are more than 10,000 fish in a pond. How to

estimate the number of a fish if you are themanager of the pond?

A: 6 steps:1) catch 1000 fish2) mark them and put them back to the pond3) catch another 1000 fish in a few days and see

how many have marks on them, say, 10.

4) The fraction of marked fish: 10/1000=1/1005) The number of fish = 1000/(1/100)=100, 000

6) 1- error = 35, 000 (Maximum Likelihood)

Page 40: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 40/152

Bayes ¶theorem

( ) ( | ) ( ) ( | ) ( )( | ) ( )

( | )( )

: o bserva t io n

: h ypoth eses, e.g. parame ters

: pri o r in o rma t io n

( | , ) ( | ) ( | , ) ( | ) ( | , )

"Wh

at

yo

u kno

w abo

ut

ater

the

da

ta

r

r r r r r

r

P A B P A B P B P B A P A P A B P B

P B A P A

A

B

H

P B A H P B H P A B H P B H L A B H

B A

! !!

w !

I

arrive is wh

at

yo

u knew be o re [ ( | )] an d wh at th e d ata

Po sterio r

to ld

li

yo u [

ke

( | , )

liho (Ma c k od

]

ay)

"

pri o r r r P B H L A B H

w v

Page 41: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 41/152

Maximum likelihoodB

ayes' Th

eo

em: ( | , ) ( | ) ( | , )Maximum Likeli hood : in c ase we h ave n o prio r

in o rma t io n, w h ere is th e tot al number of h ypoth es

1( | )

es.

r r

r

r P B A H P B H L A B H P B H

N N

w!

Th eo ry ExampleFis h # :

Observa t io n : 10 marke d and 990 unmarke d

Pri o r in fo rma t io n :

r B r

A

H no ne

( | ) co ns tan t

1000 1000

10 990( | , )

1000

r

r

P B H r

L A B H r

¨ ¸ ̈ ¸© ¹ © ¹ª º ª º

¨ ¸© ¹ª º

Page 42: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 42/152

1- error = 35, 000

Page 43: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 43/152

Another example: Quasar selection inSDSS

Richards et al., 2002, AJ, 123, 2945Goal: find quasar candidates from SD SS photometric platesRequirements: Efficiency, completeness

Prior information:

1. Quasars are point sources2. Efficiency is poorer in the galactic plane due to contamination

from stars.3. Quasars and stars occupy different regions in color-color space

Result: completeness: 90%, efficiency: 65%

Page 44: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 44/152

Quasar selection in SDSS

( | , ) ( | ) ( | , )

: h eth er an o bje ct is quasar : all pri o r inf o rma t io n e c an h ave

:o bserved in p

hotome

tri

cpla

tes

r r r

r

H P B H L A B H

B H

A

w

Page 45: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 45/152

Maximum likelihood estimation

1 2

1 2

1 2

1

1

( ; , , , )

: unk o wn co ns tan t parame ters, { , , , }

: N in d epen d en t o bserva t i

N-d im p. d .f of II

o ns, { , , , }

( | ) ( ; ),

ln ln (

D .

0

; )

s

k

k

N

N

ii

N

ii

f x

x x x

L f x

L f x

U U UU U U

!

!

5

5 ! 5

0 ! ! 5

x0 !x5

§

K

K

K

Page 46: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 46/152

Maximum likelihood estimators2

2

2

( )

1 2

( )

2

2

2 2

1( )2

: independen t o bserva t io ns, { , , , }

1( | , )2

1ln ln(2 ) ln

2 2

1 ( ) 0

1 1( )

i

x

N

x

i

i

i i

f x e

X x x x

L X e

x N L N

x

x x N N

QW

Q

W

T W

Q T W QT W

W

Q Q W

Q W Q

!

!

¨ ¸! ! © ¹ª ºx ! !x

! !

§

§

§ §

K

Page 47: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 47/152

X={10, 20, 30, 40, 50}

Page 48: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 48/152

Mean of estimators: consistency and bias

2 22 2

Co nsis tenc y: , | | 0-

if is co nsis ten t , is als o co nsis ten t-

Unbiased: ( )

st ima to rs:1 1 1

, ( ) , ( )1

1( ) ( ) , co nsis ten t and unbiased

(

i i i

i

N t N a

t t N b

E t

t x t x t x N N N

E t E x N

E

Q W W

Q

Q Q

Q

p g p

!

! ! !

! !

§ § §

§2

2

2

2

( 1)) , co nsis ten t bu t biased

( ) , co nsis ten t and unbiased

N t

N E t

W

W

W

W

!

!

Page 49: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 49/152

V ariance of estimators: Minimumvariance bound

2

2

2

2 2

1 ln

( )

lnequali ty ho ld s i f is a linear f un ct io n of .

1Fo r example, is a MV B es t ima to r

1( ) is a MV B es t ima to r fo r ,

i

i

V a r t L

E

Lt

t x N

t x N

U

U

¢

W

U

U

W

uxx

xx

!

!

§§

bu t not a MV B es t ima to r fo r In general, maximum likeli hood es t ima to rs are biase d and not

MV B es t ima to rs, th us err o rs s ho uld be o b taine d by b oot strap

es t ima t io n. I f , th e es t ima to rs b N

W

p eco me co nsis ten t ,

unbiase d and minimum varian c e es t ima to rs.

Page 50: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 50/152

Relation between MLE and least-squares fitting

2

2

2

A fun ct io n ( , )

{ ( ) }

( , )1ln ln(2 ) ln

2 2

( , )maximize maximize

Th e same as leas t -squares pr oc edure.

i i i

i ii

i

i i

i

y f x

y f x y

y f x N L

y f x

U

H

UT W W

U

W

!!

