D/A and A/D Conversion Key ICs for Broadband...

30
D/A and A/D Conversion Key ICs for Broadband Communications M. Grözing #1 , X.-Q. Du 1 , P. Thomas 1 , T. Tannert 1 , M. Berroth 1 F. Centurelli 2 , P. Tommasino 2 , A. Trifiletti 2 M. Collisi 3 , M. Möller 3 H. Hettrich 4 , A. Bielik 4 , R. Schmid 4 K. Schuh 5 , F. Buchali 5 1 University of Stuttgart, Germany (USTUTT) 2 University of Rome, Italy (URM1) 3 University of Saarland, Saabrücken, Germany (USAAR) 4 Micram GmbH, Bochum, Germany (MICRAM) 5 Nokia Bell Labs, Stuttgart, Germany (NOKIA) # [email protected] WS-01 SiGe BiCMOS Integrated circuits for millimeter-wave applications: 5G, automotive radars, imaging, ... http://tima.univ-grenoble-alpes.fr/taranto/

Transcript of D/A and A/D Conversion Key ICs for Broadband...

Page 1: D/A and A/D Conversion Key ICs for Broadband Communicationstima.univ-grenoble-alpes.fr/taranto/doc/EuMW-2019... · WS -01: SiGe BiCMOS Integrated circuits for millimeter wave applications

D/A and A/D Conversion Key ICs for Broadband Communications

M. Grözing#1, X.-Q. Du1, P. Thomas1, T. Tannert1 , M. Berroth1

F. Centurelli2, P. Tommasino2, A. Trifiletti2

M. Collisi3, M. Möller3

H. Hettrich4, A. Bielik4, R. Schmid4

K. Schuh5, F. Buchali5

1University of Stuttgart, Germany (USTUTT)2University of Rome, Italy (URM1)

3University of Saarland, Saabrücken, Germany (USAAR)4Micram GmbH, Bochum, Germany (MICRAM)5Nokia Bell Labs, Stuttgart, Germany (NOKIA)

#[email protected]

WS-01SiGe BiCMOS Integrated circuits for millimeter-wave applications:

5G, automotive radars, imaging, ...

http://tima.univ-grenoble-alpes.fr/taranto/

Page 2: D/A and A/D Conversion Key ICs for Broadband Communicationstima.univ-grenoble-alpes.fr/taranto/doc/EuMW-2019... · WS -01: SiGe BiCMOS Integrated circuits for millimeter wave applications

- 2 -WS-01: SiGe BiCMOS Integrated circuits for millimeter-wave applicationsD/A and A/D Conversion Key ICs for Broadband Communications

• Application Demands for Broadband Converters• Optical data links

single-channel bandwidth demand is increasing further to increase data throughput with constant number of optical carriers (cost!) Current drivers:

• intra- and inter-data-center connects

• Connection of data centers to the metro networks

• mm-Wave and THz wireless networking Single-channel bandwidth demand is also increasing

• Circuit and Technology Solutions• ADCs and DACs in leading-edge CMOS technologies

(synchronous time-interleaved architectures inside)

• have shown an considerable performance increase: conversion rates now up to ~120 GS/s in 16nm FinFET [T. Drenski, J.C. Rasmussen, OFC 2018]

• but analog input/output bandwidth stays limited to 20…30 GHz [see next slide]

A solution is needed to increase the input/output bandwidth of converters• Analog Front-End Interleavers

• Ultra-High-Bandwidth Single-Core Converters

in leading-edge maximum fT/fmax SiGe-HBT technologies

1. Why SiGe-HBTs for ADC/DAC Front-Ends ?

Page 3: D/A and A/D Conversion Key ICs for Broadband Communicationstima.univ-grenoble-alpes.fr/taranto/doc/EuMW-2019... · WS -01: SiGe BiCMOS Integrated circuits for millimeter wave applications

- 3 -WS-01: SiGe BiCMOS Integrated circuits for millimeter-wave applicationsD/A and A/D Conversion Key ICs for Broadband Communications

1. Conversion Rates and Bandwidth of CMOS Converters

20

32 nmFDSOI40 nm

28 nmFDSOI

14 nmFinFET

40

2010 2014 2015 2018

28 nm

2019

30

10

0

50

Bandwidth (GHz)

31.5 GHz

20 GHz

Timeline

46 GS/s65 GS/s

56 GS/s

90 GS/s 72 GS/s

[ID10] [LK14] [DA15] [LK18] [KS19]

