Current Research at EPA’s Urban Watershed Research · PDF file140 145 150 155 160 165...

74
Office of Research and Development National Risk Management Research Laboratory Water Supply and Water Resources Division Photo image area measures 2” H x 6.93” W and can be masked by a collage strip of one, two or three images. The photo image area is located 3.19” from left and 3.81” from top of page. Each image used in collage should be reduced or cropped to a maximum of 2” high, stroked with a 1.5 pt white frame and positioned edge-to-edge with accompanying images. Michael Borst Current Research at EPA’s Urban Watershed Research Facility

Transcript of Current Research at EPA’s Urban Watershed Research · PDF file140 145 150 155 160 165...

Office of Research and DevelopmentNational Risk Management Research LaboratoryWater Supply and Water Resources Division

Photo image area measures 2” H x 6.93” W and can be masked by a collage strip of one, two or three images.

The photo image area is located 3.19” from left and 3.81” from top of page.

Each image used in collage should be reduced or cropped to a maximum of 2” high, stroked with a 1.5 pt white frame and positioned edge-to-edge with accompanying images.

Michael Borst

Current Research at EPA’s Urban Watershed Research Facility

1 EPA Bioretention Research May 29, 2008

Acknowledgements Photos, slides, data, results …. have been liberated from

–Swarna Muthukrishnan–Chris Neitch–Tom O’Connor–Amy Rowe

–Ari Selvakumar–Emilie Stander–Scott Struck

2 EPA Bioretention Research May 29, 2008

Agenda• Background on developing the current approach

• Current and future direction with sample data

3 EPA Bioretention Research May 29, 2008

Secret Agenda• Promote collaborative research efforts at the EPA facilities in Edison, New Jersey

4 EPA Bioretention Research May 29, 2008

Nomenclature

5 EPA Bioretention Research May 29, 2008

Nomenclature

6 EPA Bioretention Research May 29, 2008

Definitions• Performance is the ability of a management practice to reduce the stressor load reaching the receiving water.

• Effectiveness is the affect the management practice has on the receiving waters.

7 EPA Bioretention Research May 29, 2008

Initial research questions• How should alternatives be distributed within a watershed?

• What is the performance of the alternatives?• What do the alternatives cost?• How do we maintain the alternatives?

8 EPA Bioretention Research May 29, 2008

A dominant Research questionWhat is the performance of each management alternative?– Effects of loading variation? – Effects of antecedent conditions– Changes with season?– Effects of design options?

9 EPA Bioretention Research May 29, 2008

How we got to where we are . . .Literature Review

• Researchers have published extensively on performance

• The literature has a wealth of information on the performance of management controls

• Often difficult to determine ancillary information

• Reported performance results vary widely

10 EPA Bioretention Research May 29, 2008

Approach 1: Statistics• Document the performance and the conditions of many operating management practices

• Statistical analysis of the performance under range of conditions

11 EPA Bioretention Research May 29, 2008

• BMP Database

http://www.bmpdatabase.org/Docs/BMP%20Database%20History%20&%20Future%20Needs%202004.pdf

Approach 1: Statistics

12 EPA Bioretention Research May 29, 2008

• BMP Database

http://www.bmpdatabase.org/Docs/BMP%20Database%20History%20&%20Future%20Needs%202004.pdf

Approach 1: Statistics

13 EPA Bioretention Research May 29, 2008

http://www.stormcon.com/sw_0205_national.html

http://www.bmpdatabase.org/Docs/Performance%20by%20BMP%20Category%20Oct%202007_Final.pdf

14 EPA Bioretention Research May 29, 2008

15 EPA Bioretention Research May 29, 2008

He uses statistics as a drunken man uses lampposts - for support rather than for illumination. ~Andrew Lang

http

://w

ww

.thew

eew

eb.c

o.uk

“Almost all the current guidelines for swales in the United States and the United Kingdom are founded on the results of a single study….This study [conducted by Washington State Department of Ecology] is the basis for hydraulic residence time requirements, appropriate slopes, and maximum velocities …”

Water Environment Research Foundation, 2004

Post-Project Monitoring of BMPs/SUDS to Determine Performance and Whole-Life Costs

Page A-79

16 EPA Bioretention Research May 29, 2008

Approach 2: Targeted monitoring• Select “Easy to monitor” stormwater controls

–Single inlet–Single outlet–Well-defined drainage area–Inlet and outlet above water

• Select stormwater controls with safe all-season access• Select location with permission for site access

17 EPA Bioretention Research May 29, 2008

Richmond Creek Site 5

http

://w

ww

.bm

pdat

abas

e.or

g/do

cs/U

rban

%20

Sto

rmw

ater

%20

BM

P%

20P

erfo

rman

ce%

20M

onito

ring.

pdf

Staten Island, NY

18 EPA Bioretention Research May 29, 2008

• Easy-to-monitor sites for structural management practices are not easy to monitor

• Field installations are not designed to facilitate monitoring

• Infiltration-based approaches are an order of magnitude more difficult.

Preliminary observations

19 EPA Bioretention Research May 29, 2008

Some of the reasons• Field installations are not designed to facilitate monitoring• Climatic uncertainty at the sewershed scale• Site access • Safety (people and equipment)• Vandalism• NPDES sampling requirements• Analytical maximum holding times

• Cost• EMC sampling• Sampler triggers• Flow measurements

20 EPA Bioretention Research May 29, 2008

2.3 Sample Type

http://www.epa.gov/npdes/pubs/dmr-fin.pdf

GUIDANCE MANUAL FOR THE MONITORINGAND REPORTING REQUIREMENTS OF THENPDES MULTI-SECTOR STORM WATERGENERAL PERMIT

Grab samples may be used for all visual, analytical, and compliance monitoring required in the MSGP, except at airports required to conduct analytical monitoring of deicing/anti-icing activities. Such facilities must collect a flow-weighted composite in addition to a grab sample. All grab samples must be collected from the discharge resulting from a storm event greater than 0.1 inches in magnitude and that occurs at least 72 hours from the previously measurable (greater than 0.1 inch rainfall) storm event. The 72-hour storm event interval may be waived where:• the preceding measurable storm event did not result in a measurable discharge from the facility; or• the permittee documents that less than a 72-hour interval is representative for local storm events during the season when sampling is being conducted.