¨ ¸0 ! ! © ¹ª º

¨ ¸0 p ' ! © ¹ª º

§ §

§

Page 51: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 51/152

Test of hypotheses

Likelihood ratioKolgomorov-Smirnov test

Page 52: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 52/152

My research work: mass distribution of M87

Page 53: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 53/152

Page 54: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 54/152

Page 55: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 55/152

Summary of MLEsPros

No data binning, all observed informationused.They become unbiased minimum variance

estimators as the sample size increases.They can generate confidence bounds.Likelihood functions can be used to testhypotheses about models and parameters.

ConsMLEs can be heavily biased.Calculating MLEs is often computationally

expensive.

Page 56: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 56/152

Conclusions

If we know prior information, wemaximize the posterior probability.

If we do not know any prior information, we maximize the

likelihood.

Page 57: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 57/152

S lide s b y Pr o f. Br ian L. Evan s and Dr. S e r ene Bane rjeeDept . o f Elect r ical and Compute r Enginee r ing

The Unive rs ity o f Te xa s at Au s tin

EE345S Real-Time Digital S ignal Processing Lab Fall 2008

Lecture 1 3

M atched Filte r ing and Di gitalPul se Amplitude Mo dulati on (PA M)

Page 58: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 58/152

13 - 58

O utli ne

T r ans mitti ng one bit at a time

M atched filte r ing

PA M sys tem

In te rsy mb ol in te r fer ence

C ommu n icati on pe r f or ma nceB it err o r pr o babili ty fo r binary signalsSymb o l err o r pr o babili ty fo r M -ary (mul tilevel) signals

E ye dia gr am

Page 59: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 59/152

13 - 59

T r ans mitti ng O ne Bit

T r ans mi ss ion on commu n icati on cha nn els is anal ogO ne wa y to tr ans mit di gital i n f or mati on is called2-level di gital pul se amplitude m odulati on (PA M)

8

bt

)(1 t x

A

µ 1¶ bit

Additive NoiseChannel

input output

x (t ) y (t )

8 b

)(0 t x

- A

µ 0¶ bit

t

receive µ 0¶ bit

receive µ 1¶ bit

)(0

t y

8 b

- A

8

bt

)(1 t y

AHow doe s the r eceive r decide which bit wa s

s ent?

Page 60: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 60/152

13 - 60

T r ans mitti ng O ne Bit

T wo-level di gital pul se amplitude m odulati on ove r cha nn el that ha s mem ory but d oes not add noise

8 h t

)(t h

18

bt

)(1 t x

A

µ 1¶ bit

8 b

)(0 t x

- A

µ 0¶ bit

Model channel

as LTI systemwith impulseresponse h (t )

Communication

Channel

input output x (t ) y (t )t

)(0 t y

- A T h

receive µ 0¶ bit

t 8 h + 8 b8 h

Assume that T h < T b

t

)(1 t y receive µ 1¶ bit

8 h + 8 b8 h

AT h

Page 61: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 61/152

13 - 61

T r ans mitti ng T wo Bit s (I n te r fer ence )

T r ans mitti ng tw o bit s (pul ses) back-t o-back will cau se ove r lap (i n te r fer ence ) at the r eceive r

Sample y(t ) at T b, 2 T b, «, a ndth r eshold with th r eshold of ze r o

Ho w d o we p r eve n t i n te rsy mb olin te r fer ence (I SI ) at the r eceive r?

8 h t

)(t h

1

Assume that T h < T b

t 8

b

)(t x

A

µ 1¶ bit µ 0¶ bit

8 b

* =)(t y

- A T h

t 8 b

µ 1¶ bit µ 0¶ bit

8 h + 8 b

Inte rsy mbol inte rf e r ence

Page 62: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 62/152

13 - 62

P r eve n ti ng ISI at Receive rO pti on #1: wait T h second s betwee n pul ses in tr ans mitte r (called gua r d pe r iod or gua r d i n te r val )

Disa d van tages?

O pti on #2: u se cha nn el equalize r in r eceive rFIR f ilter d esigne d via training sequen c es sen t by transmi tt er D e sign go al : c asc ad e of ch annel mem o ry an d ch annel

equalizer s ho uld give all-pass f requen c y resp o nse

8 h t

)(t h

1

Assume that T h < T b

* =

t 8

b

)(t x

A

µ 1¶ bit µ 0¶ bit

8 h

+ 8 b

t

)(t y

- A T h

8 b

µ 1¶ bit µ 0¶ bit

8 h

+ 8 b

8 h

Page 63: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 63/152

13 - 63

§!k

bk T k t g at s )()(

Digital 2-level PA M Sys tem

T r ans mitted sign al

Requi r es syn ch r on izati on of cl ock s betwee n tr ans mitte r and r eceive r

Tr an s mitte r Channel Receive r

b i

ClockT b

PAM g (t ) h (t ) c (t )1

07

a k {- A , A } s(t) x (t) y(t) y(t i )

AWGNw (t )

D ecision

Maker

Threshold P

Sample at

t=iT b

bits

ClockT b

pul s e s hape

r

matched f ilte r

¹¹ º ¸

©©ª¨!

1

00 ln4 p

p AT N

bopt

P

Page 64: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 64/152

13 - 64

M atched Filte r

Detecti on of pul se in p r esence of additive noiseR ec eiver kn o ws w h at pulse s h ape i t is loo king fo r Ch annel mem o ry ign o red (assume d co mpensa ted by oth er

means, e.g. ch annel equalizer in re c eiver)

Additive white Gau ss ian noi s e (AWGN) with ze r o mean and

va r iance N 0 /2

g (t )

P ul s e s ignal

w (t )

x (t ) h (t ) y (t )

t = T

y (T )

Matched f ilte r

)()( )(*)()(*)()(

0 t nt g t ht t ht g t y

!!

T is the sy mbol pe r iod

Page 65: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 65/152

13 - 65

po wer average po wer o usins tan tane

)}({|)(|

SN R pulse peak iswh ere,max

2

20 !!

t n E T g L

LL

M atched Filte r De r ivati on

De sign of matched filte rMaximize signal p o wer i.e. p o wer of at t = T Minimize n o ise i.e. p o wer of

C ombi ne de sign cr ite r ia

g (t )

P ul s e s ignal

w (t )

x (t ) h (t ) y (t )

t = T

y (T )

Matched f ilte r

)(*)()( t ht wt n !)(*)()(0 t ht g t g !