Bandwidth progression of

≥46 GS/s 6-8b CMOS ADCs

11.5 GHz BW improvement in 9 years BW = ~43 GHz by 2028?

[ID10] I. Dedic, "56Gs/s ADC : Enabling 100GbE," 2010 Conference on Optical Fiber Communication (OFC), San Diego, CA, 2010, pp. 1-3.[LK14] L. Kull et al., "22.1 A 90GS/s 8b 667mW 64× interleaved SAR ADC in 32nm digital SOI CMOS," 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), San Francisco, CA, 2014, pp. 378-379.[DA15] Y. Duan and E. Alon, "A 6b 46GS/s ADC with >23GHz BW and sparkle-code error correction," 2015 Symposium on VLSI Circuits(VLSI Circuits), Kyoto, 2015, pp. C162-C163.[LK18] L. Kull et al., "A 24–72-GS/s 8-b Time-Interleaved SAR ADC With 2.0–3.3-pJ/Conversion and >30 dB SNDR at Nyquist in 14-nm CMOS FinFET," in IEEE Journal of Solid-State Circuits, vol. 53, no. 12, pp. 3508-3516, Dec. 2018.[KS19] K. Sun, G. Wang, Q. Zhang, S. Elahmadi and P. Gui, "A 56-GS/s 8-bit Time-Interleaved ADC With ENOB and BW EnhancementTechniques in 28-nm CMOS," in IEEE Journal of Solid-State Circuits, vol. 54, no. 3, pp. 821-833, March 2019.

Page 4: D/A and A/D Conversion Key ICs for Broadband Communicationstima.univ-grenoble-alpes.fr/taranto/doc/EuMW-2019... · WS -01: SiGe BiCMOS Integrated circuits for millimeter wave applications

- 4 -WS-01: SiGe BiCMOS Integrated circuits for millimeter-wave applicationsD/A and A/D Conversion Key ICs for Broadband Communications

Outline - Approaches to More ADC/DAC-Bandwidth

1. Why SiGe-HBTs for ADC/DAC Front-Ends ?

2. A/D Conversion: Time-Interleaving Analog Front-Ends

1. Synchronous Time Interleaving (STI) 1:4 AFE USTUTT

2. Asynchronous Time Interleaving (ATI) 1:4 AFE URM1

3. D/A Conversion: Time-Interleaving & Single-Core Front Ends

1. Analog Multiplexer (AMUX) 2:1 AFE USAAR

2. Ultra-High-Speed Single-Core DAC MICRAM

4. A/D and D/A Application Experiments NOKIA

5. Conclusion

ATI: Asynchronous Time Interleaving ADC: Analog-to-Digital Conversion STI: Synchronous Time Interleaving DAC: Digital-to-Analog Conversion AFE: Analog Front End AMUX: Analog Multiplexer

Page 5: D/A and A/D Conversion Key ICs for Broadband Communicationstima.univ-grenoble-alpes.fr/taranto/doc/EuMW-2019... · WS -01: SiGe BiCMOS Integrated circuits for millimeter wave applications

- 5 -WS-01: SiGe BiCMOS Integrated circuits for millimeter-wave applicationsD/A and A/D Conversion Key ICs for Broadband Communications

2.1 STI 1:4 AFE for ADC Introduction: Charge-SamplingUSTUTT

tR I H R I H R I H

n n+1 n+2

vOUT const. vIN

vOUT

vIN

S1

S2 CI

VCC

gm

𝑺𝑵𝑹𝑪𝑺 =𝟏 − 𝐜𝐨𝐬 𝟐𝝅𝒇𝑻𝑰𝟐𝝅𝒇𝒕𝒋,𝒓𝒎𝒔

𝟐

𝑡𝑗,𝑟𝑚𝑠

𝑇𝐼

… root mean square rms sampling clock jitter… mean integration period

R = Reset, I = Integration, H = Hold

Charge-Sampling enables up to 3 dB SNR improvement

for 𝒇 >𝟏

𝟒𝑻𝑰for the same rms clk jitter

X.-Q. Du, M. Grözing, A. Uhl, S. Park, F. Buchali, K. Schuh, and M. Berroth, “A 112-GS/s 1-to-4 ADC front-end with more than 35-dBc SFDR and 28-dB SNDR up to 43-GHz in 130-nm SiGe BiCMOS,” in 2019 IEEE Radio Frequency Integrated Circuits Symposium (RFIC 2019), Boston, MA, USA, 2019.

