Current status of the silicon strip sensor development in Korea 1.Introduction 2.Silicon Inner...

24
Current status of the silicon strip Current status of the silicon strip sensor development in Korea sensor development in Korea 1. 1. Introduction Introduction 2. 2. Silicon Inner tracker configuration for IL Silicon Inner tracker configuration for IL C C 3. 3. Silicon strip sensors development Silicon strip sensors development 4. 4. Beam test and radiation damage test Beam test and radiation damage test 5. 5. Prospect Prospect H.J.Kim (KyungPook National U.) H.J.Kim (KyungPook National U.) For Korean silicon tracker collabortion For Korean silicon tracker collabortion ACFA9, Feb. 6/2007 ACFA9, Feb. 6/2007

Transcript of Current status of the silicon strip sensor development in Korea 1.Introduction 2.Silicon Inner...

Page 1: Current status of the silicon strip sensor development in Korea 1.Introduction 2.Silicon Inner tracker configuration for ILC 3.Silicon strip sensors development.

Current status of the silicon strip Current status of the silicon strip sensor development in Korea sensor development in Korea

1.1. IntroductionIntroduction2.2. Silicon Inner tracker configuration for ILCSilicon Inner tracker configuration for ILC3.3. Silicon strip sensors developmentSilicon strip sensors development4.4. Beam test and radiation damage testBeam test and radiation damage test5.5. ProspectProspect

H.J.Kim (KyungPook National U.) H.J.Kim (KyungPook National U.) For Korean silicon tracker collabortionFor Korean silicon tracker collabortion

ACFA9, Feb. 6/2007ACFA9, Feb. 6/2007

Page 2: Current status of the silicon strip sensor development in Korea 1.Introduction 2.Silicon Inner tracker configuration for ILC 3.Silicon strip sensors development.

AGFA9, H.J.Kim

Silicon Tracker R&D (SiLC group)Silicon Tracker R&D (SiLC group)

SiDGLD

LDC

LDC

1.1. VTX (FPCCD)VTX (FPCCD)2.2. Barrel Inner trackerBarrel Inner tracker3.3. Endcap Inner trackerEndcap Inner tracker

1.1. VTXVTX2.2. Intermediate trackerIntermediate tracker3.3. Endcap trackerEndcap tracker

1.1. VTXVTX2.2. Whole trackerWhole tracker

Page 3: Current status of the silicon strip sensor development in Korea 1.Introduction 2.Silicon Inner tracker configuration for ILC 3.Silicon strip sensors development.

Inner Tracker in GLD

W-Si Cal TPC

Beam Pipe IP

ITVTX

Page 4: Current status of the silicon strip sensor development in Korea 1.Introduction 2.Silicon Inner tracker configuration for ILC 3.Silicon strip sensors development.

AGFA9, H.J.Kim

Concept of Silicon Strip SensorConcept of Silicon Strip Sensor

type fabrication readout

DC relatively simple readout electronics is connected directly to the strips

AC relatively complicate- coupling capacitors are made by separating strip implantation and metallization

- biasing resistors are made in poly-silicon

readout fabrication position

single-sided relatively simple 1-dimensional

double-sided complicate, low yield 2-dimensional

N-type silicon

N+

P+

guard-ring guard-ring

poly-silicon bias resistor

DC pad AC padbiasing-ring

pad

Al

Al

SiO2

AC-type single-sided strip sensor DC-type double-sided strip sensor

Page 5: Current status of the silicon strip sensor development in Korea 1.Introduction 2.Silicon Inner tracker configuration for ILC 3.Silicon strip sensors development.

AGFA9, H.J.Kim

DC Double-sided Silicon Strip SensorDC Double-sided Silicon Strip Sensor

Leakage current

1.00E-12

1.00E-11

1.00E-10

1.00E-09

1.00E-08

1.00E-07

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

0 20 40 60 80 100 120

voltage(V)

curr

ent(

A)