Page 66: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 66/152

13 - 66

P owe r Spect r aDete r mi n istic sign al x(t )w/ F ou r ier tr ans f or m X ( f )Po wer spe ct rum is square of

abs o lu te value of magni tud e

resp o nse (p h ase is ign o red )

Mul t ipli c atio n in F o urier do main is co nvo lu t io n int ime do main

Co n uga t io n in F o urier do mainis reversal an d co n uga tio nin t ime

Aut ocorr elati on of x(t )

Maximum value a t R x(0) R x(X ) is even symme tric , i.e.

R x(X ) = R x(-X ))()()()( *2

f X f X f X f P x !!

_ a)(*)()()( ** X X ! x x F f X f X

)(*)()( * X X X ! x x R x

t

1 x (t )

0 T s

X

R x (X )

-T s T s

T s

Page 67: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 67/152

13 - 67

P owe r Spect r a

Powe r spect r um f or sign al x(t ) isA utoco rrela t io n of ran do m signal n(t )

Fo r zer o -mean Gaussian n(t ) wi th varian c e W2

E stimate noise p owe rspect r um i n M atlab

_ a 22* )( )()()()( W X H W X X !!! f P t nt n E R nn

_ a)()( X x x R F f P !

N = 16384; % number of samplesgaussianNoise = randn(N,1);

plot( abs(fft(gaussianNoise)) .^ 2

noise floor

_ a ´g

g!! d t t nt nt nt n E Rn )()()()()( ** X X X

_ a )(*)()()()()()( *** X X X X X !!! ´£

£

nnd t t nt nt nt n E Rn

Page 68: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 68/152

13 - 68222

0 |)()(| |)(|

´

¤

¤

! d f e f f H T g T f j T

M atched Filte r De r ivati on

Noise

Sign al

´´g

g

g

g

!! df f H N

df f S t n E N 202 |)(|

2 )(})({

f 2

0 N

Noise power spectrum S W (f )

)()( )(0 f G f H f G !´g

g

! df e f G f H t g t f j )()( )( 20

T

20

|)(|2)()()( f H N

f S f S f S H W N !!

g (t )

P ul s e s ignal w (t )

x (t ) h (t ) y (t )

t = T

y (T )

Matched f ilte r

)(*)()(0 t ht g t g !

)(*)()( t ht t n ! AWGN Matched

filter

Page 69: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 69/152

13 - 69

´

´g

g

g

g!df f H

N

df e f G f H T f j

20

22

|)(|2

|)()(| T

M atched Filte r De r ivati onFi nd h(t ) that maximize s pul se peak SN R L

Schwa r tz¶s inequalit yFo r ve cto rs:

Fo r f un ct io ns:

upper b o und rea ch ed iff

|||| ||||co s |||| |||||| *

baba

babaT

T !e U

Rk xk x ! )()( 21 J J

´´´g

g

g

g

g

ge

-

22

-

21

2

*2

-1 )( )( )()( d x xd x xd x x x J J J J

U

a

b

Page 70: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 70/152

13 - 70)()( Hen c e,

inequali ty s' Sch war tz by)()(

wh enocc urswh ich , |)(|2

|)(|2

|)(|2

|)()(

|)(||)(||)()(

)()( and )()(Let

*

2*

2

0max

2

020

22

2222

2*21

t T g k t h

k e f k f H

d f f N

d f f N

d f f H N

d f e f f H |

d f f d f f H d f e f f H |

e f f f H f

opt

T f jopt

-

T f j

-

T f j

T f j

!!

!

e!

e!!

¥

¥

¥

¥

¥

¥

¥

¥

¥

¥

¥

¥

¥

¥

´

´´

´

´´´

T

T

T

T

L

L

J J

M atched Filte r De r ivati on

Page 71: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 71/152

13 - 71

M atched Filte r

G ive n tr ans mitte r pul se shape g (t ) of du r ati on T ,matched filte r is give n by ho p t(t ) = k g *(T -t ) f or all k Dura tio n an d sh ape of impulse resp o nse of th e o p t imal f ilter is

d etermine d by pulse s h ape g (t )ho p t(t ) is s c ale d , t ime-reverse d , an d sh ift ed versi o n of g (t )

O ptimal filte r maximize s peak pul se SN R

Do es n ot d epen d o n pulse s h ape g (t )Pr o po r t io nal to signal energy (energy per bi t) E bI nversely pr o po r t io nal to po wer spe ct ral d ensi ty of no ise

R 2

|)(|2

|)(|2

0

2

0

2

0

max !!!! ´´g

g

g

g N

E d t t g

N

df f G

N

bL

Page 72: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 72/152

13 - 72

t=kT T

M atched Filte r f or Recta ng ula r Pul se

M atched filte r f or cau sal r ecta ng ula r pul se ha s an impul se r espons e that i s a cau sal r ecta ng ula r pul se

C onvolve i nput with r ecta ng ula r pul se of du r ati on

T sec a nd sample r esult at T sec i s same a s toFirs t , in tegra te fo r T sec

Seco nd , sample a t symb o l peri od T sec

Th ir d , rese t in tegra t io n fo r nex t t ime peri od

In te gr ate a nd dump ci r cuit

´

S ample and dump

h (t ) = ___

Page 73: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 73/152

13 - 73

§!k

bk T k t g at s )()(

Digital 2-level PA M Sys tem

T r ans mitted sign al

Requi r es syn ch r on izati on of cl ock s betwee n tr ans mitte r and r eceive r

Tr an s mitte r Channel Receive r

b i

ClockT b

PAM g (t ) h (t ) c (t )1

07

a k {- A , A } s(t) x (t) y(t) y(t i )

AWGNw (t )

D ecision

Maker

Threshold P

Sample at

t=iT b

bits

ClockT b

pul s e s hape

r

matched f ilte r

¹¹ º ¸

©©ª¨!

