CROTALARIA AS A COVER CROP FOR NEMATODE MANAGEMENT: A REVIEW

24
35 CROTALARIA AS A COVER CROP FOR NEMATODE MANAGEMENT: A REVIEW Koon-Hui Wang, B. S. Sipes, and D. P. Schmitt Department of Plant and Environmental Protection Sciences, 3190 Maile Way, University of Hawaii, Honolulu, HI 96822-2279, U.S.A. Current address of senior author: Department of Entomology and Nematology, University of Florida, P.O. Box. 110620, Gainesville, FL 32611-0620, U.S.A. koon- [email protected]. ABSTRACT Wang, K.-H., B. S. Sipes, and D. P. Schmitt. 2002. Crotalaria as a cover crop for nematode manage- ment: A review. Nematropica 32:35-57. Much of the research on Crotalaria has focused on nematode suppression in agricultural produc- tion systems. Crotalaria is a poor host to many plant-parasitic nematodes including Meloidogyne spp., Rotylenchulus reniformis , Radopholus similis , Belonolaimus longicaudatus , and Heterodera glycines . It is also a poor or non-host to a large group of other pests and pathogens, is competitive with weeds without becoming a weed, grows vigorously to provide good ground coverage for soil erosion control, fixes nitrogen, and is a green manure. However, most Crotalaria species are susceptible to Pratylenchus spp., Helicotylenchus sp., Scutellonema sp., and Criconemella spp. The objectives of this review are to summa- rize the knowledge of the efficacy of Crotalaria spp. for plant-parasitic nematode management, de- scribe the mechanisms of nematode suppression, and outline prospects for using this crop effectively. Crotalaria species are used as preplant cover crops, intercrops, or soil amendments. Variation in nem- atode suppression by different Crotalaria cropping systems is discussed. The major impediment to us- ing Crotalaria is its short-term effect in agricultural production systems. Integrating other pest management strategies with Crotalaria could offer promising nematode management approaches. Key words: Allelopathy, Crotalaria juncea , nematode antagonistic fungi, plant-parasitic nematodes, sunn hemp. RESUMEN Wang, K.-H., B. S. Sipes, and D. P. Schmitt. 2002. Uso de Crotalaria como cultivo de cobertura para el manejo de nematodo: Una revision. Nematrópica 32:35-57. Gran parte de la investigación en Crotalaria ha sido enfocada sobre la supresión de nematodos en sistemas de producción agrícola. Crotalaria es una hospedera inadecuada para muchos nematodos parásitos de plantas entre los cuales se incluyen Meloidogyne spp., Rotylenchulus reniformis , Radopholus similis , Belonolaimus longicaudatus , y Heterodera glycines . Un gran número de otros tipos de plagas y pató- genos no logran hospedarse en ella, compite con malezas sin llegar a ser una maleza, crece vigorosa- mente proporcionando una buena cobertura del suelo que lo protege contra la erosión, fija nitrógeno, y es un abono verde. Sin embargo, muchas especies de Crotalaria son susceptibles a Pra- tylenchus spp., Helicotylenchus sp., Scutellonema sp., y Criconemella spp. Esta revisión tiene como objetivos resumir el conocimiento actual sobre la eficiencia de Crotalaria spp. para el manejo de nematodos fitoparásitos, describir los mechanismos de la supresión de nematodos, y esquematizar perspectivas para el uso de este cultivo eficientemente. Las especies de Crotalaria son usadas como cultivos de co- bertura presiembra, cultivo intercalado o emiendas de suelo. Se discute la variación en la supresión de nematodos por diferentes sistemas de cultivos de Crotalaria . El mayor obstáculo para el uso de Cro- This paper is a contribution from the College of Tropical Agriculture and Human Resources, University of Hawaii, Honolulu, Journal Series No. 4584.