21 EPA Bioretention Research May 29, 2008

http://www.epa.gov/npdes/pubs/dmr-fin.pdf

GUIDANCE MANUAL FOR THE MONITORINGAND REPORTING REQUIREMENTS OF THENPDES MULTI-SECTOR STORM WATERGENERAL PERMIT

All grab samples must be collected from the discharge resulting from a storm event greater than 0.1 inches in magnitude and that occurs at least 72 hours from the previously measurable (greater than 0.1 inch rainfall) storm event.

22 EPA Bioretention Research May 29, 2008

• Field data collection for performance evaluation is expensive, difficult, hazardous, time consuming, and generates uncertain data.

• How to complete statistical replication of a stochastic event?

Preliminary conclusion

23 EPA Bioretention Research May 29, 2008

Approach 3: Build a demonstration site • Introduce a “significant” level of control• Design site for monitoring and instrumentation• Educational outreach / demonstration site• Plan for improved QA/QC• Collaborative opportunities

24 EPA Bioretention Research May 29, 2008

(Internal) Customer feedback

• Office of Water–Size is important–Must look like the element–Long term data is needed

• Buildings and Facilities–Greening the Agency–Demonstration sites needed

25 EPA Bioretention Research May 29, 2008

Driving distance about 6 miles

We are hereWe are here

EPA Edison, NJEPA Edison, NJ

26 EPA Bioretention Research May 29, 2008 G

oogl

e Ea

rth

Permeable Surfaces

Green Roof

UWRFconstructed wetlandswalesrain gardensPermeable pavementpipelines

Edison Environmental Center

27 EPA Bioretention Research May 29, 2008

Swales

Rain Garden

Constructed wetlands

Permeable surface(being installed)

Laboratory space(analytical and engineering)

28 EPA Bioretention Research May 29, 2008

Time; LS MeansCurrent effect: F(6, 56)=38.491, p=0.0000

Effective hypothesis decompos itionVertical bars denote 0.95 confidence intervals

0 30 60 90 120 150 180

Mixing time (minutes)

125

130

135

140

145

150

155

160

165

170

175

180

TSS

(mg/

L)

Supply water

29 EPA Bioretention Research May 29, 2008

Mixing Eductors

1 / unit time

3 / unit time

4 / unit time

Trade pressure for volume

Pump discharge

30 EPA Bioretention Research May 29, 2008

Constructed wetlands

1

54 8 97

12

3

2 10

11

6

Open water wet pondsSynthetic plantsCattails

• Variables–Shape–Loading–Vegetation

• Stressors–Solids–Bacteria–Metals–Nutrients

31 EPA Bioretention Research May 29, 2008

32 EPA Bioretention Research May 29, 2008

33 EPA Bioretention Research May 29, 2008

0

100

200

300

400

500

600

0.00 1.00 2.00 3.00

Elapsed time (min)

Mix

er s

peed

(rpm

)

Mixing characteristics1-min acceleration

4-min at speed

Sample CollectionLabmaster® Mixer in50-gallon container

34 EPA Bioretention Research May 29, 2008

Source(storage tank, supply tank Feed, composite effluent,timed effluent, free water)

Sample(container immersed in Source, numbered sequentially)Subsample

(laboratory homogenization and split of sample, lettered sequentially)

35 EPA Bioretention Research May 29, 2008

TSS in subsamples

ˆ ˆi iG T

ii

M MTSS

V−

=Tare

i iV Vδ±

Volumeˆ ˆi iT TM Mδ±

( ) ( )2

ˆ ˆ ˆ ˆi i i iG T G T i

ii

M M V M M VTSS

V

δ δδ

− + −=

ˆ ˆi iG GM Mδ±

Gross

Uncertainty in mass estimated using daily balance calibrations

Uncertainty in volume estimated Using ASTM Class A tolerances

Uncertainty in TSS based on propagated error

Dry

ing

36 EPA Bioretention Research May 29, 2008

Estimate of balance variability

7/26 7/27 7/280 0.0000 0.0000 0.00000.5 0.5000 0.5002 0.50021 1.0000 1.0050 1.00045 5.0000 5.0011 5.0008

10 10.0001 10.0008 10.000550 50.0000 50.0057 50.0020

100 100.0000 100.0064 100.0038

a -0.00002 -0.00141 -0.00026b 1.00000 0.99994 0.99996r² 1.00000 1.00000 1.00000std error 0.00004 0.00202 0.00021

Std. Wt.

Indicated Wt.

• Greater of • Least-squares estimate at 95%

level of confidence• ±1.5 least significant digit

0 1W c c W= +

( )2

2( )1 1

2,0.05 ( )ˆ ,1.5W W

N k NY X W WW MAX t S LSDδ −

− −

⎡ ⎤= + +⎢ ⎥∑⎣ ⎦

07/27 data

0

50

100

0 50 100

Indicated weightTr

ue w

eigh

t

37 EPA Bioretention Research May 29, 2008

Note:Uncertainty analysis does not use Markov chain Monte Carlo analysis.

A Markov chain is a sequence of random variables X1, X2, X3, ... with the Markov property, namely that, given the present state, the future and past states are independent. Formally,

The possible values of Xi form a countable set S called the state space of the chain.

Markov chains are often described by a directed graph, where the edges are labeled by the probabilities of going from one state to the other states.

38 EPA Bioretention Research May 29, 2008

Volume uncertainty

• Filtered volume set to reduce problems with filter plugging (per SM).