Page 6: D/A and A/D Conversion Key ICs for Broadband Communicationstima.univ-grenoble-alpes.fr/taranto/doc/EuMW-2019... · WS -01: SiGe BiCMOS Integrated circuits for millimeter wave applications

- 6 -WS-01: SiGe BiCMOS Integrated circuits for millimeter-wave applicationsD/A and A/D Conversion Key ICs for Broadband Communications

2.1 STI 1:4 AFE for ADC: ADeMUX Operation Principle

recombine

t

dOUT

RH I H R I H Rt

vS2,00p

vS2,00n

gmvIN

T/H1

T/H3vS4,00n

vRST3

vRST1vS4,00p

vRST2vS4,90p

vS4,90n

vRST4

T/H2

T/H4

vOUT1

vOUT3

vOUT2

vOUT4

demultiplexerAnalog current

iIN

1-to-4 ADC front-end Digitizer array

R I H R I H R IHt

RH I H R I H R It

HI I HR H R It

ADC

ADC

ADC

ADC

DSP

8

8

8

8

32

VCC

VCC

VCC

VCC

8

@fS

@fS

@fS

@fS

@4fS

TS = 1/fS

USTUTT

X.-Q. Du, M. Grözing, A. Uhl, S. Park, F. Buchali, K. Schuh, and M. Berroth, “A 112-GS/s 1-to-4 ADC front-end with more than 35-dBc SFDR and 28-dB SNDR up to 43-GHz in 130-nm SiGe BiCMOS,” in 2019 IEEE Radio Frequency Integrated Circuits Symposium (RFIC 2019), Boston, MA, USA, 2019.

Page 7: D/A and A/D Conversion Key ICs for Broadband Communicationstima.univ-grenoble-alpes.fr/taranto/doc/EuMW-2019... · WS -01: SiGe BiCMOS Integrated circuits for millimeter wave applications

- 7 -WS-01: SiGe BiCMOS Integrated circuits for millimeter-wave applicationsD/A and A/D Conversion Key ICs for Broadband Communications

2.1 STI 1:4 AFE for ADC: ADeMUX Core Schematic

vRST1p

vRST1n

vS4,00p

VCCH

vOUT1n vOUT1p

vRST3p

vRST3n

vS4,00n

vOUT3pvOUT3n VBII

VBIIIvRST4p

vRST4n

vS4,90n

vOUT4pvOUT4n

vRST2p

vRST2n

vS4,90p

vOUT2n vOUT2p

vINnvINp

VBI

VEE

RERE

RCS

vS2,00p vS2,00n

T/H1 T/H3 T/H2 T/H4

USTUTT

X.-Q. Du, M. Grözing, A. Uhl, S. Park, F. Buchali, K. Schuh, and M. Berroth, “A 112-GS/s 1-to-4 ADC front-end with more than 35-dBc SFDR and 28-dB SNDR up to 43-GHz in 130-nm SiGe BiCMOS,” in 2019 IEEE Radio Frequency Integrated Circuits Symposium (RFIC 2019), Boston, MA, USA, 2019.

Page 8: D/A and A/D Conversion Key ICs for Broadband Communicationstima.univ-grenoble-alpes.fr/taranto/doc/EuMW-2019... · WS -01: SiGe BiCMOS Integrated circuits for millimeter wave applications

- 8 -WS-01: SiGe BiCMOS Integrated circuits for millimeter-wave applicationsD/A and A/D Conversion Key ICs for Broadband Communications

2.1 STI 1:4 AFE for ADC: Measurement Results

dB

USTUTT

X.-Q. Du, M. Grözing, A. Uhl, S. Park, F. Buchali, K. Schuh, and M. Berroth, “A 112-GS/s 1-to-4 ADC front-end with more than 35-dBc SFDR and 28-dB SNDR up to 43-GHz in 130-nm SiGe BiCMOS,” in 2019 IEEE Radio Frequency Integrated Circuits Symposium (RFIC 2019), Boston, MA, USA, 2019.

fsig [GHz]

Page 9: D/A and A/D Conversion Key ICs for Broadband Communicationstima.univ-grenoble-alpes.fr/taranto/doc/EuMW-2019... · WS -01: SiGe BiCMOS Integrated circuits for millimeter wave applications

- 9 -WS-01: SiGe BiCMOS Integrated circuits for millimeter-wave applicationsD/A and A/D Conversion Key ICs for Broadband Communications

2.1 STI 1:4 AFE for ADC: SummaryUSTUTT

Parameter This work DSO [1] DSO [2]

Sample rate (GS/s)112

4x28160 256

4x64

Frequency range (GHz) DC−50 DC−63 DC−110

TechnologySiGe BiCMOSfT = 300 GHz

InP InPfT = 600-700 GHz*

PAM-4 Baudrates100 Gbaud

40 km SMF [3]107 Gbaud

10 km SMF [4]160 Gbaud

10 km SMF [5]