C1T2 C1T3 C2T1 C2T2 C2T3 C3T1 C3T2 C3T3 D3T1 D3T2 D3T3

D4T1 D4T2 D4T3 D6T1 D6T2 D6T3 E2T1 E2T2 E2T3 E3T1 E3T2

E3T3 E4T1 E4T2 E4T3 E5T1 E5T2 G1T1 G1T2 G1T3 G2T1 G2T2

G2T3 G3T1 G3T2 G3T3 G4T1 G4T2 G4T3 G5T1 G5T2 G5T3 G6T1

G6T2 G6T3 N3T1 N4T1 N5T1 N6T1 N3T3 N4T3 N5T3 N6T3

• ~10nA/strip~10nA/strip• <5<5μμA/sensorA/sensor

Bulk Capacitance

0.00E+00

5.00E-11

1.00E-10

1.50E-10

2.00E-10

2.50E-10

3.00E-10

3.50E-10

0 20 40 60 80 100 120

Voltage(V)

Cap

acitan

ce(F

)

C1T2 C1T3 C2T1 C2T2 C2T3 C3T1 C3T2 C3T3

D3T1 D3T2 D4T1 D4T2 D4T3 D6T1 D6T2 D6T3

E2T1 E2T2 E2T3 E3T1 E3T2 E3T3 E4T1 E4T2

E4T3 E5T1 E5T2 E5T3 E6T1 E6T2 E6T3 G1T1

G1T2 G1T3 G2T1 G2T2 G2T3 G3T1 G3T2 G3T3

G4T1 G4T2 G4T3 G5T1 G5T2 G6T1 G6T2

measured valuemeasured value

VVdepdep < 60V < 60V

expected value~55V(~92V)

C v.s. VC v.s. VIIdd v.s. V v.s. V

depD

19

14

depD

0

VN101.6108.85411.82

VqN2εε

d

guard-ring pad

N bulk pad

Readout pad

Dicing line Hour-glass pattern on the p-side to reduce the capacitance in the double metal structure

Page 6: Current status of the silicon strip sensor development in Korea 1.Introduction 2.Silicon Inner tracker configuration for ILC 3.Silicon strip sensors development.

AGFA9, H.J.Kim

Fabrication of AC/DC SSDFabrication of AC/DC SSDAC-coupled Single-sided Silicon Strip AC-coupled Single-sided Silicon Strip

DetectorDetector

5-inch5-inch 6-inch6-inch

thckness(μm)thckness(μm) 380380 400400

Area (μmArea (μm22)) 35000 × 35000 × 3500035000

55610 x 55610 x 2946029460

Effective area Effective area (μm(μm22))

31970 × 31970 × 3197031970

51264 x 51264 x 2517825178

SiOSiO22 layer layer thickness (nm)thickness (nm) 10001000 250250

Polysilicon length (μm)Polysilicon length (μm) 1010 88

Polysilicon width (μm)Polysilicon width (μm) 1350013500 480480

sheet resistance(kΩ)sheet resistance(kΩ) ~25~25 ~400~400

TypType1e1

TypeType22

TypeType11

TyTypepe22

Number of stripsNumber of strips 6464 6464 256256 515122

Strip pitch (μm)Strip pitch (μm) 500500 500500 100100 5050

Strip width (μm)Strip width (μm) 200200 300300 88 88

readout width (μm)readout width (μm) 220220 320320 1212 1212

AC TRK1P+width:200umAl wdth:220um

AC TRK2P+width:300umAl wdth:320um

DC TRK1P+width:400umAl wdth:420um

DC TRK2P+width:600umAl wdth:620um

Poly-Si Resists

PIN diode

Test patterns

AC typePitch:500umChannel:64

DC typePitch:1000umChannel:32

Test patterns

Test patterns

AC1

AC2 DC2

DC1

Test patterns

AC 256chAC512ch

AC256ch

DC512ch

DC32ch

AC64ch

6-inch process

5-inch process

Page 7: Current status of the silicon strip sensor development in Korea 1.Introduction 2.Silicon Inner tracker configuration for ILC 3.Silicon strip sensors development.

AGFA9, H.J.Kim

Bulk capacitance(1/F 2̂)

0

1E+20

2E+20

3E+20

4E+20

5E+20

6E+20

7E+20

8E+20

0 50 100 150 200

voltage(V)

1/F

Leakage current

1.00E-09

1.00E-08

1.00E-07

1.00E-06

0 20 40 60 80 100 120 140 160 180 200

voltage(V)

curr

ent(

A)