• Uncertainty estimated as published tolerance of Class A “TD”graduated cylinders

• Uncertainty in V varies with volume • Volume and volume uncertainty have a strong effect on TSS

uncertainty.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 200 400 600 800 1000 1200

Sample volume (ml)

Estim

ated

unc

erta

inty

(ml) 2.5

1.30.8

0.4

39 EPA Bioretention Research May 29, 2008

Pooling subsamples into samples

2

1

2

1

/

1 /

SS

SS

i N

i ii

j i N

ii

TSS TSSTSS

TSS

δ

δ

=

==

=

=∑

2

1

1 /SSi N

j ii

TSS TSSδ δ=

=

= ∑NSS subsamples

}

Sample TSS reported as the weighted average of subsample TSS results withassociated pooled uncertainty. (Taylor, 1997)

40 EPA Bioretention Research May 29, 2008

Pooling samples into sources

2

1

2

1

/

1/

S

S

j N

j ji

j N

jj

TSS TSSTSS

TSS

δ

δ

=

==

=

=∑

2

11/

Sj N

jj

TSS TSSδ δ=

=

= ∑

NS samples

41 EPA Bioretention Research May 29, 2008

TSS free-water samples

Blank 1.3352 1.3349 ± 0.0028 1000 ± 2.5 1.3352 1.3349 ± 0.0028 0.0 ± 3.9 ok 3.9LCS P109507 1.3304 1.3299 ± 0.0028 100 ± 0.4 1.3335 1.3330 ± 0.0028 31 ± 39 97 ± 122 32.0 ok 39Free Water MESO 01 1 A 1.3328 1.3323 ± 0.0028 200 ± 0.8 1.3361 1.3356 ± 0.0028 16 ± 20 ok 20Free Water MESO 01 2 A 1.3239 1.3234 ± 0.0028 200 ± 0.8 1.3275 1.3270 ± 0.0028 18 ± 20 20Free Water MESO 02 1 A 1.3436 1.3431 ± 0.0028 500 ± 1.3 1.3444 1.3439 ± 0.0028 1.6 ± 7.8 ok 7.8Free Water MESO 02 2 A 1.3364 1.3359 ± 0.0028 500 ± 1.3 1.3371 1.3366 ± 0.0028 1.4 ± 7.8 7.8Free Water MESO 03 1 A 1.3157 1.3152 ± 0.0028 500 ± 1.3 1.3164 1.3159 ± 0.0028 1.4 ± 7.8 ok 7.8Free Water MESO 03 2 A 1.3237 1.3232 ± 0.0028 500 ± 1.3 1.3244 1.3239 ± 0.0028 1.4 ± 7.8 7.8Free Water MESO 04 1 A 1.3334 1.3329 ± 0.0028 500 ± 1.3 1.3371 1.3366 ± 0.0028 7.4 ± 7.8 ok 7.8Free Water MESO 04 2 A 1.3325 1.3320 ± 0.0028 500 ± 1.3 1.3363 1.3358 ± 0.0028 7.6 ± 7.8 7.8LCS P109507 1.3295 1.3290 ± 0.0028 100 ± 0.4 1.3327 1.3322 ± 0.0028 32 ± 39 100 ± 122 32.0 ok 39Free Water MESO 05 1 A 1.3345 1.3340 ± 0.0028 500 ± 1.3 1.3352 1.3347 ± 0.0028 1.4 ± 7.8 ok 7.8Free Water MESO 05 2 A 1.3239 1.3234 ± 0.0028 500 ± 1.3 1.3243 1.3238 ± 0.0028 0.8 ± 7.8 7.8Free Water MESO 06 1 A 1.3273 1.3268 ± 0.0028 500 ± 1.3 1.3282 1.3277 ± 0.0028 1.8 ± 7.8 ok 7.8Free Water MESO 06 2 A 1.3391 1.3386 ± 0.0028 500 ± 1.3 1.3400 1.3395 ± 0.0028 1.8 ± 7.8 7.8Free Water MESO 07 1 A 1.3282 1.3277 ± 0.0028 500 ± 1.3 1.3294 1.3289 ± 0.0028 2.4 ± 7.8 ok 7.8Free Water MESO 07 2 A 1.3344 1.3339 ± 0.0028 500 ± 1.3 1.3354 1.3349 ± 0.0028 2.0 ± 7.8 7.8Free Water MESO 08 1 A 1.3280 1.3275 ± 0.0028 500 ± 1.3 1.3284 1.3279 ± 0.0028 0.8 ± 7.8 ok 7.8Free Water MESO 08 2 A 1.3324 1.3319 ± 0.0028 500 ± 1.3 1.3327 1.3322 ± 0.0028 0.6 ± 7.8 7.8Free Water MESO 09 1 A 1.3252 1.3247 ± 0.0028 500 ± 1.3 1.3261 1.3256 ± 0.0028 1.8 ± 7.8 4.1 ± 4.7 ok 7.8LCS P109507 A 1.3331 1.3326 ± 0.0028 100 ± 0.4 1.3361 1.3356 ± 0.0028 30 ± 39 94 ± 122 32.0 ok 39Free Water MESO 09 2 A 1.3297 1.3292 ± 0.0028 500 ± 1.3 1.3327 1.3322 ± 0.0028 6.0 ± 7.8 ok 7.8Free Water MESO 09 2 B 1.3330 1.3325 ± 0.0028 425 ± 1.3 1.3350 1.3345 ± 0.0028 4.7 ± 9.2 9.2Free Water MESO 10 1 A 1.3326 1.3321 ± 0.0028 500 ± 1.3 1.3326 1.3321 ± 0.0028 0.0 ± 7.8 ok 7.8Free Water MESO 10 2 A 1.3247 1.3242 ± 0.0028 500 ± 1.3 1.3250 1.3245 ± 0.0028 0.6 ± 7.8 7.8Free Water MESO 11 1 A 1.3320 1.3315 ± 0.0028 500 ± 1.3 1.3335 1.3330 ± 0.0028 3.0 ± 7.8 ok 7.8Free Water MESO 11 2 A 1.3253 1.3248 ± 0.0028 500 ± 1.3 1.3267 1.3262 ± 0.0028 2.8 ± 7.8 7.8Free Water MESO 12 1 A 1.3295 1.3290 ± 0.0028 425 ± 1.3 1.3301 1.3296 ± 0.0028 1.4 ± 9.2 ok 9.2Free Water MESO 12 2 A 1.3453 1.3448 ± 0.0028 500 ± 1.3 1.3457 1.3452 ± 0.0028 0.8 ± 7.8 7.8LCS P109507 1.3329 1.3324 ± 0.0028 100 ± 0.4 1.3362 1.3357 ± 0.0028 33 ± 39 103 ± 122 32.0 ok 39LCS P109507 1.3282 1.3277 ± 0.0028 100 ± 0.4 1.3316 1.3311 ± 0.0028 34 ± 39 106 ± 122 32.0 ok 39