First SiGe BiCMOS sampler

for 100 Gbaud PAM-4 reception demonstrated

Time-interleaved samplers enabling ≥100 Gbaud PAM-4 reception

[1] Data sheet: https://prc.keysight.com/Content/PDF_Files/5991-3868EN.pdf[2] Data sheet: https://literature.cdn.keysight.com/litweb/pdf/5992-3132EN.pdf[3] F. Buchali et al., "A SiGe HBT BiCMOS 1-to-4 ADC Frontend Supporting 100 GBaud PAM4 Reception at 14 GHz Digitizer Bandwidth," OFC 2019, Paper Th4A7.[4] S. Kanazawa et al., “Transmission of 214-Gbit/s 4-PAM signal using an ultra-broadband lumped-electrode EADFB laser module,” OFC 2016, Paper Th5B.3.[5] H. Yamazaki et al., "160-GBd (320-Gb/s) PAM4 Transmission Using 97-GHz Bandwidth Analog Multiplexer," IEEE Photonics Technology Letters, vol. 30, no. 20, pp. 1749-1751, Oct.15, 2018.*https://www.youtube.com/watch?v=DXYje2B04xE

X.-Q. Du, M. Grözing, A. Uhl, S. Park, F. Buchali, K. Schuh, and M. Berroth, “A 112-GS/s 1-to-4 ADC front-end with more than 35-dBc SFDR and 28-dB SNDR up to 43-GHz in 130-nm SiGe BiCMOS,” in 2019 IEEE Radio Frequency Integrated Circuits Symposium (RFIC 2019), Boston, MA, USA, 2019.

Page 10: D/A and A/D Conversion Key ICs for Broadband Communicationstima.univ-grenoble-alpes.fr/taranto/doc/EuMW-2019... · WS -01: SiGe BiCMOS Integrated circuits for millimeter wave applications

- 10 -WS-01: SiGe BiCMOS Integrated circuits for millimeter-wave applicationsD/A and A/D Conversion Key ICs for Broadband Communications

2.2 2:1 ATI AFE for ADC: Introduction to ATI PrincipleURM1

• Asynchronous Time-Interleaving (ATI)• Proposed by Tektronix and already used for 70GHz / 200GSps oscilloscopes

• An analog interface pre-processes the signal alleviating the specifications for THAs and ADCs (required analog bandwidth is reduced)

• Clocks in analog interface and sampling/digitizing can be asynchronous

Image by Tektronix (Techniques for Extending Real-Time OscilloscopeBandwidth, Tektronix White Paper, Lit.Num. 55W-29371-3, March 2015)

Page 11: D/A and A/D Conversion Key ICs for Broadband Communicationstima.univ-grenoble-alpes.fr/taranto/doc/EuMW-2019... · WS -01: SiGe BiCMOS Integrated circuits for millimeter wave applications

- 11 -WS-01: SiGe BiCMOS Integrated circuits for millimeter-wave applicationsD/A and A/D Conversion Key ICs for Broadband Communications

2.2 2:1 ATI AFE for ADC: ATI PrincipleURM1

Input signal

Sampling & Filtering (ATI AFE)sampling with appropriate clock phases and lowpass filtering

Time-Interleaved ADCsrequired analog bandwidth isfs/4; upsampling is implicit in recombination of outputs

Recombination of TI-ADC outputsspectral components with opposite sign are cancelled

Page 12: D/A and A/D Conversion Key ICs for Broadband Communicationstima.univ-grenoble-alpes.fr/taranto/doc/EuMW-2019... · WS -01: SiGe BiCMOS Integrated circuits for millimeter wave applications

- 12 -WS-01: SiGe BiCMOS Integrated circuits for millimeter-wave applicationsD/A and A/D Conversion Key ICs for Broadband Communications

2.2 ATI AFE for ADC: Pulseless ATI Block DiagramURM1

Hierarchical and Modular ATI Structure

Single ATI Core Block Diagram

The 2-channel ATI Core isa modular block that can be cascaded to obtainhigher-order interleaving

Pulseless ATI approach: the sampler (multiplication by pulses) is substituted by a mixer (multiplicationby 1 and 0): 50% duty cycle of clock is required

Page 13: D/A and A/D Conversion Key ICs for Broadband Communicationstima.univ-grenoble-alpes.fr/taranto/doc/EuMW-2019... · WS -01: SiGe BiCMOS Integrated circuits for millimeter wave applications

- 13 -WS-01: SiGe BiCMOS Integrated circuits for millimeter-wave applicationsD/A and A/D Conversion Key ICs for Broadband Communications

2.2 ATI AFE for ADC: Building BlocksURM1

DC Gain 0.1 dBOutput Bandwidth 22.8 GHzHD3 -46.1 dB

Mixer block DC Gain -0.6 dBPeak 0.83 dB3dB Bandwidth 11.2 GHzGain at 20 GHz -32 dBHD3 -42 dBrms Input Noise 1.65 mV

Low pass filter

DC Gain -0.6 dB3dB Bandwidth 46.5 GHzHD3 -48.6 dB

Input/output buffer chain

Peak-peak Output Voltage 355 mV

Duty Cycle 49.95 %

Frequency divider (input: 40GHz sine)