1

00 ln4 p

p AT N

bopt

P

Page 74: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 74/152

13 - 74

)( )()()()(*)()( w

here)()()(

,i

ik k bk biii

k bk

t nT k i paiT t pat yt ct t nt nk T t pat y

!!!

§§{

Q Q Q

§!k

bk T k t at s )()( H

Digital 2-level PA M Sys tem

Wh y is g (t ) a pul se a nd not a n impul se?O th erwise, s(t ) w o uld require in f ini te ban d width

Sin c e we c ann ot sen d an signal of inf ini te ban d width , we limi t its ban d width by using a pulse s h aping f ilter

Neglecti ng noise, w ould like y(t ) = g (t ) * h(t ) * c(t )to be a pul se, i.e. y(t ) = Qp(t ) , t o elimi nate I SI

actual value(note that t i = i

T b )

intersymbol interference (I S I)

noise

p (t ) iscente r ed at

o r igin

Page 75: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 75/152

13 - 75

) 2

(rect 21

)(

||,0

, 21

)(

W f

W f P

W f

W f W W f P

!

±°

±¯®

"!

E limi nati ng ISI i n PA M

O ne ch oice f or P ( f ) is ar ecta ng ula r pul seW is th e ban d width of th e

sys tem

I nverse F o urier trans fo rmof a re ct angular pulse isis a sin c f un ct io n

T hi s is called the Ideal Ny qui st Cha nn elIt i s not r ealizable becau se pul se shape i s notcau sal a nd i s in fin ite i n du r ati on

)2(sin c)( t W t p T !

Page 76: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 76/152

13 - 76

±±±

°

±±±

¯

®

ee

e¹¹ º

¸©©ª

¨¹¹ º ¸

©©ª¨

e

!

W f f W

f W f f f W W f

W

f f W

f P

2||20

2|| 22

)|(|sin1

41

||0 21

)(

1

111

1

T

E limi nati ng ISI i n PA M

Anothe r ch oice f or P ( f ) is a r ai sed c osine spect r um

R oll-off fact or give s ba ndwidth i n exce ssof ba ndwidth W f or ideal Ny qui st cha nn elRai sed c osine pul seha s ze r o ISI whe nsampled c orr ectl yL et g (t ) and c(t ) be squa r e r oo t r ai sed c osines

W f 11!E

222 161

2co s

sinc

)( t W

t W

T

t

t p s E

ET ¹¹ º ¸

©©ª¨

!ideal N yquist

channel impulseresponse

dampening adjusted by rolloff factor E

Page 77: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 77/152

13 - 77

Bit E rr or P r obabilit y f or 2-PA M

T b is bit pe r iod (bit r ate i s f b = 1/T b)

v (t ) is A WGN wi th zer o mean an d varian c e W2

L owpa ss filte r ing a G au ss ia n r andom p r ocess p r oduce s anothe r G au ss ia n r andom p r ocessMean s c ale d by H (0)Varian c e sc ale d by twic e lo wpass f ilter¶s ban d width

M atched filte r ¶s ba ndwidth i s ½ f b

h (t )7s (t )

S ample att =

nT bMatched f ilte r v (t )

r (t ) r (t ) r n §!k

bk T k t g at s )()(

)()()( t vt st r !

r (t ) = h (t ) *r (t )

Page 78: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 78/152

13 - 78

Bit E rr or P r obabilit y f or 2-PA M

Bina ry wavef or m ( r ecta ng ula r pul se shape ) is s Aove r nth bit pe r iod nT b < t < (n+1 )T bM atched filte r ing by in te gr ate a nd dump

Set

gainof

match

ed

f il

ter

tobe 1/T b

I ntegra te re c eive d signal o ver peri od , sc ale, sample

n

T n

nT b

T n

nT bn

v A

d t t vT

A

d t t r T

r

b

b

b

b

s!

s!

!

´

´

)(1

)(1

)1(

)1(

0-

Anr

)( nr r P n

AProbability density function (PD F)

S ee s lide 13-16

Page 79: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 79/152

13 - 79

¹ º ¸©

ª¨ "!"!"!!

W W

Av P Av P v A P AnT s P n

nnb )()0())(|err o r (

0 W / A

W /n

v

Bit E rr or P r obabilit y f or 2-PA M

P r obabilit y of e rr or give n that the t r ans mittedpul se ha s an amplitude of ± A

Ra ndom va r iableis G au ss ia n with

ze r o mea n andva r ia nce of one

¹ º ¸©

ª¨!!¹

º ¸©

ª¨ "!! g´ W T W W

W

AQd ve Av P AnT s P

v

A

n 21))(|err o r ( 2

2

W

nv

Q f unction on ne xt s lide

PDF f o r N (0, 1)

Page 80: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 80/152

13 - 80

Q Fu ncti on

Q fu ncti on

C ompleme n ta ry err orfu ncti on er fc

Relati ons hip

´!g

x

y d ye xQ 2/2

21

)( T

´!g

x

t d t e xer f c22

)( T

¹ º ¸©

ª¨!

221

)(x

er f c xQ

Erf c[ x ] in Mathematica

e rf c ( x ) in Matlab

Page 81: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 81/152

13 - 81

2

2

R h

ere,

21

21

))(|err o r ()())(|err o r ()(err o r)(

W V

V

A

Q

AQ

A

Q

AQ

AnT s P A P AnT s P A P P bb

!!

!¹ º ¸©

ª¨!¹

º ¸©

ª¨¹

º ¸©

ª¨!

!!!

Bit E rr or P r obabilit y f or 2-PA M

P r obabilit y of e rr or give n that the t r ans mitted pul seha s an amplitude of A

Assume that 0 a nd 1 a r e equall y likel y bit s

P r obablit y of e rr ordec r ea ses exp onen tiall y with SN R

)/())(|err o r ( W AQ AnT s P b !!