±5.5

5.5±0.3

5.9±1.1

5.5±2.9

1.1

6.0

7.5

1.4

1.5 5.5

5.5±0.7

5.5±

± 5.5

5.5±2.2

1.8

MDL

5.5±

14±

5.5±

±

Gross WeightSubsample

TSS(mg/L)

Sample Weighted Average

TSS (mg/L)

17

LCS Recovery

(%)

SampleVolume

(mL)Source

Sam

ple

Sub

sam

ple Tare weight (g) LCS

TrueValue(mg/L)

Souce Weighted

average TSS (mg/L)

TM ˆTM GM ˆ

GM

Every batch includes blank. No blank showed TSS greater than uncertaintyEvery batch includes LCS. No LCS outside limitsMDL estimated based on volume and ±0.0001 g mass change

42 EPA Bioretention Research May 29, 2008

TSS feed water samples

Blank 1.3501 1.3498 ± 0.0028 1000 ± 2.5 1.3500 1.3497 ± 0.0028 -0.1 ± 3.9 3.9LCS P109507 1.3428 1.3425 ± 0.0028 100 ± 0.4 1.3457 1.3454 ± 0.0028 29 ± 39 91 ± 122 32.0 39Feed MESO 01 1 A 1.3360 1.3357 ± 0.0028 200 ± 0.8 1.3781 1.3778 ± 0.0028 210 ± 20 20Feed MESO 01 2 A 1.3298 1.3295 ± 0.0028 200 ± 0.8 1.3772 1.3769 ± 0.0028 237 ± 20 20Feed MESO 01 2 B 1.3466 1.3463 ± 0.0028 200 ± 0.8 1.3848 1.3845 ± 0.0028 191 ± 20 20Feed MESO 02 1 A 1.3207 1.3204 ± 0.0028 200 ± 0.8 1.3360 1.3357 ± 0.0028 76 ± 20 20Feed MESO 02 2 A 1.3312 1.3309 ± 0.0028 200 ± 0.8 1.3455 1.3452 ± 0.0028 71 ± 20 19.5Feed MESO 03 1 A 1.3464 1.3461 ± 0.0028 500 ± 1.3 1.3621 1.3618 ± 0.0028 31.4 ± 7.9 7.8Feed MESO 03 2 A 1.3384 1.3381 ± 0.0028 500 ± 1.3 1.3526 1.3523 ± 0.0028 28.4 ± 7.9 7.8Feed MESO 04 1 A 1.3295 1.3292 ± 0.0028 500 ± 1.3 1.3435 1.3432 ± 0.0028 28.0 ± 7.9 7.8Feed MESO 04 2 A 1.3314 1.3311 ± 0.0028 500 ± 1.3 1.3440 1.3437 ± 0.0028 25.2 ± 7.9 7.8Feed MESO 05 1 A 1.3334 1.3331 ± 0.0028 500 ± 1.3 1.3463 1.3460 ± 0.0028 25.8 ± 7.9 7.8Feed MESO 05 2 A 1.3200 1.3197 ± 0.0028 500 ± 1.3 1.3328 1.3325 ± 0.0028 25.6 ± 7.9 7.8LCS P109507 1.3461 1.3458 ± 0.0028 100 ± 0.4 1.3493 1.3490 ± 0.0028 32 ± 39 100 ± 122 32.0 39Feed MESO 06 1 A 1.3312 1.3309 ± 0.0028 500 ± 1.3 1.345 1.3448 ± 0.0028 27.8 ± 7.9 7.8Feed MESO 06 2 A 1.3289 1.3286 ± 0.0028 500 ± 1.3 1.342 1.3418 ± 0.0028 26.4 ± 7.9 7.8Feed MESO 07 1 A 1.3359 1.3356 ± 0.0028 500 ± 1.3 1.3490 1.3487 ± 0.0028 26.2 ± 7.9 7.8Feed MESO 07 2 A 1.3392 1.3389 ± 0.0028 500 ± 1.3 1.3530 1.3527 ± 0.0028 27.6 ± 7.9 7.8Feed MESO 08 1 A 1.3377 1.3374 ± 0.0028 500 ± 1.3 1.351 1.3510 ± 0.0028 27.2 ± 7.9 7.8Feed MESO 08 2 A 1.3328 1.3325 ± 0.0028 500 ± 1.3 1.3460 1.3457 ± 0.0028 26.4 ± 7.9 7.8Feed MESO 09 1 A 1.3324 1.3321 ± 0.0028 500 ± 1.3 1.346 1.3456 ± 0.0028 27.0 ± 7.9 7.8Feed MESO 09 2 A 1.3400 1.3397 ± 0.0028 500 ± 1.3 1.353 1.3529 ± 0.0028 26.4 ± 7.9 7.8Feed MESO 10 1 A 1.3379 1.3376 ± 0.0028 500 ± 1.3 1.352 1.3513 ± 0.0028 27.4 ± 7.9 7.8Feed MESO 10 2 A 1.3282 1.3279 ± 0.0028 500 ± 1.3 1.342 1.3413 ± 0.0028 26.8 ± 7.9 7.8LCS P109507 1.3255 1.3252 ± 0.0028 100 ± 0.4 1.329 1.3283 ± 0.0028 31 ± 39 97 ± 122 32.0 39Feed MESO 11 1 A 1.3240 1.3237 ± 0.0028 500 ± 1.3 1.337 1.3370 ± 0.0028 26.6 ± 7.9 7.8Feed MESO 11 2 A 1.3419 1.3416 ± 0.0028 500 ± 1.3 1.355 1.3550 ± 0.0028 26.8 ± 7.9 7.8Feed MESO 12 1 A 1.3391 1.3388 ± 0.0028 500 ± 1.3 1.352 1.3520 ± 0.0028 26.4 ± 7.9 7.8Feed MESO 12 2 A 1.3288 1.3285 ± 0.0028 500 ± 1.3 1.342 1.3419 ± 0.0028 26.8 ± 7.9 7.8Feed CONTROL 1 A 1.3377 1.3374 ± 0.0028 500 ± 1.3 1.35 1.3501 ± 0.0028 25.4 ± 7.9 7.8Feed CONTROL 2 A 1.3437 1.3434 ± 0.0028 500 ± 1.3 1.357 1.3566 ± 0.0028 26.4 ± 7.9 7.8LCS P109507 1.3304 1.3301 ± 0.0028 100 ± 0.4 1.333 1.3331 ± 0.0028 30 ± 39 94 ± 122 32.0 39LCS P109507 1.3380 1.3377 ± 0.0028 100 ± 0.4 1.341 1.3408 ± 0.0028 31 ± 39 97 ± 122 32.0 39Blank 1.3307 1.3304 ± 0.0028 1000 ± 2.5 1.331 1.3303 ± 0.0028 -0.1 ± 3.9 3.9