Page 14: D/A and A/D Conversion Key ICs for Broadband Communicationstima.univ-grenoble-alpes.fr/taranto/doc/EuMW-2019... · WS -01: SiGe BiCMOS Integrated circuits for millimeter wave applications

- 14 -WS-01: SiGe BiCMOS Integrated circuits for millimeter-wave applicationsD/A and A/D Conversion Key ICs for Broadband Communications

2.2 ATI AFE for ADC: ATI Test ChipURM1

Test chip for 40 GS/s 2-channel ATI blocks designed(frequency divider, mixer, lowpass filter, output buffer)

Target:≥ 40 GS/s ≥ 20 GHz AFE 4-channel ATI output4 commercial ADCs, i.e. AD9212 10-GSps 12-bit

Page 15: D/A and A/D Conversion Key ICs for Broadband Communicationstima.univ-grenoble-alpes.fr/taranto/doc/EuMW-2019... · WS -01: SiGe BiCMOS Integrated circuits for millimeter wave applications

- 15 -WS-01: SiGe BiCMOS Integrated circuits for millimeter-wave applicationsD/A and A/D Conversion Key ICs for Broadband Communications

3.1 AMUX 2:1 AFE for DAC: Operation PrincipleUSAAR

2:1 AMUX block diagram 2:1 AMUX RF substrate layout

Page 16: D/A and A/D Conversion Key ICs for Broadband Communicationstima.univ-grenoble-alpes.fr/taranto/doc/EuMW-2019... · WS -01: SiGe BiCMOS Integrated circuits for millimeter wave applications

- 16 -WS-01: SiGe BiCMOS Integrated circuits for millimeter-wave applicationsD/A and A/D Conversion Key ICs for Broadband Communications

Layout of 2:1 AMUX IC Die size: 1500 x 1300 µm²

3.1 AMUX 2:1 AFE for DAC: Core SchematicUSAAR

2:1 AMUX core schematic

Page 17: D/A and A/D Conversion Key ICs for Broadband Communicationstima.univ-grenoble-alpes.fr/taranto/doc/EuMW-2019... · WS -01: SiGe BiCMOS Integrated circuits for millimeter wave applications

- 17 -WS-01: SiGe BiCMOS Integrated circuits for millimeter-wave applicationsD/A and A/D Conversion Key ICs for Broadband Communications

3.1 AMUX 2:1 AFE for DAC: Dimensioning & Linearity

Linearity simulation resultAMUX-core at 128 GS/s (without layout extract)

USAAR

Please replace bygraph with betterquality (vector)

Optimization triangle

AMUX-core

Page 18: D/A and A/D Conversion Key ICs for Broadband Communicationstima.univ-grenoble-alpes.fr/taranto/doc/EuMW-2019... · WS -01: SiGe BiCMOS Integrated circuits for millimeter wave applications

- 18 -WS-01: SiGe BiCMOS Integrated circuits for millimeter-wave applicationsD/A and A/D Conversion Key ICs for Broadband Communications

3.1 AMUX 2:1 AFE for DAC: Simulated Eye Diagrams

Simulated eye diagrams (with layout extract)

PAM-4 (128 GS/s, 200mV/div) PAM-8 (100 GS/s, 200mV/div)

USAAR

Page 19: D/A and A/D Conversion Key ICs for Broadband Communicationstima.univ-grenoble-alpes.fr/taranto/doc/EuMW-2019... · WS -01: SiGe BiCMOS Integrated circuits for millimeter wave applications

- 19 -WS-01: SiGe BiCMOS Integrated circuits for millimeter-wave applicationsD/A and A/D Conversion Key ICs for Broadband Communications

3.1 AMUX 2:1 AFE for DAC: Summary

Parameter Target Spec Simulation/implemented at Tapeout

Sampling Rate SR=1/T

≥ 100GS/s up to 128 GS/s ≥ 128GS/s

ENoB ≥ 6 within 1st Nyquist band > 6.5 within 1st Nyquist band (without layout extract)> 7 up to 55 GHz (without layout extract)

Gain Vu ≥ 1 (voltage gain) Vu = 0.8 (voltage gain)

Full Scale Swing 1 Vpp differential (500mVpp single-ended)

800mVpp differential(400mVpp single-ended)

Bandwidth > 50 GHz (70 GHz targeted)

> 70 GHz (without substrate, connectors, …)

USAAR

Page 20: D/A and A/D Conversion Key ICs for Broadband Communicationstima.univ-grenoble-alpes.fr/taranto/doc/EuMW-2019... · WS -01: SiGe BiCMOS Integrated circuits for millimeter wave applications