VT V

T

V

21)( )(

22

ee eQ x

e xer f c x

V, po si t ivelargef o r x

Page 82: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 82/152

13 - 82

PA M Sy mb ol E rr or P r obabilit y

Ave r age sign al p owe r

G T ([ ) is square r oot of th e

raise d co sine spe ct rum Normalization by T sym will

be rem o ved in le ct ure 15 slid esM -level PA M amplitude s

Assumi ng each symb ol is equall y likel y

sym

nT

sym

nSignal T

a E d G

T a E

P }{

|)(|21}{ 2

22

!v! ´¦

¦

[[T

sym

M

i

M

ii

symSignal T

d M id

M T l

M T P

3)1()12(

21

11 22

2

1

2

1

2 !¹¹¹

º

¸

©©©

ª

¨!¹

º ¸©

ª¨! §§

!!

2,,0,,12 ),12(M M

iid l i ......!!

2-PAM

d

-d

4-PAM

Constellations withdecision boundaries

d

-d

3 d

-3 d

Page 83: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 83/152

13 - 83

sym N oise T

N d N P

sym

sym2

2

21

0

2/

2/

0 !! ´ [T

[

[

)()( sym Rn sym nT vanT x !

PA M Sy mb ol E rr or P r obabilit y

Noise p owe r and SN R

Assume ideal cha nn el,i.e. one with out I SI

C ons ide r M -2 inn er level s in cons tellati onErr o r if and o nly i f

wh erePr o babli ty of err o r is

C ons ide r tw o oute r level s in cons tellati on

d nT v sym R "|)(|

¹ º ¸©

ª¨!"W d

Qd nT v P sym R 2)|)((|

2/02 N !W

¹ º ¸©

ª¨!"W d

Qd nT v P sym R ))((

two-sided power spectral density of AWGN

channel noisefiltered by receiver

and sampled

0

22

3

)1(2 R

N d M

P

P

Nois e

Signa l v!!

Op tional

Page 84: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 84/152

13 - 84

Alte rn ate De r ivati on of Noise P owe rX X X d nT w g nT v

r ´§

§

! )()()(

_ aÀ¿¾

°¯®

¼½»

¬«! ´

g

g

22 )()()( X X X d nT w g E nT v E r

})()()()({ 212211´ ´!g

g

g

gX X X X X X d d nT w g nT w g E T T

´ ´

g

g

g

g!

212121)}()({)()( X X X X X X d d nT wnT w E g g

T T

T d Gd g

sym

sym

r r

22/

2/

2222 )(21

)(W [[

T W X X W

[

[

!!! ´´g

g

Noi s e

powe r

T = T symFilte r ed noi s e

W 2 H (X 1 ±X 2 )

Page 85: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 85/152

13 - 85

¹ º ¸©

ª¨!¹

º ¸©

ª¨

¹¹

º

¸©©

ª

¨ ¹ º ¸©

ª¨!

W W W d

QM

M d Q

M d

QM

M P e

)1(2

2 2

2

PA M Sy mb ol E rr or P r obabilit y

Assumi ng that each symb ol is equall y likel y,symb ol e rr or p r obabilit y f or M -level PA M

Symb ol e rr or p r obabilit y in te r m s of SN R

13

R sin c e R 1

3 12 22

22

1

2 !!¹¹¹ º

¸

©©©ª

¨¹ º ¸©ª̈! M d

P P

M Q

M M P

Nois e

Signa l e W

M- 2 interior points 2 e x terior points

Page 86: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 86/152

13 - 86

V isualizi ng ISI

E ye dia gr am i s empi r ical mea su r e of sign al qualit y

In te rsy mb ol in te r fer ence (I SI ):

Rai sed c osine filte r ha s ze r oISI whe n corr ectl y sampled

See slide s 13-31 a nd 13-32

§ §¨

¨ !

¨

{¨ ! ¹

¹¹

º

¸

©©©

ª

¨!!

k nk

k

sym symk n sym symk g

k T nT g aa g T k T n g an x

)0(

)( )0()()(

§§{!{!

!enk k

sym

nk k

sym sym

g

k T g d M

g

k T nT g d M D

,, )0(

)( )1(

)0(

)( )1(

Page 87: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 87/152

13 - 87

E ye Dia gr am f or 2-PA M

Useful f or PA M tr ans mitte r and r eceive r anal ys is and t r ouble shoo ting

T he m or e ope n the e ye, the bette r the r ecepti on

M =2

t - T sym

Sampling instant

Interval over which it can be sampled

Slopeindicates

sensitivity totiming error

D istortion over zero crossing

Margin over noise

t + T symt

Page 88: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 88/152

13 - 88

E ye Dia gr am f or 4-PA M

3 d

d

-d

-3 d

D ue to startuptransients.Fix is todiscard first

few symbolsequal tonumber of symbol periodsin pulse shape.

Page 89: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 89/152

Optimum Receiver Design

ENSC 428 ± Spring 2007

Page 90: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 90/152

Digital Communication System

Page 91: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 91/152

Wh at is a Design Problem ?