LCS Recovery

(%)MDL

Sample Volume (mL)

Gross Weight ^

Sample TSS (mg/L)

Subsample Weighted

Average TSS (mg/L)

Source

Sam

ple

Sub

sam

ple Tare weight (g)

±29.9

14±74

14±21412±213

±25.7

5.6±26.6

±26.7

5.6±26.8

±26.9

5.6±27.1

5.6±25.9

5.6±26.6

±26.7

5.6±27.1

5.6

5.6

5.6

5.6

5.6

LCS True

Value(mg/L)

Souce Weighted average TSS

(mg/L)TM ˆTM GM ˆ

GM

Caution flag if difference grater than expected

Example of volume effect on uncertainty

43 EPA Bioretention Research May 29, 2008

TSS composite effluent data

Blank 1.3313 1.3310 ± 0.0028 1000 ± 2.5 1.3312 1.3309 ± 0.0028 -0.1 ± 3.9 ok 3.9LCS P109507 1.3361 1.3356 ± 0.0028 100 ± 0.4 1.3391 1.3388 ± 0.0028 32 ± 39 32.0 ok 101 ± 122 39Coposite Meso 01 1 A 1.3302 1.3297 ± 0.0028 150 ± 0.8 1.3326 1.3323 ± 0.0028 18 ± 26 ok 26Coposite Meso 01 2 A 1.3347 1.3342 ± 0.0028 150 ± 0.8 1.3372 1.3369 ± 0.0028 18 ± 26 ok 26Coposite Meso 01 2 B 1.3301 1.3296 ± 0.0028 150 ± 0.8 1.3325 1.3322 ± 0.0028 18 ± 26 26Coposite Meso 02 1 A 1.3381 1.3376 ± 0.0028 500 ± 1.3 1.3395 1.3392 ± 0.0028 3.3 ± 7.8 ok 7.8Coposite Meso 02 2 A 1.3446 1.3441 ± 0.0028 500 ± 1.3 1.3461 1.3458 ± 0.0028 3.5 ± 7.8 7.8Coposite Meso 03 1 A 1.3400 1.3395 ± 0.0028 500 ± 1.3 1.3440 1.3437 ± 0.0028 8.5 ± 7.8 ok 7.8Coposite Meso 03 2 A 1.3404 1.3399 ± 0.0028 500 ± 1.3 1.3439 1.3436 ± 0.0028 7.5 ± 7.8 7.8Coposite Meso 04 1 A 1.3398 1.3393 ± 0.0028 500 ± 1.3 1.3446 1.3443 ± 0.0028 10.1 ± 7.8 ok 7.8Coposite Meso 04 2 A 1.3434 1.3429 ± 0.0028 500 ± 1.3 1.3481 1.3478 ± 0.0028 9.9 ± 7.8 7.8Coposite Meso 05 1 A 1.3387 1.3382 ± 0.0028 500 ± 1.3 1.3412 1.3409 ± 0.0028 5.5 ± 7.8 ok 7.8Coposite Meso 05 2 A 1.3203 1.3198 ± 0.0028 500 ± 1.3 1.3229 1.3226 ± 0.0028 5.7 ± 7.8 7.8LCS P109507 1.3507 1.3502 ± 0.0028 100 ± 0.4 1.3539 1.3536 ± 0.0028 34 ± 39 32.0 ok 108 ± 122 39Coposite Meso 06 1 A 1.3350 1.3345 ± 0.0028 500 ± 1.3 1.3377 1.3374 ± 0.0028 5.9 ± 7.8 ok 7.8Coposite Meso 06 2 A 1.3434 1.3429 ± 0.0028 500 ± 1.3 1.3462 1.3459 ± 0.0028 6.1 ± 7.8 7.8Coposite Meso 07 1 A 1.3482 1.3477 ± 0.0028 500 ± 1.3 1.3511 1.3508 ± 0.0028 6.3 ± 7.8 ok 7.8Coposite Meso 07 2 A 1.3403 1.3398 ± 0.0028 500 ± 1.3 1.3430 1.3427 ± 0.0028 5.9 ± 7.8 7.8Coposite Meso 08 1 A 1.3536 1.3531 ± 0.0028 500 ± 1.3 1.3572 1.3569 ± 0.0028 7.7 ± 7.8 ok 7.8Coposite Meso 08 2 A 1.3358 1.3353 ± 0.0028 500 ± 1.3 1.3395 1.3392 ± 0.0028 7.9 ± 7.8 7.8Coposite Meso 09 1 A 1.3469 1.3464 ± 0.0028 500 ± 1.3 1.3513 1.3510 ± 0.0028 9.3 ± 7.8 ok 7.8Coposite Meso 09 2 A 1.3337 1.3332 ± 0.0028 500 ± 1.3 1.3382 1.3379 ± 0.0028 9.5 ± 7.8 7.8Coposite Meso 10 1 A 1.3413 1.3408 ± 0.0028 500 ± 1.3 1.3419 1.3416 ± 0.0028 1.7 ± 7.8 ok 7.8Coposite Meso 10 2 A 1.3375 1.3370 ± 0.0028 500 ± 1.3 1.3380 1.3377 ± 0.0028 1.5 ± 7.8 7.8LCS P109507 1.3437 1.3432 ± 0.0028 100 ± 0.4 1.3470 1.3467 ± 0.0028 35 ± 39 32.0 ok 111 ± 122 39Coposite Meso 11 1 A 1.3385 1.3380 ± 0.0028 500 ± 1.3 1.3403 1.3400 ± 0.0028 4.1 ± 7.8 ok 7.8Coposite Meso 11 2 A 1.3463 1.3458 ± 0.0028 500 ± 1.3 1.3480 1.3477 ± 0.0028 3.9 ± 7.8 7.8Coposite Meso 12 1 A 1.3282 1.3277 ± 0.0028 500 ± 1.3 1.3311 1.3308 ± 0.0028 6.3 ± 7.8 ok 7.8Coposite Meso 12 2 A 1.3325 1.3320 ± 0.0028 500 ± 1.3 1.3354 1.3351 ± 0.0028 6.3 ± 7.8 ok 7.8Coposite Meso 12 2 B 1.3443 1.3438 ± 0.0028 500 ± 1.3 1.3471 1.3468 ± 0.0028 6.1 ± 7.8 7.8Coposite Control 1 A 1.3320 1.3315 ± 0.0028 500 ± 1.3 1.3437 1.3434 ± 0.0028 23.9 ± 7.9 ok 7.8Coposite Control 2 A 1.3294 1.3289 ± 0.0028 500 ± 1.3 1.3390 1.3387 ± 0.0028 19.7 ± 7.9 7.8LCS P109507 1.3305 1.3300 ± 0.0028 100 ± 0.4 1.3339 1.3336 ± 0.0028 36 ± 39 32.0 ok 114 ± 122 39LCS P109507 1.3445 1.3440 ± 0.0028 100 ± 0.4 1.3479 1.3476 ± 0.0028 36 ± 39 32.0 ok 114 ± 122 39Blank 1.3271 1.3266 ± 0.0028 1000 ± 2.5 1.3270 1.3267 ± 0.0028 0.1 ± 3.9 ok 3.9