Transcript of CROTALARIA AS A COVER CROP FOR NEMATODE MANAGEMENT: A REVIEW

35

CROTALARIA

AS A COVER CROP FOR NEMATODE MANAGEMENT: A REVIEW

Koon-Hui Wang, B. S. Sipes, and D. P. Schmitt

Department of Plant and Environmental Protection Sciences, 3190 Maile Way, University of Hawaii,Honolulu, HI 96822-2279, U.S.A. Current address of senior author: Department of Entomology andNematology, University of Florida, P.O. Box. 110620, Gainesville, FL 32611-0620, U.S.A. koon-

[email protected].

ABSTRACT

Wang, K.-H., B. S. Sipes, and D. P. Schmitt. 2002.

Crotalaria

as a cover crop for nematode manage-ment: A review. Nematropica 32:35-57.

Much of the research on

Crotalaria

has focused on nematode suppression in agricultural produc-tion systems.

Crotalaria

is a poor host to many plant-parasitic nematodes including

Meloidogyne

spp.,

Rotylenchulus reniformis

,

Radopholus similis

,

Belonolaimus longicaudatus

, and

Heterodera glycines

. It is alsoa poor or non-host to a large group of other pests and pathogens, is competitive with weeds withoutbecoming a weed, grows vigorously to provide good ground coverage for soil erosion control, fixesnitrogen, and is a green manure. However, most

Crotalaria

species are susceptible to

Pratylenchus

spp.,

Helicotylenchus

sp.,

Scutellonema

sp., and

Criconemella

spp. The objectives of this review are to summa-rize the knowledge of the efficacy of

Crotalaria

spp. for plant-parasitic nematode management, de-scribe the mechanisms of nematode suppression, and outline prospects for using this crop effectively.

Crotalaria

species are used as preplant cover crops, intercrops, or soil amendments. Variation in nem-atode suppression by different

Crotalaria

cropping systems is discussed. The major impediment to us-ing

Crotalaria

is its short-term effect in agricultural production systems. Integrating other pestmanagement strategies with

Crotalaria

could offer promising nematode management approaches.

Key words:

Allelopathy,

Crotalaria juncea

, nematode antagonistic fungi, plant-parasitic nematodes,

sunn hemp.

RESUMEN

Wang, K.-H., B. S. Sipes, and D. P. Schmitt. 2002. Uso de

Crotalaria

como cultivo de cobertura para elmanejo de nematodo: Una revision. Nematrópica 32:35-57.

Gran parte de la investigación en

Crotalaria

ha sido enfocada sobre la supresión de nematodos ensistemas de producción agrícola.

Crotalaria

es una hospedera inadecuada para muchos nematodosparásitos de plantas entre los cuales se incluyen

Meloidogyne

spp.,

Rotylenchulus reniformis

,

Radopholussimilis

,

Belonolaimus longicaudatus

, y

Heterodera glycines

. Un gran número de otros tipos de plagas y pató-genos no logran hospedarse en ella, compite con malezas sin llegar a ser una maleza, crece vigorosa-mente proporcionando una buena cobertura del suelo que lo protege contra la erosión, fijanitrógeno, y es un abono verde. Sin embargo, muchas especies de

Crotalaria

son susceptibles a

Pra-tylenchus

spp.,

Helicotylenchus

sp.,

Scutellonema

sp., y

Criconemella

spp. Esta revisión tiene como objetivosresumir el conocimiento actual sobre la eficiencia de

Crotalaria

spp. para el manejo de nematodosfitoparásitos, describir los mechanismos de la supresión de nematodos, y esquematizar perspectivaspara el uso de este cultivo eficientemente. Las especies de

Crotalaria

son usadas como cultivos de co-bertura presiembra, cultivo intercalado o emiendas de suelo. Se discute la variación en la supresiónde nematodos por diferentes sistemas de cultivos de

Crotalaria

. El mayor obstáculo para el uso de Cro-

This paper is a contribution from the College of Tropical Agriculture and Human Resources, University ofHawaii, Honolulu, Journal Series No. 4584.