Current@60V Ccoupling@60V bias resistance

channel (nA) (pF) (MΩ)ch1 8.1 260.0 22.0ch2 3.0 260.0 22.0ch3 3.1 259.0 21.0ch4 3.2 259.0 21.0ch5 3.3 260.0 21.0ch6 3.3 260.0 21.0ch7 3.4 259.0 21.0ch8 3.5 259.0 21.0ch9 3.6 259.0 21.0ch10 3.7 259.0 21.0ch34 4.5 257.0 23.0ch35 4.4 256.0 23.0ch55 4.3 256.0 22.0ch56 4.2 256.0 22.0ch57 4.2 256.0 22.0ch58 4.1 255.0 22.0ch59 4.0 255.0 22.0ch60 3.9 255.0 22.0ch61 3.9 255.0 21.0ch62 3.8 255.0 22.0ch63 3.8 255.0 22.0ch64 3.9 256.0 21.0AVE. 4.0 257.3 21.6

Electrical test of SSDElectrical test of SSD

IIdd v.s. V v.s. V

1/C1/C22 v.s. V v.s. V

~10nA/strip~10nA/strip

<500<500nnA/sensorA/sensor

measured valuemeasured valueVVdepdep < 60V < 60V

Electrical characteristic of each channel in one of the AC-SSD

Page 8: Current status of the silicon strip sensor development in Korea 1.Introduction 2.Silicon Inner tracker configuration for ILC 3.Silicon strip sensors development.

AGFA9, H.J.Kim

AC coupling capacitanceAC coupling capacitance• Coupling capacitance (CCoupling capacitance (Cc c ))

– Target value : AC1 214pF / AC2 322pFTarget value : AC1 214pF / AC2 322pF– Measured value : AC1 177pF / AC2 257pFMeasured value : AC1 177pF / AC2 257pF

– Differences are due to different permittivity depending on SiODifferences are due to different permittivity depending on SiO22 layer layer

– And due to the limitation of SiOAnd due to the limitation of SiO22 layer thickness in the our fabrication layer thickness in the our fabrication process.process.

Coupling capacitance of 0101AC2

100

120

140

160

180

200

220

240

260

280

0 20 40 60 80 100 120

voltage(V)

capa

cita

nce(

pF)

AC2 ch1 AC2 ch2 AC2 ch3 AC2 ch32AC2 ch33 AC2 ch62 AC2 ch63 AC2 ch64AC1 ch1 AC1 ch2 AC1 ch3 AC1 ch32AC1 ch33 AC1 ch62 AC1 ch63 AC1 ch64

AC2

AC1

Measured capacitances of the AC SSDProbing for coupling capacitance measurement

Target value : 214 pF

Target value : 322pF

Page 9: Current status of the silicon strip sensor development in Korea 1.Introduction 2.Silicon Inner tracker configuration for ILC 3.Silicon strip sensors development.

AGFA9, H.J.Kim

Bias resistance of 0101AC1

0

5

10

15

20

25

30

0 20 40 60 80 100 120voltage(V)

resi

stan

ce(o

hm)

ch1 ch2 ch3 ch32 ch33 ch62 ch63 ch64

Biasing structure Biasing structure

• Bias resistor structureBias resistor structure– Purpose and advantage :Purpose and advantage :

• Isolation of each stripIsolation of each strip• Automatic biasing of total strip Automatic biasing of total strip • total leakage current is total leakage current is

measured easily with only one measured easily with only one connection on each surfaceconnection on each surface

Bias-ring Pad

DC Pad

Probing for Biasing resistance measurement

• Result

The Bias resistance of the AC-coupled SSSD

R1 R2 R3 R4

• Test patterns

WidthLength

RR s

Resistances of various test patterns

Target value : 25 MΩlength(μm) width(μm) Rs(kΩ) expected(MΩ) measurement(MΩ)

R1 12710 10 20 25 26.04

R2 16810 10 20 34 34.04

R3 20910 10 20 42 41.85

R4 25010 10 20 50 49.38

here, Rs=20 KΩ width=10 μmlength=12700 μm

Page 10: Current status of the silicon strip sensor development in Korea 1.Introduction 2.Silicon Inner tracker configuration for ILC 3.Silicon strip sensors development.