±6.24.5±6.2

5.5±8.0

5.6±21.8

5.5

5.5±3.4

5.5±5.6

5.5±10.0

5.5±6.1

5.5±6.0

5.5±9.4

5.5±7.8

5.5±4.0

5.5±1.6

1818.5±17.9

LCS Recovery

(%)

MDL

15±

Subsample TSS (mg/L)

Sample Weighted Average

TSS (mg/L)

Source

Sam

ple

Sub

sam

ple

Tare weight (g) LCS True

Value (mg/L)

Souce Weighted

average TSS (mg/L)

Sample Volume

(mL)

Gross Weight

TM ˆTM GM ˆ

GM

44 EPA Bioretention Research May 29, 2008

Summary data TSS

1 17 ± 14 213 ± 12 18 ± 15 195 ± 19 92 ± 142 1.5 ± 5.5 74.0 ± 14 3.4 ± 5.5 71 ± 15 95 ± 383 1.4 ± 5.5 29.9 ± 5.6 8.0 ± 5.5 21.9 ± 7.8 73 ± 404 7.5 ± 5.5 26.6 ± 5.6 10.0 ± 5.5 16.6 ± 7.8 62 ± 435 1.1 ± 5.5 25.7 ± 5.6 5.6 ± 5.5 20.1 ± 7.8 78 ± 476 1.8 ± 5.5 27.1 ± 5.6 6.0 ± 5.5 21.1 ± 7.8 78 ± 457 2.2 ± 5.5 26.9 ± 5.6 6.1 ± 5.5 20.8 ± 7.8 77 ± 458 0.7 ± 5.5 26.8 ± 5.6 7.8 ± 5.5 19.0 ± 7.8 71 ± 449 4.1 ± 4.7 26.7 ± 5.6 9.4 ± 5.5 17.3 ± 7.8 65 ± 43

10 0.3 ± 5.5 27.1 ± 5.6 1.6 ± 5.5 25.5 ± 7.8 94 ± 4811 2.9 ± 5.5 26.7 ± 5.6 4.0 ± 5.5 22.7 ± 7.8 85 ± 4712 1.1 ± 5.9 26.6 ± 5.6 6.2 ± 4.5 20.4 ± 7.2 77 ± 43

Control 25.9 ± 5.6 21.8 ± 5.6 4.1 ± 7.9 16 ± 34

Meso(mg/L)

Reduction(%)

#N/A

Freewater Feed Composite

Visually, algae growth

45 EPA Bioretention Research May 29, 2008

Combined effectsReduction (mg/L) =(0.629146)+((0.9901)-(0.00111)*(rise (mm)))*C inf

300 250 200 150 100 50

Model is: Reduction=ao+(a1+a2*(Vro/A))*Cinf Dep. Var. : Reduction (mg/L)Level of confidence: 95.0% ( alpha=0.050)Estimate Standard

errort-valuedf = 102

p-level Lo. ConfLimit

Up. ConfLimit

abc

0.629146 1.811535 0.34730 0.729081 -2.96402 4.2223170.990100 0.019362 51.13609 0.000000 0.95170 1.028505

-0.001107 0.000162 -6.81793 0.000000 -0.00143 -0.000785

( )roin out in

VC C a b c CA

⎡ ⎤− = + +⎢ ⎥

⎢ ⎥⎣ ⎦Implications: • Irreducible concentration < 5 mg/L (a)• Increasing runoff volume

or decreasing area decrease reductions (c)• Nearly all (99±4%) reducible influent

concentration is removable (b)

46 EPA Bioretention Research May 29, 2008

Performance with respect to microbial concentrations

47 EPA Bioretention Research May 29, 2008

Microbial performance

-0.0820-0.1627Enterococci

-0.0037-0.1164Fecal coliforms

-0.0411-0.1212E. coli

-0.0518-0.1431Total coliforms

KT 50-100hrKT 0-50hrOrganism

TCConc ECConc FCConc EntConc4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 10

0

5E+00

5E+01

5E+02

5E+03

5E+04

5E+05

5E+06

5E+07

5E+08

5E+09

5E+10

5E+11

TCConc ECConc FCConc EntConc4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 10