36 NEMATROPICA Vol. 32, No. 1, 2002

talaria es su efecto a corto plazo en los sitemas de producción agrícola. La integración de otras estra-tegias de manejo de plagas con Crotalaria podría ofrecer soluciones promisorias para el manejo denematodo.

Palabras claves:

Alelopatía,

Crotalaria juncea

, hongos antagonista de nematodos, nematodos fitoparási-

tos.

INTRODUCTION

Crotalaria

possesses many characteris-tics of a cover crop, being a poor or non-host for a large group of pests and patho-gens, competitive with weeds withoutbecoming a weed, growing vigorously toprovide good ground coverage, perform-ing symbiosis with rhizobium to fix nitro-gen, and being a green manure. Thisreview will focus on growing

Crotalaria

fornematode management, and will providean overview of the advantages and poten-tial problems of this plant as a cover crop,a description of the mechanisms of nema-tode suppression, and prospects for usingthis crop effectively to suppress plant-para-sitic nematodes.

Crotalaria

Crotalaria

belongs to Fabaceae L. (syn.Leguminosae Juss.) and contains about550 species (Purseglove, 1974). Growthhabits vary from shrubs to herbs and thegenus is common in the tropics and sub-tropics, with the greatest number of spe-cies occurring in Africa. One of theimportant fiber and green manure crops is

Crotalaria juncea

L. Several other economi-cally important species are

C. intermedia

Kotschy,

C. mucronata

Desv (syn.

C. striata

DC.), and

C. retusa

L., which are grown asgreen manures, forages, and ornamentals.

Many species of

Crotalaria

contain alka-loids toxic to animals. For example,

C.burkeana

Benth causes crotalism (styfsiekte)in cattle in South Africa, an acute inflam-

mation of the horn-forming membranes ofthe hoof.

Crotalaria dura

Wood & Evanscauses pulmonary and liver diseases inhorses and cirrhosis of the liver in cattle;

C.retusa

causes cirrhosis of the liver in humansand cattle in Jaimaica;

C. maypurensis

HBKis suspected of losses in cattle in Guyana(Purseglove, 1974); and

C. spectabilis

Roth.is toxic to livestock and can become a nox-ious weed (Good

et al.

, 1965).Fortunately, numerous species are not

toxic to livestock (Rotar and Joy, 1983),including

C. juncea

, commonly known assunn hemp. It probably originated in India,is the fastest growing of the

Crotalaria

spe-cies, and is very effective at competitivelydisplacing weeds (Purseglove, 1974). It ishardy, drought-resistant, and grows onalmost all soil types. Although adapted tohot climates, the plant will endure slightfrost. It is the most important fiber crop inIndia and is now widely grown as a greenmanure in Indonesia, Zimbabwe, Malay-sia, Taiwan, Thailand, and China (Rotarand Joy, 1983).

Crotalaria juncea

was used inthe manufacture of products such astwines, cords, fishing nets, sacks, and ropesoles for shoes and sandals (Purseglove,1974). In addition, since rhizobia that nod-ulate

C. juncea

are present in most soils,soil nitrogen improvement is expected(National Research Council, 1979). As agreen manure crop, the plants can betilled into the soil 2 months after plantingto increase the soil organic matter. There-fore,

C. juncea

is grown in rotation withrice, maize, tobacco, cotton, sugar cane,pineapples (Hawaii), coffee (Brazil) and in

Crotalaria

for nematode management: Wang

et al.

37

orchard crops (Purseglove, 1974). Its seedshave been fed to pigs in Zimbabwe andhorses in the former Soviet Union withoutharm to the animals (Purseglove, 1974).