- 20 -WS-01: SiGe BiCMOS Integrated circuits for millimeter-wave applicationsD/A and A/D Conversion Key ICs for Broadband Communications

3.2 Single Core DAC: Block Schematic & Layout

DAC Simplified Block Diagram

MICRAM

DAC Toplevel Layout Die size ~ 5140 x 6042 µm²

Page 21: D/A and A/D Conversion Key ICs for Broadband Communicationstima.univ-grenoble-alpes.fr/taranto/doc/EuMW-2019... · WS -01: SiGe BiCMOS Integrated circuits for millimeter wave applications

- 21 -WS-01: SiGe BiCMOS Integrated circuits for millimeter-wave applicationsD/A and A/D Conversion Key ICs for Broadband Communications

3.2 Single Core DAC: Simulated Eye Diagrams

PAM-4 (256 Gb/s) eye diagram at 128 GS/s

PAM-8 (384 Gb/s) eye diagram at 128 GS/s

MICRAM

• Without assembly parasitics• Pure DAC performance, no digital filter applied

Page 22: D/A and A/D Conversion Key ICs for Broadband Communicationstima.univ-grenoble-alpes.fr/taranto/doc/EuMW-2019... · WS -01: SiGe BiCMOS Integrated circuits for millimeter wave applications

- 22 -WS-01: SiGe BiCMOS Integrated circuits for millimeter-wave applicationsD/A and A/D Conversion Key ICs for Broadband Communications

3.2 Single Core DAC: Simulated Resolution & Bandwidth

Sinewave Synthesis results at 128 GS/s

MICRAM

optimistic simulation without parasitics

Page 23: D/A and A/D Conversion Key ICs for Broadband Communicationstima.univ-grenoble-alpes.fr/taranto/doc/EuMW-2019... · WS -01: SiGe BiCMOS Integrated circuits for millimeter wave applications

- 23 -WS-01: SiGe BiCMOS Integrated circuits for millimeter-wave applicationsD/A and A/D Conversion Key ICs for Broadband Communications

3.2 Single Core DAC: Summary

Parameter Target Spec optimistic simulation results/ implemented at Tapeout

Sampling Rate SR=1/T

≥ 130 GS/sas far as possible tunable

Phys. Resolution 8 bit

ENoB ≥ 4 within 1st Nyquist band > 4.5 within 1st Nyquistband> 5.5 up to 50 GHz(without assembly parasitics)

Bandwidth > 50 GHz (65 GHz targeted)

> 70 GHz (without substrate, flange connectors, …)

Full Scale Swing 1 Vpp differential (500 mVpp single-ended)

400 mVpp … 1.2 Vpp differential

Synchronization up to 4 DAC ICs Synchronization concept implemented

Pattern Memory Size ≥ 512 kSamples 512 kSamples

MICRAM

Page 24: D/A and A/D Conversion Key ICs for Broadband Communicationstima.univ-grenoble-alpes.fr/taranto/doc/EuMW-2019... · WS -01: SiGe BiCMOS Integrated circuits for millimeter wave applications

- 24 -WS-01: SiGe BiCMOS Integrated circuits for millimeter-wave applicationsD/A and A/D Conversion Key ICs for Broadband Communications

4. Application Experiments: Electrical B2B PAM4 (I)

PAM-4 test setup @ NOKIA-Lab 100 GBd PAM-4 (200 Gb/s) Resampled symbols

NOKIA

ADC AFE

USTUTT

RF amp

DACMICRAM

CLK

RTO

Nu

mb

er

of

cou

nts

DAC100 GS/s

STI AFE

112 GS/s

RTO4x 50 GS/s

BW: 15-20 GHz filter

MIMO PAM-4

evaluation

MU

X

Offline signal processing

BER = 5.7e-5

PCB

100 GBd

-2 -1.5 -1 -0.5 0 0.5 1.51 20

1000500

150020002500

300035004000

Equalized amplitude

4x 28 GBd 4x 50 GBd 100 GBd

X.-Q. Du, M. Grözing, A. Uhl, S. Park, F. Buchali, K. Schuh, and M. Berroth, “A 112-GS/s 1-to-4 ADC front-end with more than 35-dBc SFDR and 28-dB SNDR upto 43-GHz in 130-nm SiGe BiCMOS,” in 2019 IEEE Radio Frequency Integrated Circuits Symposium (RFIC 2019), Boston, MA, USA, 2019.