0

5E+00

5E+01

5E+02

5E+03

5E+04

5E+05

5E+06

5E+07

Retention Pond Constructed Wetland

-0.0793-0.1754Enterococci

0.0037-0.1519Fecal coliforms

-0.0058-0.1607E. coli

-0.1026-0.1799Total coliforms

KT 50-100hrKT 0-50hrOrganismTime (hr) Time (hr)

48 EPA Bioretention Research May 29, 2008

Observations• Decay rates are temperature dependant• Decay rates are light dependant (less important but covariant)

• Wetland plants provide shade• All other factors being equal, greater reductions observed in ponds than constructed wetlands

• Not uniformly first-order decay

49 EPA Bioretention Research May 29, 2008

Metal concentrationsin fluent

Eventco nc . mg/l

e ffl. co nc . mg/l

conc . redn . mg/l

remo va l e ffic ienc y (% )

e ffl. conc . mg/l

co nc . redn. mg/l

removal e ffic iency (% )

A pr A l 0 .6 84 0 .1 13 0 .60 9 8 9 .88 N D 0 .68 4 10 0 .0C u 0 .0 18 0 .0 07 67 0 .01 5 7 .2 0 .00 6 0 .01 2 66 .6F e 1 .6 9 0 .3 86 1 .31 7 6 .95 0 .37 8 1 .32 77 .4 2M n 0 .2 98 0 .1 07 0 .19 6 3 .9 0 .14 8 0 .15 0 50 .3Zn 0 .0 68 0 .0 5 0 .01 83 2 6 .91 0 .05 43 0 .01 4 20 .4 8

June A l 2 .1 8 0 .2 54 1 .93 8 8 .36 0 .13 0 2 .12 97 .1 9C u 0 .0 31 3 0 .0 05 73 0 .02 56 8 1 .67 0 .00 32 0 .02 81 89 .8 1F e 6 .0 6 1 .1 8 4 .88 8 0 .53 1 .38 4 .68 77 .2M n 0 .7 26 0 .4 69 0 .25 7 3 5 .45 0 .52 6 0 .20 0 27 .6Zn 0 .2 33 0 .0 72 8 0 .16 6 8 .7 0 .06 92 0 .16 3 70 .2

A ug A l 2 .8 5 0 .3 4 2 .51 8 7 .98 N D N A 10 0C u 0 .0 38 0 .0 1 0 .02 8 7 4 .61 0 .00 3 0 .03 5 91 .5 5F e 1 7 .1 1 .7 15 .4 8 9 .97 0 .80 4 1 6 .3 95 .2 9M n 0 .3 43 0 .1 44 0 .2 5 8 .12 0 .23 1 0 .11 2 32 .6Zn 0 .3 16 0 .0 91 0 .22 5 7 1 .24 0 .03 4 0 .28 2 89 .3

re tentio n po nd ca tta il w e tland

50 EPA Bioretention Research May 29, 2008

Swales• Three swales• Imbedded instrumentation• Trapezoidal cross section with 4:1 side lopes

• 0.5% to 5% slope• Variable infiltration media• 40-m long in 10-m segments

51 EPA Bioretention Research May 29, 2008

Operational detour

52 EPA Bioretention Research May 29, 2008

Measured flow from electric sump sump

9:07 9:36 10:04 10:33 11:02 11:31 12:00 12:28 12:57

Local time

0

5

10

15

20

25

30

35

40

Flow

rate

(gpm

)

53 EPA Bioretention Research May 29, 2008

Steady state?

570 583 596 609 622 635 648 661 674 687 700 713 726 739

Minute of day

35.6

35.8

36.0

36.2

36.4

36.6

36.8

37.0

37.2

37.4

37.6

37.8

38.0

38.2

38.4Fl

ow (g

pm)

Mean Mean±SE Mean±1.96*SE

54 EPA Bioretention Research May 29, 2008

Histogram: Q: MeansK-S d=.07276, p> .20; Lilliefors p<.05

Expected Normal

35.735.8

35.936.0

36.136.2

36.336.4

36.536.6

36.736.8

36.937.0

37.137.2

37.337.4

37.537.6

37.737.8

37.938.0

X <= Category Boundary

0

5

10

15

20

25

No.

of o

bs.

Steady state?

0.46237.99035.93337.189178Flow

Std.Dev.MaximumMinimumMeanValid N

55 EPA Bioretention Research May 29, 2008

R1; LS MeansCurrent effect: F(1, 543)=74241., p=0.0000

Effective hypothesis decompos itionVertical bars denote 0.95 confidence intervals

Q1 Q 2

R1

21.2

21.4

21.6

21.8

22.0

22.2

22.4

22.6

22.8

23.0

23.2

DV_

1 (g

pm)

Feed raterepeated measures ANOVA

22.96 gpm

21.52 gpm

Average 22.24 gpmDifference 1.44 gpm

6.5% RPD

56 EPA Bioretention Research May 29, 2008

R1; LS MeansCurrent effect: F(1, 534)=16170., p=0.0000

Effective hypothesis decompos itionVertical bars denote 0.95 confidence intervals

Q1 Q2

R1

315

316

317

318

319

320

321

322

323

324

DV_

1 (g

pm)

323.0 gpm

316.0 gpm

Average 319.5 gpmDifference 7 gpm

2.2% RPD

Feed raterepeated measures ANOVA

57 EPA Bioretention Research May 29, 2008

Flow depth

8:09 8:38 9:07 9:36 10:04 10:33 11:02 11:31 12:00 12:28 12:57 13:26 13:55

Local Time

30

32

34

36

38

40

42

44

Mea

sure

d D

epth

(cm

)

-4

-2

0

2

4

6

8

10

12

Cha

nge

in d

epth

(cm

)

58 EPA Bioretention Research May 29, 2008

572 584 596 608 620 632 644 656 668 680 692 704 716 728 740

Minute value

6.5

6.6

6.7

6.8

6.9

7.0

7.1

7.2

7.3

Cha

nge

in d

epth

(cm

)