Crotalaria juncea

‘Tropic Sun’, devel-oped for use as a green manure, wasreleased in 1982 by the National Resourcesof Conservation Seirra (NRCS), formerlythe Soil Conservation Service, and Univer-sity of Hawaii (Rotar and Joy, 1983). Thesource of the germplasm is uncertain, butit was probably collected by the PineappleResearch Institute in Hawaii since it wasconducting research on

Crotalaria

species.In 1958, NRCS and University of Hawaiipurchased seeds of

Crotalaria

from afarmer who was growing it as a cover cropon the island of Kauai. This germplasmwas used to develop ‘Tropic Sun’. TheAgricultural Research Service’s PoisonousPlant Laboratory and the University ofHawaii determined that seeds of this culti-var were not toxic to livestock, and that theplant was resistant to root-knot nematodes(Rotar and Joy, 1983).

In the tropics, ‘Tropic Sun’ grows andproduces seed year round at elevations of0 to 300 m, and in summer up to 600 m. Itis grown in Guam and Puerto Rico underconditions similar to Hawaii. In the conti-nental United States,

C. juncea

is adaptedto spring and summer planting in theSouth and Southwest (Rotar and Joy, 1983)and can be grown as a winter cover crop inAlabama (Reeves

et al.

, 1996). It is suitableas a green manure crop as far north asMaryland, but may not seed well north of30

°

latitude.‘Tropic Sun’ is a rapidly growing crop

that is good for use as a green manure andfor adding organic matter and nitrogen tothe soil. It suppresses weeds, slows soil ero-sion, and reduces root-knot nematodespopulations (Rotar and Joy, 1983). Whenplowed under at early bloom stage, nitro-gen recovery is the highest. It can produce

150 to 165 kg/ha of nitrogen and 7 t/haair-dry organic matter at 60 days of growthunder favorable conditions (Rotar and Joy,1983). In southwestern Alabama, plantsgrown for 9 to 12 weeks will produce 5.9 t/ha dry-matter and 126 kg N/ha (Reeves

et al.

, 1996). Leaving the residue on the soilsurface over winter resulted in the releaseof 75 to 80 kg N/ha (Reeves

et al.

, 1996).The crop has a few pest and pathogen

problems. Major diseases of

C. juncea

areFusarium wilt caused by

Fusarium udum

var.

crotalariae

and anthracnose caused by

Col-lectotrichum curvatum

(Purseglove, 1974).In Brazil, the only disease reported on thecrop is

Ceratocystes fimbriata

(NationalResearch Council, 1979). The three mostserious insect pests for

C. juncea

are larvaeof the sunn hemp moth,

Utetheisa pulchell

a,the stem borer,

Laspeyresia pseudonectis

, andthe pod borers (Purseglove, 1974).

Crota-laria juncea

was also a host to stink bug,

Nezara viridula

and African sorghum headbug,

Eurystylus oldi

(Davis, 1964; Maldenand Ratnadass, 1998).

NEMATODE POPULATIONSUPPRESSION BY

CROTALARIA

Suppression of plant-parasitic nema-todes by

Crotalaria

spp. has been known fordecades. Godfrey (1928) noted that

C. juncea

had few root galls from infectionwith

Meloidogyne

spp. Most of the plant-par-asitic nematodes suppressed by

Crotalaria

are sedentary endoparasitic nematodes.These include

Meloidogyne

spp. (Good

et al.

,1965; McSorley

et al.

, 1994a; Taylor, 1985),

Heterodera glycines

(Rodríguez-Kábana

et al.

,1992b) and

Rotylenchulus reniformis

(Robin-son

et al.

, 1998; Araya and Caswell-Chen,1994a). Some migratory nematodes suchas

Belonolaimus longicaudatus

(Reddy

et al.

,1986),

Paratrichodorous minor

, Xiphinemaamericanum (Good et al., 1965; Brodie et al.,1970), and Radopholus similis (Birchfield

38 NEMATROPICA Vol. 32, No. 1, 2002

and Bristline, 1956) were also suppressedby Crotalaria spp. (Table 1). Most of theplant-parasitic nematodes that are not sup-pressed by Crotalaria are migratory nema-todes, including Helicotylenchus spp., Meso-criconema xenoplax, P. minor, Pratylenchusspp., Radopholus similis, Scutellonema spp.and X. americanum (Table 2).