yyy

yyy

Page 92: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 92/152

N oise Model

Page 93: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 93/152

Eq uivalent Vector C h annel Model

Page 94: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 94/152

cont «

Theorem of Irrelevance:

form sufficient statistics!{ }|1k r k K £ £

Page 95: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 95/152

cont «

yyy

yyy yyy

yyy

Page 96: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 96/152

MAP Optimum Decision Rule

yyy

yyy

Page 97: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 97/152

ML Decision Ruleyyy

Page 98: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 98/152

E valuation of Probabilities

yyy

yyy

Page 99: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 99/152

cont «

Page 100: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 100/152

cont «

yyy yyy

Page 101: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 101/152

cont «

Page 102: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 102/152

Optimum Receiver Structure

yyy

yyy

yyy

yyy

Page 103: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 103/152

cont «

yyy

yyy

Page 104: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 104/152

cont «

yyy

Page 105: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 105/152

K ey Observations

Page 106: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 106/152

Optimum Correlation Receiver

Page 107: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 107/152

Simplified Receiver Cases

yyy

yyy

yyy

Page 108: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 108/152

cont «

yyy

Page 109: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 109/152

cont «

Page 110: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 110/152

Matc h ed Filter Receiver

Page 111: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 111/152

Page 112: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 112/152

Ex ample : Receiver Design

Page 113: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 113/152

cont «

Page 114: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 114/152

cont «

Page 115: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 115/152

cont «

Page 116: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 116/152

cont «

Page 117: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 117/152

cont «

Page 118: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 118/152

K ey Facts

Page 119: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 119/152

119119

The UbiquitousThe UbiquitousMATCH ED FILTERMATCH ED FILTER. . . it¶s everywhere!!. . . it¶s everywhere!!

an evening with a v ery im portant principle that¶s finding excitingnew applications in modern radar

R. T. H ill AES Societyan IEEE Lecturer D allas Chapter

25 September 2007

How do receivers work?

Page 120: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 120/152

120120

How do receivers work? A brief review, then, of

network theory

characterizing a receiver by its³impulse response function´

representing radio signals

reminding ourselves of ³convolution´in linear systems . .

Wow! . . all in twenty minutes or so!

Well, first we¶ll need a receiver block diagram

Page 121: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 121/152

121

³characterizing´ a receiver (or generally, a network)by its ³impulse response function´

Why?

Page 122: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 122/152

122

D o you see how we can represent any signal s(t) as acollection of im pulses . .?

. . the im pulse is a won d er f ul function, so useful ±I¶ll make some comments about it.

Page 123: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 123/152

123

Also, our signal (certainly in radio/radar work)is surely bipolar-cyclic . . a modulated carrier

. . that is, we can think of it, in radio work, as a sine waveof v oltage f iel d intensity an d polarity , leaving all the relationshipsto its accompanyingmagnetic f iel d and the medium at hand³to Maxwell´, so to speak!

D o you see nowhow im pulsescould still be usedto represent eventhis com ple x radiosignal?

Page 124: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 124/152

124

+

+

Now, we see here that the output is indeed the sumof the many impulse response functions, weighted and

translated by the input signal . . that the action of thislinear network is, bysu per position , a con v olution !

About designing our receiver . .

Page 125: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 125/152

125125

out designing our receiver . .

What impulse response function do I want??

Well, what do we want our receiver to do . . produce areplica of our signal? NO!! . . . discuss . . .

Page 126: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 126/152

126

For maximumsensiti v ity to our own signal¶s being atthe in put , we don¶t need to see a copy of it at the output . .

. . we simply need, at the output, the greatest possibleind ication of its presence at the input.

In other words, we need to have an impulse responsefunction that, whencon v ol v e d with our signal, wouldgive the greatest possible ³signal to noise ratio´ at theoutput.

Oh, yes . . did I neglect to mention ´noiseµ?

Yes noise always present in radio wor

Page 127: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 127/152

127

Admitting, then, that our total input is, say, ³gi(t)´,made up of our desired signal AND accompanying(but wholly independent) noise, we see that we cantreat these two inputs separately as they pass throughour receiver:

Y es, noise . . always present in radio wor

Oh, yes , , looks complicated,but nothing new here . . jremember the wordshere! Let the math ´talkµ

and our output is just the sum of the two convolutions ± one due

to the signal being present and one from the always- present noise.

So we might ask

Page 128: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 128/152

128

. . WH AT Impulse Response Function

would produce the greatest possible indication, at theoutput, of our signal¶s arrival at the input?

Answer . .. . various methods (differential calculus; the ³Schwartz

inequality´) lead to the conclusion that maximum sensitivityis achieved when the IRF is thecom ple x conjugate of thesubject signal:

Concepts:

Signal to Noise Ratio (SNR) as a measure of sensitivityRepresenting our cyclic signal in this ³A e j ³ formand, note that some details of necessary timedisplacement notation are overlooked here

S o, we might ask . .

Thi h i

Page 129: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 129/152

129129

T his, then, is

T he Matched Filter A receiver the impulse response function of whthe complex conjugate of a particular signal wthe greatest possi ble signal-to-noise ratio at the outpuwhen that signal is at the input and in the presindependent and completely random noise . . .receiver is the most ´sensitiveµ to the particula . . it is ´matchedµ to it.

i i lb i

Page 130: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 130/152

130

R epresenting our signal b y a rotating vector . .

. . a great convenience

. . a vector rotating at the carrier frequency, amplitude modulatedby s(t) with possible phase modulation (a binary phase coded signal,for example) shown as (t) . . do you know, or remember, thisconvention? Sure helps in diagramming a lot of things in today¶ssignal processing.

S ome discussion . . to improve our understanding

Page 131: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 131/152

131

. . consider a four-segment amplitude- and phase-modulated signal,and for the moment, wit h out noise . .

. . something similar to a child¶sscattering the blocks with which he hadmade a tower . . what if we wanted tosee that maximum height (rebuild thetower) again? I would re-align the blocksby multi plying each by its conjugate(remember: angles a dd when vectorsare multiplied) and ±v oila! ± the tower appears again, maximum possible height!Is ´angleµ then enough? T he conjugate involves the amplitude . .why?

In conjugating the phase modulation of our signal, why multiply

Page 132: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 132/152

132

j g g p g y p yin the convolutionb y the amplitude as well?

Ah . . we cannot ignore the noise!

The circles here show an e x pectation of the noise contribution.O ur input signal gi(t) is our own signal abcdan d this noise . . butnotice, the noise is (of course) of the same strength regar d less of the amplitude of abcd at that time. Also note, the noise is completelyran d om. This utter ran d omness and ind e pen d ence of abcd are propertiesof ³Gaussian´ noise, ³white´ noise, as from natural thermal phenomena.Now, to convolve with, say, aunit level phase-only conjugate woulde x aggerate some of the noise effects in the angle-corrected vector addition ± unwise. The be s t thing f o r u s to do , in s uch noi s e , isindeed to ignore it! ³Match´ to our signal alone!