Page 25: D/A and A/D Conversion Key ICs for Broadband Communicationstima.univ-grenoble-alpes.fr/taranto/doc/EuMW-2019... · WS -01: SiGe BiCMOS Integrated circuits for millimeter wave applications

- 25 -WS-01: SiGe BiCMOS Integrated circuits for millimeter-wave applicationsD/A and A/D Conversion Key ICs for Broadband Communications

4. Application Experiments: Electrical B2B PAM4 (II)

• Direct coupling of DAC to frontend

• PAM4 signal at variable symbol rate

• Oversampling in Tx for symbol rates <100 GBaud (different conditions in Tx)

• SNR 24 dB down to 19 dB of the end to end system

18

19

20

21

22

23

24

25

50 60 70 80 90 100 110

SN

R [

dB

]

Symbol rate [GBaud]

RC-pulseshape and

oversampling

No pulseshaping

1 Sa/s

1E-1

3E-2

1E-2

1E-3

1E-4 4

6

8

10

12

14

16

18

20

-4 -2 0 2 4 6

SN

R [

dB

]

Bit E

rro

r R

atio

Received power [dBm]

EFEC

KP4

1E-1

3E-2

1E-2

1E-3

1E-412 14 16 18 20 22

Bit E

rro

r R

atio

Bandwidth [GHz]

-2.3 dBm 0.2 dBm 1.7 dBm

NOKIA

F. Buchali, K. Schuh, S. T. Le, X.-Q. Du, M. Grözing, and M. Berroth, “A SiGe HBT BiCMOS 1-to-4 ADC frontend supporting 100 GBaud PAM4 reception at 14 GHz digitizer bandwidth,” in 2019 Optical Fiber Communication Conference (OFC 2019), 2019. https://doi.org/10.1364/OFC.2019.Th4A.7

Page 26: D/A and A/D Conversion Key ICs for Broadband Communicationstima.univ-grenoble-alpes.fr/taranto/doc/EuMW-2019... · WS -01: SiGe BiCMOS Integrated circuits for millimeter wave applications

- 26 -WS-01: SiGe BiCMOS Integrated circuits for millimeter-wave applicationsD/A and A/D Conversion Key ICs for Broadband Communications

4. Application Experiments: Optical PAM4 over Fibre (I)NOKIA

ADC FE

RF ampDAC CLK

Scope

Layout

Die

100 GSa/s 6 bit DAC

LiNb MODTDC

DCFSMF

TIA

112 GSa/s 1-to-4 ADC FE

LD 1550 nm

SOA

PD

50 GSa/s 15-20 GHz real-time

scopeMIMO 4x4

MU

X

BER & SNR

analsyis

Offline DSP

AMP

Electrical B2B

Optical B2B

500 m

10 km

40 km

lin / nlin

equal.

BER &

SNR

analysis

• Tx• 100 GSa/s DAC + driver• LiNb amplitude modulator• Laser at 1550 nm, Pout up to 15 dBm

• Link• Data center reach = 500 m• Long reach = 10 km• Extended reach = 40 km• Chromatic fiber dispersion

= 17 ps/nm/km100 GBd PAM-4 Tx

DirectDetection Rx

… Semiconductor Optical Amplifier

DCF … Dispersion Compensation Fiber

SOA

SMF … Single -Mode Fiber

TDC … Tuneable Dispersion Compensation

• Rx• High bandwidth PD, electrical amplifier• 1-to-4 ADC frontend, electrical amp

with differential to single ended conversion• Sampling at 112 GSa/s, Nyquist frequency is

>50 GHz • ADC at 50 GSa/s, bandwidth 14 GHz … 20 GHz

F. Buchali, K. Schuh, S. T. Le, X.-Q. Du, M. Grözing, and M. Berroth, “A SiGe HBT BiCMOS 1-to-4 ADC frontend supporting 100 GBaud PAM4 reception at 14 GHz digitizer bandwidth,” in 2019 Optical Fiber Communication Conference (OFC 2019), 2019. https://doi.org/10.1364/OFC.2019.Th4A.7

Page 27: D/A and A/D Conversion Key ICs for Broadband Communicationstima.univ-grenoble-alpes.fr/taranto/doc/EuMW-2019... · WS -01: SiGe BiCMOS Integrated circuits for millimeter wave applications

- 27 -WS-01: SiGe BiCMOS Integrated circuits for millimeter-wave applicationsD/A and A/D Conversion Key ICs for Broadband Communications

4. Application Experiments: Optical PAM4 over Fibre (II)

18

19

20

21

22

23

24

25

50 60 70 80 90 100 110

SN

R [

dB

]

Symbol rate [GBaud]

RC-pulseshape and

oversampling

No pulseshaping

1 Sa/s

1E-1

3E-2

1E-2

1E-3

1E-4 4

6

8

10

12

14

16

18

20

-4 -2 0 2 4 6

SN

R [

dB

]

Bit E

rro

r R

atio

Received power [dBm]