Among the species tested, C. spectabilisand C. juncea are most frequently studied.These plants have been used as preplantcover crops, intercrops, and soil amend-ments. The suppressive effect of Crotalariaon nematodes is variable for all the appli-cation methods (Table 1). As suggested byMcSorley (2002), this variation could bedue to genetic variation within the nema-tode species, crop cultivars, cropping sea-son, field history, cover cropping system,concurrent field practices or edaphic fac-tors including various biological compo-nents associated with the Crotalaria rhizo-sphere or soil amendment. Accordingly,variation in nematode suppression by dif-ferent Crotalaria application methods willbe discussed.

Preplant cover crop: In general, when Cro-talaria was used as a preplant cover crop, itsuppressed population growth of mostplant-parasitic nematodes except Pratylen-chus spp. and Helicotylenchus spp. (Desae-ger and Rao, 2000; Johnson and Campbell,1980). Several studies demonstrated thatCrotalaria suppressed Meloidogyne spp. bet-ter than nematicides, because it continuedto suppress the nematode populationdevelopment after a host was planted(Huang et al., 1981; Aguillera et al., 1984;Sharma and Scolari, 1984). Crotalaria jun-cea suppressed R. reniformis populationdensities better than weed cover whenplanted immediately after pineapple, witha nematode reproductive factor of 0.16and 1.59 respectively (Wang, 2000).Although Johnson and Campbell (1980)suggested that Crotalaria treatment was not

as effective as fallow, differences betweenthose two treatments were not statisticallysignificant.

Crotalaria species demonstrated variableresistance against different nematodes. Forexample, C. juncea supported moderateinfection by M. javanica, whereas C. inter-media exhibited greater resistance, andC. paulina Schrank and C. spectabilis showedhigh resistance (Daulton, 1955; Martin,1956). Similarly, C. breviflora DC., C. lan-ceolata E. Meyer and C. mucronata are veryresistant, C. retusa, C. grantiana Harv., C. spec-tabilis and C. juncea are intermediate, andC. striata and C. paulina are less resistant toR. reniformis (Silva et al., 1989b). Differentsusceptibility of Crotalaria species to Praty-lenchus and Helicotylenchus spp. was alsoobserved. Population densities of P. coffeaeon tea were suppressed by Crotalaria (Vis-ser and Vythilingam, 1959) but P. zea canpenetrate roots of C. breviflora, C. spectabilis,C. retusa, and C. juncea, and P. brachyuruscan penetrate roots of C. juncea and C. spec-tabilis at a lower rate than those penetrat-ing roots of Sorghum bicolor, a standard hostfor Pratylenchus (Silva et al., 1989a). Bio-mass production of several species of Crota-laria, including C. paulina, C. pycnostachya,and C. striata, was reduced by P. zeae (Desae-ger and Rao, 2001). However, C. mucronatasuppressed P. zeae and P. brachyurus (Endo,1959) and C. usaromoensis decreased P. bra-chyurus population densities and improvepineapple yield. In another case, P. bra-chyurus survived in soil planted with C. jun-cea, but did not multiply (Charchar andHuang, 1981).

Most reports have indicated that C. spec-tabilis suppressed Meloidogyne spp. How-ever, a majority of the tests for Crotalariawere conducted in tropical or subtropicalareas where Crotalaria is well adapted. Agreenhouse experiment showed that C.spectabilis was not resistant to M. hapla(Good et al., 1965), a nematode more com-

Crotalaria for nematode management: Wang et al. 39Ta

ble

1. E

xam

ples

of p

osit

ive

effe

cts

of C

rota

lari

a sp

p. o

n p

lan

t-par

asit

ic n

emat

odes

man

agem

ent.

Spec

ies

Exp

erim

enta

l con

diti

ons

Targ

et n

emat

ode

Res

ults

Ref

eren

ces

Cro

tala

ria

sp.

Hos

t tes

ting

Melo

idog

yne s

pp.