AGFA9, H.J.Kim

Silicon Strip Sensor SummarySilicon Strip Sensor Summary

typetype DC-typeDC-type AC-typeAC-type

single-single-sidedsided 90%90% 80%80%

double-double-sidedsided < 30%< 30% N/AN/A

lineline DC-typeDC-type AC-typeAC-type

5 inch5 inch double/single-sideddouble/single-sided single-sidedsingle-sided

6 inch6 inch single-sidedsingle-sided single-sided (in single-sided (in progress)progress)

8 inch8 inch thickness ( 725 um, can be thinned ~500 thickness ( 725 um, can be thinned ~500 um)um)

• yieldsyields

• fabrication linefabrication line

5-inch double-sided process

Type 1

Type 2

Various patterns

AC TRK1P+width:200umAl wdth:220um

AC TRK2P+width:300umAl wdth:320um

DC TRK1P+width:400umAl wdth:420um

DC TRK2P+width:600umAl wdth:620um

Poly-Si Resists

PIN diode

Test patterns

AC typePitch:500umChannel:64

DC typePitch:1000umChannel:32

Test patterns

Test patterns

AC1

AC2 DC2

DC1

Test patterns

AC 256ch

AC512ch

AC256ch

DC512ch

DC32ch

AC64ch

6-inch single-sided process

5-inch single-sided process

Page 11: Current status of the silicon strip sensor development in Korea 1.Introduction 2.Silicon Inner tracker configuration for ILC 3.Silicon strip sensors development.

AGFA9, H.J.Kim

Radioactive source test block Radioactive source test block diagramdiagram

Light-tight box

Pb Pb

Trigger Sensor

Sensor90Sr source

Pre-amp. Amp.Discriminator

FADC4VA

Pre-amp. Amp.

DSO

PC

Xilinx

ADC

Trigger

Photodiode sensor of HPK

512ch Double-sided Silicon Strip Sensor

Page 12: Current status of the silicon strip sensor development in Korea 1.Introduction 2.Silicon Inner tracker configuration for ILC 3.Silicon strip sensors development.

AGFA9, H.J.Kim

Source Test Source Test Measurement ResultMeasurement Result

• Signal-to-noise ratio is measured to be 25.0Signal-to-noise ratio is measured to be 25.0

Page 13: Current status of the silicon strip sensor development in Korea 1.Introduction 2.Silicon Inner tracker configuration for ILC 3.Silicon strip sensors development.

AGFA9, H.J.Kim

Beamtest & Radiation damage testBeamtest & Radiation damage test• Korea Institute of Radiological And Medical ScienceKorea Institute of Radiological And Medical Science• Beam energy from 35 ~ 45MeVBeam energy from 35 ~ 45MeV• Beam current from 0.2nA ~ few micro ABeam current from 0.2nA ~ few micro A

Page 14: Current status of the silicon strip sensor development in Korea 1.Introduction 2.Silicon Inner tracker configuration for ILC 3.Silicon strip sensors development.

AGFA9, H.J.Kim

Front-end electronics for SSD (DC Front-end electronics for SSD (DC type)type)

VA Interface boardPower supply to VA and silicon strip sensorLogic converter for interfacing between VA and Xilinx

FADC4VA boardXilinx chip on Flash ADC4VA board makes a control logic and distributes it to VA and ADC chip converts analog signal to digital signal.

Digital signal from ADC is sent to PC through USB2 bus for data analysis

VA Hybrid boardThis VA1 chip has 128 channels, and a low noise charge sensitive preamp, a shaper, and a sample and hold for each channel. Analog signals are serially clocked out by control via a shift register.

SSDVA chip

OpAmp.

hybrid

VA interface

FADC4VA

Page 15: Current status of the silicon strip sensor development in Korea 1.Introduction 2.Silicon Inner tracker configuration for ILC 3.Silicon strip sensors development.

AGFA9, H.J.Kim

Block Diagram of Experimental Set-up for Beam TestBlock Diagram of Experimental Set-up for Beam Test

PMTVA Hybrid

VA Interface

FADC4VA

Amplifier

Discriminator

Gate & Delaygenerator

HV

PCEthernet Hub

DSO

Collimator (Pb)

Liquid Scintillator

Collimator (Al)

Proton Beam Pipe

TriggerControl

PC(To outside)

Light-tight box

thin Cu windows

Page 16: Current status of the silicon strip sensor development in Korea 1.Introduction 2.Silicon Inner tracker configuration for ILC 3.Silicon strip sensors development.

AGFA9, H.J.Kim

Experimental Set-up Experimental Set-up

Al light-tight box

Liquid Scintillator and PMT for trigger

Silicon strip sensor

VA1_prime2.3

collimator

USB2

Page 17: Current status of the silicon strip sensor development in Korea 1.Introduction 2.Silicon Inner tracker configuration for ILC 3.Silicon strip sensors development.