Mean Mean±SD Mean±1.96*SD

0.007.1694620.005465193610.580830.0391831756.857079d3-d3f

pFMSdfSSMSdfSS

Analysis of Variance

59 EPA Bioretention Research May 29, 2008

K-S d=.14586, p<.01 ; Lilliefors p<.01 Expected Normal

6.72 6.74 6.76 6.78 6.80 6.82 6.84 6.86 6.88 6.90 6.92 6.94 6.96 6.98 7.00 7.02 7.04

X <= Category Boundary

0

5

10

15

20

25

30

35

40

45

50

No.

of o

bs. 0.0571437.0304776.7554776.911774176d3-d3f

Std.Dev.MaximumMinimumMeanValid N

60 EPA Bioretention Research May 29, 2008

Repeated Measures Minute value; LS Means

Current effect: F(175, 1936)=8.6745, p=0.0000Effective hypothesis decompos ition

Vertical bars denote 0.95 confidence intervals

572 584 596 608 620 632 644 656 668 680 692 704 716 728 740

Minute value

6.80

6.85

6.90

6.95

7.00

7.05

7.10

7.15

dd3

- dd4

(cm

)

Histogram: DV_1: MeanK-S d=.11466, p<.05 ; Lilliefors p<.01

Expected Normal

6.856.86

6.876.88

6.896.90

6.916.92

6.936.94

6.956.96

6.976.98

6.997.00

7.017.02

7.037.04

7.057.06

7.077.08

X <= Category Boundary

0

5

10

15

20

25

30

No.

of o

bs.

0.0444177.0727086.8727086.998939176DV_1

Std.Dev.MaximumMinimumMeanValid N

61 EPA Bioretention Research May 29, 2008

R1; Unw eighted MeansCurrent effect: F(1, 2618)=.65600, p=.41805

Effective hypothesis decompos itionVertical bars denote 0.95 confidence intervals

dd3 dd4

R1

8.75

8.80

8.85

8.90

8.95

9.00

9.05

9.10

9.15

DV_

1 (c

m)

8.82 cm 8.80 cm

R1; LS MeansCurrent effect: F(1, 2618)=17.093, p=.00004

Effective hypothesis decompos itionVertical bars denote 0.95 confidence intervals

dd1 dd2

R1

8.75

8.80

8.85

8.90

8.95

9.00

9.05

9.10

9.15

DV_

1 (c

m)

8.88 cm

9.04 cm

Upstream Downstream

62 EPA Bioretention Research May 29, 2008

Rain Gardens• Variables

–Vegetation type (grass v. herbaceous)–Organic carbon content of media

(newspaper?)–Hydraulic loading (Q/A)–Induced anoxic zones

• Eight gardens, 8-ft diameter• Underdrain collection

63 EPA Bioretention Research May 29, 2008

City

of P

ortla

nd, D

ept.

of E

nv. S

ervi

ces

Building 205

1:4

1:2

1:1

1:1

1:2

1:4

sidewalk

curb

swale

road

lawnScarified native soil

Non-scarified native soil

240’

45’

curb cut40’

40’

40’

40’

40’

40’

45’

45’

22.5’

22.5’

11.25’

11.25’

Building 205

1:4

1:2

1:1

1:1

1:2

1:4

sidewalk

curb

swale

road

lawnScarified native soil

Non-scarified native soil

240’

45’

curb cut40’

40’

40’

40’

40’

40’

45’

45’

22.5’

22.5’

11.25’

11.25’

Proposed “New York City” experiments

Not to scale

Park

ing

lot

Varying ratio of garden to impermeable areaWith one replication

64 EPA Bioretention Research May 29, 2008

Visit the posters!

Emilie Stander

Amy Rowe

65 EPA Bioretention Research May 29, 2008

• About 1 acre total area• Three permeable surfaces • Impermeable traffic lanes• Some liner & underdrain • About 110 spaces total• Anticipate full use

Permeable pavement

Phase 3 Conceptual Pilot

BH

&A

66 EPA Bioretention Research May 29, 2008

0

10

20

30

40

50

60

70

80

90

100

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49Time (Days)

TSS

Rem

oval

(Per

cent

Lined #1Lined #2Unlined #1Unlined #2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0 20 40 60 80

Time (Minutes)

Flow

Rat

e (c

m/m

in)

LinedUnlinedInfluent

TSS Removal

Flow Rates

Preliminary data on permeable surfaces

67 EPA Bioretention Research May 29, 2008

Green roof• Builds from existing NRMRL work

–Region 3 & PSU–Region 8 EPA building

• On site –About 15,000 ft² on existing building–Instrumented

• Approached to participate Green Wall demonstration

68 EPA Bioretention Research May 29, 2008

Planned green roof

• Roughly 15,000 ft² flat roof area• Currently in external engineering

review for building structural considerations Paired study with other part of building roof

• Runoff loads (quantity and quality) • Energy use (?)

Goo

gle

Eart

h 20

08

69 EPA Bioretention Research May 29, 2008

Smaller-scale support

Permeable pavement Media comparisonFlume hydraulics

70 EPA Bioretention Research May 29, 2008

On-site lab support• Improves reliability • QA / QC• Holding time!

71 EPA Bioretention Research May 29, 2008

Infiltration Through Disturbed Urban Soils and Compost-amended Soil Effects on Runoff Quality and Quantity

EPA 600/R-00/020, (NTIS PB2000-102012)http://www.epa.gov/ednnrmrl/reports/SR00016/index.html

72 EPA Bioretention Research May 29, 2008

Sandy soilClayey soils

Infiltration Through Disturbed Urban Soils and Compost-amended Soil Effects on Runoff Quality and Quantity

EPA 600/R-00/020, (NTIS PB2000-102012)http://www.epa.gov/ednnrmrl/reports/SR00016/index.html

Office of Research and DevelopmentNational Risk Management Research LaboratoryWater Supply and Water Resources Division

Photo image area measures 2” H x 6.93” W and can be masked by a collage strip of one, two or three images.

The photo image area is located 3.19” from left and 3.81” from top of page.

Each image used in collage should be reduced or cropped to a maximum of 2” high, stroked with a 1.5 pt white frame and positioned edge-to-edge with accompanying images.

Contact information

[email protected]

http://www.epa.gov/ednnrmrl/