Poor

hos

t in

toba

cco

fiel

ds o

f Flo

rida

.B

ratle

y, 19

42H

ost t

estin

gM

eloid

ogyn

e jav

anic

a, P

raty

lench

us

coffe

aeR

educ

ed n

emat

odes

on

tea

mor

e ef

fi-

cien

tly th

an fa

llow.

Vis

ser

and

Vyt

hili

nga

m, 1

959

Hos

t tes

ting

R. r

enifo

rmis

Red

uced

nem

atod

e po

pula

tion

den

sitie

s.R

omán

, 196

4Tr

ap c

rop

Melo

idog

yne s

pp. o

n c

itrus

(A

siat

ic

pyro

id c

itrus

nem

atod

e)N

emat

ode

inva

ded

root

s bu

t no

nem

a-to

de r

epro

duct

ion

.C

hitw

ood

and

Toun

g, 1

960

C. a

gatifl

ora

Hos

t tes

ting

in fi

eld

soil

Maj

ority

of M

. jav

anic

a m

ixed

with

M

. inc

ogni

taN

o n

emat

odes

wer

e re

cove

red

from

soi

l or

roo

ts.

Des

aege

r an

d R

ao, 1

999

Prep

lan

t cov

er c

rop

for

mai

zeM

. inc

ogni

ta, M

. jav

anic

aD

ecre

ased

nem

atod

e po

pula

tion

s bef

ore

and

afte

r m

aize

pla

ntin

g co

mpa

red

to

wee

d fa

llow.

Des

aege

r an

d R

ao, 2

000

C. b

revi

flora

Fiel

d te

stE

ctop

aras

itic

nem

atod

esE

ffec

tivel

y re

duce

d n

emat

ode

num

bers

.O

chse

an

d B

rew

ton

, 195

4H

ost t

estin

gM

. inc

ogni

ta r

ace

3, M

. jav

anic

aN

o n

emat

odes

det

ecte

d.Sa

nto

s an

d R

uan

o, 1

987

Hos

t tes

ting

R. r

enifo

rmis

No

nem

atod

es d

etec

ted.

Silv

a et

al.,

198

9bC

. bre

viflo

raH

ost t

estin

gP.

zea

Low

num

bers

com

pare

d to

thos

e in

sor

-gh

um.

Silv

a et

al.,

198

9a

C. e

ndec

aphy

llaH

ost t

estin

gM

. inc

ogni

ta, M

. jav

anic

aN

o n

emat

odes

rec

over

ed a

fter

4 m

onth

s.D

esae

ger

and

Rao

, 199

9C

. ful

vaH

ost t

estin

gM

. inc

ogni

ta, M

. jav

anic

aN

on-h

ost o

f th

ese

nem

atod

es.

Net

cher

an

d Si

kora

, 199

0Pr

epla

nt c

over

cro

p fo

r to

bacc

oM

. jav

anic

aSu

ppre

ssed

dam

age

of M

. jav

anic

a on

to

bacc

o.Sh

eph

erd

and

Bar

ker,

1993

C. g

raha

mia

naH

ost t

estin

gM

. inc

ogni

ta, M

. jav

anic

aN

on-h

ost o

f th

ese

nem

atod

es.

Net

cher

an

d Si

kora

, 199

0;

Des

aege

r an

d R

ao, 1

999

Prep

lan

t cov

er c

rop

for

toba

cco

M. j

avan

ica

Supp

ress

ed d

amag

e of

M. j

avan

ica

on

toba

cco.

Shep

her

d an

d B

arke

r, 19

93

C. g

reen

way

Hos

t tes

ting

M. i

ncog

nita

, M. j

avan

ica

No

nem

atod

es r

ecov

ered

aft

er 4

mon

ths.

Des

aege

r an

d R

ao, 1

999

C. g

rant

iana

Hos

t tes

ting

M. i

ncog

nita

rac

e 3,

M. j

avan

ica

Res

ista

nt.

San

tos

and

Rua

no,

198

7H

ost t

estin

gP.

bra

chyu

rus,

P. z

eaN

o n

emat

odes

wer

e de

tect

ed.