EFEC

KP4

1E-1

3E-2

1E-2

1E-3

1E-412 14 16 18 20 22

Bit E

rro

r R

atio

Bandwidth [GHz]

-2.3 dBm 0.2 dBm 1.7 dBm

• Requires +2.4 dBm and -0.3 dBm at KP4 and EFEC threshold

• SNR is slightly decreased by optical system by ~0.5 dB

• Down to 16 GHz bandwidth no power penalty, at 14 GHz 0.8 dB power penalty

Pre-FEC BER and SNR vs Rx power Pre-FEC BER vs ADC BW

NOKIA

F. Buchali, K. Schuh, S. T. Le, X.-Q. Du, M. Grözing, and M. Berroth, “A SiGe HBT BiCMOS 1-to-4 ADC frontend supporting 100 GBaud PAM4 reception at 14 GHz digitizer bandwidth,” in 2019 Optical Fiber Communication Conference (OFC 2019), 2019. https://doi.org/10.1364/OFC.2019.Th4A.7

Page 28: D/A and A/D Conversion Key ICs for Broadband Communicationstima.univ-grenoble-alpes.fr/taranto/doc/EuMW-2019... · WS -01: SiGe BiCMOS Integrated circuits for millimeter wave applications

- 28 -WS-01: SiGe BiCMOS Integrated circuits for millimeter-wave applicationsD/A and A/D Conversion Key ICs for Broadband Communications

4. Application Experiments: Optical PAM4 over Fibre (III)

BER below the EFEC threshold for

• 500m

• 10 km

• 40 km

1E-1

3E-2

1E-2

1E-3

1E-4

1E-50.1 1 10 100

Bit E

rro

r R

atio

Transmission Distance [km]

EFEC

FFE

FFE

FFE

Volterra

Volterra

EDC DCF+EDC

KP4

DCF+SOA+EDC

0 2 4 6 8 10 12 14 16−2

−1.5−1

−0.50

0.51

1.52

Equ

aliz

ed a

mp

litu

de

#Samples x 104

1E-1

3E-2

1E-3

1E-41E-5

Bit

Err

or

Rat

io

Transmission distance (km)

0.1 1 10 100

EFEC

KP4

FFE FFE

EDC DFC+EDC

DFC+SOA+EDC

Volterra

Volterra

FFE

1E-2

100 GBd PAM-4 transmission with

BER below the EFEC threshold with linear equalization and

BER even below KP4 threshold with Volterra equalization

Volterra• mitigate residual nonlinearities• improves BER below KP4 • gain is ½ decade in BER• negligible gain in distance

NOKIA

F. Buchali, K. Schuh, S. T. Le, X.-Q. Du, M. Grözing, and M. Berroth, “A SiGe HBT BiCMOS 1-to-4 ADC frontend supporting 100 GBaud PAM4 reception at 14 GHz digitizer bandwidth,” in 2019 Optical Fiber Communication Conference (OFC 2019), 2019. https://doi.org/10.1364/OFC.2019.Th4A.7

Page 29: D/A and A/D Conversion Key ICs for Broadband Communicationstima.univ-grenoble-alpes.fr/taranto/doc/EuMW-2019... · WS -01: SiGe BiCMOS Integrated circuits for millimeter wave applications

- 29 -WS-01: SiGe BiCMOS Integrated circuits for millimeter-wave applicationsD/A and A/D Conversion Key ICs for Broadband Communications

5. ConclusionALL

1. Why SiGe-HBT Converter (-AFEs)?

Only SiGe-HBTs provide the necessary bandwidth

2. A/D Conversion: Time-Interleaving Analog Front-Ends

1. STI 1:4 AFE (ADeMUX) @ 112 GS/s measured

2. ATI 1:4 AFE concept for 40 GS/s designed & simulated

3. D/A Conversion: Analog MUX and Single-Core Front Ends

1. STI 2:1 AFE (AMUX) for 128 GS/s designed & simulated

2. Single-core DAC 128 GS/s designed & simulated

4. A/D and D/A Application Experiment

100 GBd PAM4 (200 Gb/s) over 40 km with DD-Rx

demonstrated below EFEC and KP4-BER-thresholds

Page 30: D/A and A/D Conversion Key ICs for Broadband Communicationstima.univ-grenoble-alpes.fr/taranto/doc/EuMW-2019... · WS -01: SiGe BiCMOS Integrated circuits for millimeter wave applications

- 30 -WS-01: SiGe BiCMOS Integrated circuits for millimeter-wave applicationsD/A and A/D Conversion Key ICs for Broadband Communications

The research leading to these results has received funding from the European Commission'sECSEL Joint Undertaking under grant agreement n° 737454 - project TARANTO - and therespective Public Authorities of France, Austria, Germany, Greece, Italy and Belgium.

Thank you