AGFA9, H.J.Kim

Test resultsTest results

This problem is well understood : random trigger due to misalignment

Simulated absorbed energy spectrum of 37.5 MeV proton impinging onto 380 um silicon sensor

Page 18: Current status of the silicon strip sensor development in Korea 1.Introduction 2.Silicon Inner tracker configuration for ILC 3.Silicon strip sensors development.

AGFA9, H.J.Kim

Results of beam test : S/NResults of beam test : S/N

• The SNR is defined as the ratio of the most probable energy deposit in the The SNR is defined as the ratio of the most probable energy deposit in the sensor to the noise RMS.sensor to the noise RMS.

• The estimated SNRs of channels 0 ~ 22 have large errors because of only fThe estimated SNRs of channels 0 ~ 22 have large errors because of only few properly triggered events. Channels 23 ~ 31 show good SNRs of 164 ~ ew properly triggered events. Channels 23 ~ 31 show good SNRs of 164 ~ 67 for as 37.5 MeV proton, which corresponds to be 67 for as 37.5 MeV proton, which corresponds to be 16.4 ~ 6.7 for a Mini16.4 ~ 6.7 for a Minimum Ionizing Particle.mum Ionizing Particle.

Page 19: Current status of the silicon strip sensor development in Korea 1.Introduction 2.Silicon Inner tracker configuration for ILC 3.Silicon strip sensors development.

Radiation damage test• Irradiation

45 MeV proton beam from MC-50 cyclotron at KIRAMS fluence normalization based on NIEL scaling hypothesis

– for different particles– for different energy ranges

• The standard for particle fluence is to normalize all damage to the equivalent damage caused by 1 MeV neutron.

toteq κ is “hardness factor” = D(E)/Dneutron(1MeV)

Energy dependence on NIEL in silicon for different particle types

and energies

Page 20: Current status of the silicon strip sensor development in Korea 1.Introduction 2.Silicon Inner tracker configuration for ILC 3.Silicon strip sensors development.

Radiation damage test results

Leakage currents as a function of bias voltage

Φeq=3.0×108 Φeq=1.6×109

Φeq=1.6×1010 Φeq=1.6×1011

• Increase in leakage currents

Page 21: Current status of the silicon strip sensor development in Korea 1.Introduction 2.Silicon Inner tracker configuration for ILC 3.Silicon strip sensors development.

AGFA9, H.J.Kim

Radiation damage effectsRadiation damage effects

Fluence dependence of leakage current Fluence dependence of leakage current Fluence independence of damage parameterFluence independence of damage parameter

•current increase is strictly proportional to fluence•Damage induced bulk

•current related damage rate α is expected to be independent of irradiation•

• α can be used to monitor the particle fluence

eqVI /

ROSE data

Page 22: Current status of the silicon strip sensor development in Korea 1.Introduction 2.Silicon Inner tracker configuration for ILC 3.Silicon strip sensors development.

AGFA9, H.J.Kim

More Beam Test at KIRAMS on 2007 :analysis ongoingMore Beam Test at KIRAMS on 2007 :analysis ongoing

Page 23: Current status of the silicon strip sensor development in Korea 1.Introduction 2.Silicon Inner tracker configuration for ILC 3.Silicon strip sensors development.

AGFA9, H.J.Kim

Beam Test at CERN on 2006 : analysis on goingBeam Test at CERN on 2006 : analysis on going

150 GeV electron beam

Page 24: Current status of the silicon strip sensor development in Korea 1.Introduction 2.Silicon Inner tracker configuration for ILC 3.Silicon strip sensors development.

AGFA9, H.J.Kim

Summary and ProspectSummary and Prospect

• Double sided silicon sensor, DC-type Double sided silicon sensor, DC-type single sided silicon sensor and AC-single sided silicon sensor and AC-type single sided silicon sensor was type single sided silicon sensor was successfully produced and tested. successfully produced and tested.

• Beam test and radiation damage Beam test and radiation damage shows that developed sensor can be shows that developed sensor can be used for the ILC environment.used for the ILC environment.

• Radioactive source test and beam test Radioactive source test and beam test showed that S/N ratio is good enough showed that S/N ratio is good enough for the ILC environment.for the ILC environment.

• Electronics R&D is under progress.Electronics R&D is under progress.