OK . .but just one further thought . .

Page 133: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 133/152

133

Remember the child¶s block tower? Consider:

The child¶s playroom is subject to a mild earthquake(good grief!) as the blocks are tumbled in the waywe expected.

³White´ noise . . we¶reO K . . use the matched filter

O n the other hand, what if a ³wind´ had been blowing

distinctly from, say, thewest as the blocks were tumbledin addition to the earthquake¶s vibratory behavior?

Not random!! Biased! We¶d better com pensatefor that, assuming we can sense it. That is,we ma y wi s h to u s e a ³ whitening´ f ilte r to

r andomi ze the di s tu r bance be f o r e the matched f ilte r !T hat idea is indeed ´keyµ to much of the adaptive signal processing so strong in today·s radar literature . . . more about that to come

Page 134: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 134/152

Illustration # 1 . . Pulse Compression

Page 135: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 135/152

135135

Illustration # 1 . . Pulse Compression

First, some remarks about pulse compressionin modern radar . . fine range resolution desired,but still with long pulse for lots of energy

Achieved b y modulating the transmitted pulse,then ´compressingµ the pulse on receivewith (of course) a matched filter

T echniques ²binary phase coding widely used;typical lengths of hundreds to one ² our example here? A mere four to one!

Binary phase codingith ³t d d l li ´

X X

Page 136: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 136/152

136

X

first bit out

with a ³tapped delay line

Showing a 180o

phase shift on one tap,giving the binary code sequence ³ + - + + ³ , one of the Barker codes.

7

On receive (after down conversion), the signal is sent throughits Matched Filter . . in this case, the same circuit with the taps reversed:

7

+ + - +

X Clearly, pulse compression is a ³convolution´ process, and we see the ³time´ or ³range´ sidelobesin the output which, for all the Barker binary codes, are never more than unity value, while the narrowmain peak is full value, the number of bits in the code. In this matched situation, the output is the³autocorrelation function´, and a low sidelobe level is a very desirable attribute of a candidate code.

A peculiar thing about binary phase coding

Page 137: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 137/152

137

The idea that the ³tapped delay line, backwards´

is indeed a conjugating matched filter is not so clear in binary phase coding . . adding or subtracting 180°results in the same zero phase for that bit (all bitsthen being phase aligned).

Just to illustrate conjugation more clearly, imagine that our

four-segment sequence had been 0°, -30°, 0°, 0° ± terribleautocorrelation function, but it makes our point about phase³realignment´ byconjugation in this convolution process.

Pulse expander on transmit

Pulse compressor on receive

Compressed pulse output (hereshowing rather poor range sidelobes)

The Barker codes: sidelobe level

Page 138: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 138/152

138

Length 2 + - and + + - 6.0 dB3 + + - - 9.54 + + - + and + + + - - 12.05 + + + - + - 14.07 + + + - - + - - 16.9

11 + + + - - - + - - + - - 20.813 + + + + + - - + + - + - + - 22.3 dB

Modulo 2 adder

Seven-stage shift register

This seven-stage shift register is used to generate a 127-bit binary sequence

that can in turn be used to control a (0,180o

) phase shifter through which our IF signal is passed in the pulse modulator of our waveform generator. Suchshift-register generators produce sequences of length 2N ± 1 (before repeating;N is the number of stages). Today, computer programs generate the modulation,storing sequences known to have good autocorrelation functions, for many lengthsot h er than just 2Int- 1.

Illustration # 2 . .Antennas; the ´ A daptiveµ Array

Page 139: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 139/152

139139

First, some remarks about how antennas form receivebeams, phased arrays the simplest and very pertinent illustration

Next, we·ll ob serve that compensating for the ´angleof arrivalµ for an echo is indeed a form of (you guessed it) a matched filter, this one in ´angle spaceµ

T hen, we·ll consider (again in angle space) that the ´noiseµ may NO T be utterly random, not ´whiteµ (statisticallyuniform) in angle . . we may need a ´whiteningµ filter before our matched filter

First, consider a few discrete elements of a phased array,

Page 140: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 140/152

140

, p y,

These simple sketcheswill remind us of howantennas, phased arraysspecifically, perform beamsteering . . a matter of compensating for the

element-to-element phasedifference resulting fromthe path-length differencesassociated with the desiredbeam-steering angle (theangle-of-arrival ³under test´,

so to speak)

Page 141: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 141/152

T he ´ A daptiveAntennaµ . .

Page 142: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 142/152

142

Bottom line ± the coherent sidelobe cancellers (CSLC) ± the more elaborate ³adaptive phased arrays´

are forms of spatial ³whitening filters´, here to ³whiten´the heterogeneous disturbance ± noise ± in angle. Why? So thata straightforwardangle matched filter can be used most effectively.

Array signal processing . . first, spatial analysis,then compensation to ³whiten´

D iscussion

Spatial analysis analogousto ³spectral analysis´

Finding compensating weightsfor each element involvessolving as many simultaneousalgebraic equations . . inverting

the covariance matrix NO T EASYAdapted pattern will be ³inverse´ to the

angular distribution of noise, ³whitening´ it

Today¶s art state . . 16 DO F rather standard . .

Illustration # 3 . .S pace-T imeA daptive Processing,ST AP

Page 143: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 143/152

143143

A daptive antenna processing is S pace-A daptive. What is meant b yS pace-T imeA daptive Processing?

A few remarks about Doppler processing in radar, itself an application of the Matched Filter . . Doppler filters are indeed filters matched to a particular Doppler shift

Many radars, air borne ones particularly, need to do Doppler processing when theb ackground (noise, continuous ground clutter) is certainly NO T spectrally uniform . . once again,we·ll need a ´whiteningµ filter

Doppler filtering

Page 144: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 144/152

144

Theory View a singleD oppler ³filter´ as a classic ³Matched Filter´,

that is, we multiply (convolve) the input signalwit h t h e conjugate o f t h e signal being soug h t .

sample #1 2 3 4

signal

x

reference

Recall, phase angles add when complex numbers (vectors) are multiplied ± that is,the signal is ³rotated back´ in phase by the amount it might have been progressingin phase . . To the extent that such a component was in the input signal will we getan output in this particular filter. We¶ve built a Matched Filter for t h at component(that f requency component) alone. HO WEVER , this is best O NLY IF backgroundnoise is utterly random inD oppler frequencies . .

=

product

The airborne radar situation for discussion

Page 145: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 145/152

145

T he air borne radar situation . . for discussion

D o you see the need for ³whitening´ the background

in BO TH the angle dimension (the broadband interferenceis purelyangle dependent) and in D oppler shift (the groundreflectivity may NO T be utterly random, uniformly distributed in angle)?

Broadband interference

(jamming) suggests needfor adaptive antenna

Terrain featurescontribute tonon-uniform spectrum

of the side-lobe coupledground clutter

An airborne radar

ST AP ² tobe adaptive inboth the antenna·s pattern (as before discussed) and also in the weights to put on each pulse return to shape theD l filt i t ( ti g f th if

Page 146: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 146/152

146

Doppler filters in spectrum (compensating for the non-uniform spectrum of theb ackground clutter)

The ³data field´available to us

To adapt to the background¶s sensed heterogeneity in both angle and spectrum,we must solve (to be ³fully adaptive´) MN simultaneous equations (size of the covariancematrix to invert: MN x MN. No wonder, then, today¶s literature is full of STAP papersaddressing ways to ³reduce the dimensionality´ of the processing, find the best thatwe can do in ³partial adaptivity´! Very exciting work!

Space

Time

Illustration # 4 . .T he Polarimetric Matched Filter

Page 147: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 147/152

147147

First, a short general review of polarimetry in radar,its uses, its value

T hen, an example of the Polarimetric Whitening Filter and how a polarimetric radar image ( b yS AR )is improved just from PWF application to the area clutter

Of course, the ´whiteningµ to randomize the polarization stateof the surrounding area (local clutter in a scene) permits us then to search for targets ( building, vehicles) the´polarimetric signatureµ of which may havebeenestimated in advance.

R adar Polarimetry . . a little review

Page 148: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 148/152

148

Polarization of an Electro-Magnetic wave is taken as thespatial orientation of the E-field . . most, but certainlynot all, radars are designed to operate, for variousreasons, in either horizontal or vertical (linear)polarization, fixed by the antenna design ± that is,they are not ³polarimetric´

A ³Fully Polarimetric Radar´ (FPR) can, first, transmit onepolarization and separately measure the receivedsignal in each of two orthogonal polarizations, thendo the same, transmitting the orthogonal polarization

(e.g., transmit H , receive H and V;then transmit V, receiveH and V)

We learn a lot about a target by sensing its polarimetric scattering

D eveloped well by the meteorological radar community, someother specialty radars

P ola r imet ry u s ed f o r image enhancement

³Whit i ´ d ³M t hi ´ filt

Page 149: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 149/152

149

³Whitening and ³Matching filters

The work under D r. Les Novak (MIT/Lincoln Laboratories) in the 1990s is extremely

valuable in establishing these approaches to image enhancement by polarimetry. A number of papers in our conferences (to be cited here) and other teaching materialhe has provided me contribute to this instruction. An airborne SAR at 33 GH z,fully polarimetric, was used in many valuable experiments there.

Review . . D etection o f thing s o f inte r e s t (ta r get s) in the p r e s ence o f r etu r n not o f inte r e s t (noi s e , clutte r) r equi r e s contrast between the two in someob s e r vable dimen s ion s pace (he r e , ou r image ).

The idea of ³whitening´ and ³matching´ is universal, formsmatc h

e d f ilter theory.The whitening f ilte r: attempts to minimize the ³speckle´ of the background,

± that is, the standard deviation among the pixels of the clutter ± inimages formed by combining the complex images inHH , H V and VVusing complex weights among them, weights that minimize thecorrelation in cluttered regions among the three images. The weightsare based on knowledge of the clutter covariance matrix, a priori in theNovak work reviewed here, and involved its inversion, not difficult withorder three. With such PWF, cells that do not ³belong´ to the clutter willhave increased contrast with the background and are more easily seen.

The matched f ilte r: attempts to ma x imize the target intensity toclutter intensityin the combined image, by using weights based on knowledge (estimates)of the polarimetric covariance of target AND clutter returns.

(Polarimetry and image enhancement, cont.)

Page 150: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 150/152

150

. . from the Novak, Lincoln Laboratory work onPWF . . a dual-power-line scene, images bythe 33 GH z fully polarimetric airborne SAR.

The histograms show the increased contrast(separation of the clutter and towers compilations)

afforded by PWF processing compared to anon-polarimetric image, here theHH .

O ne can see the visible effect in the two imagesabove, HH on the left, PWF-processed at right.

All here with 1 foot x 1 foot resolution.

Well . . did we make it to this concluding slide??

The Matched Filter

Page 151: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 151/152

151

T he Matched Filter

The conjugate impulse response function ±max sensitivity to a signalin t h e presence o f w h ite noise

Normally taught in the context of just temporal signalprocessing . . functions of time, etc

Should be no less seen by students of radar as theunderlying principle to many advances, in³other´ dimension spaces: angle (antennapatterns), spectral analysis (D oppler filtering),polarimetric analysis (as in synthetic apertureradar image enhancement)

Today¶s ³adaptive´ processes are generally the MF-related³whitening´ required in non-random environments

Page 152: DC Digital Communication PART6

8/7/2019 DC Digital Communication PART6

http://slidepdf.com/reader/full/dc-digital-communication-part6 152/152