Silv

a et

al.,

198

9aC

. gra

ntia

naH

ost t

estin

gR

. ren

iform

isPo

or h

ost.

Silv

a et

al.,

198

9bC

. inc

ana

Hos

t tes

ting

M. i

ncog

nita

, M. j

avan

ica

No

nem

atod

es r

ecov

ered

aft

er 4

mon

ths.

Des

aege

r an

d R

ao, 1

999

C. i

nter

med

iaPr

epla

nt c

over

cro

p fo

r to

bacc

oM

. jav

anic

aSu

ppre

ssed

dam

age

of M

. jav

anic

a on

to

bacc

o.Sh

eph

erd

and

Bar

ker,

1993

C. j

unce

aH

ost t

estin

gM

eloid

ogyn

e spp

.L

ow r

oot g

all i

nde

x.G

odfr

ey, 1

928

Hos

t tes

ting

M. i

ncog

nita

rac

e 3,

M. j

avan

ica

Res

ista

nt.

San

tos

and

Rua

no,

198

7

40 NEMATROPICA Vol. 32, No. 1, 2002

C. j

unce

aH

ost t

estin

gM

. are

nari

a, M

. inc

ogni

ta, M

. jav

a-ni

caO

nly

occ

asio

nal

egg

mas

ses

obse

rved

on

M

. inc

ogni

ta in

fect

ed p

lan

ts.

McS

orle

y, 19

99

Hos

t tes

ting

M. e

xigu

aH

igh

ly e

ffici

ent i

n s

uppr

essi

ng

the

nem

a-to

de.

Silv

a et

al.,

199

0a

Hos

t tes

ting

M. j

avan

ica

Smal

ler

gian

t cel

ls; f

ewer

gia

nt c

ells

per

fe

mal

e; g

ian

t cel

ls s

how

ed g

ran

ular

, de

nse

cyt

opla

sm, w

ith s

mal

l num

ber

of

nuc

lei;

larg

e va

cuol

es fr

eque

ntly

abs

ent.

Silv

a et

al.,

199

0b

Hos

t tes

ting

M. j

avan

ica

Som

e M

. jav

anic

a re

prod

uctio

n b

ut n

o ga

lls o

bser

ved

and

no

juve

nile

s fo

und

in

soil;

M. j

avan

ica

extr

acte

d by

mis

t ch

am-

ber

wer

e si

gnifi

can

tly lo

wer

than

that

fr

om th

e to

mat

o.

Ara

ya a

nd

Cas

wel

l-Ch

en,

1994

a

Hos

t tes

ting

M. j

avan

ica

Pen

etra

te th

e ro

ots

but c

ann

ot d

evel

op

into

adu

lt 45

day

s af

ter

inoc

ulat

ion

.Si

lva

et a

l., 1

989c

Hos

t tes

ting

P. b

rach

yuru

sSu

rviv

ed b

ut fa

iled

to m

ultip

ly.

Ch

arch

ar a

nd

Hua

ng,

198

1H

ost t

estin

gP.

bra

chyu

rus,

P. z

eaL

ow n

umbe

rs c

ompa

red

to th

ose

in s

or-

ghum

.Si

lva

et a

l., 1

989

Hos

t tes

ting

Rot

ylen

chul

us re

nifo

rmis

Poor

hos

t, lim

ited

pen

etra

tion

, red

uced

R

. ren

iform

is a

t lea

st a

s w

ell a

s fa

llow.

Cas

wel

l et a

l., 1

991;

Rob

inso

n

et a

l., 1

998;

Silv

a et

al.,

198

9bL

eaf e

xtra

ctR

adop

holu

s sim

ilis

Let

hal

at d

ilutio

n o

f 1:5

at 2

4 h

ours

aft

er

incu

batin

g th

e n

emat

odes

in th

e ex

trac

t.Ja

sy a

nd

Kos

hy,

1994

Prep

lan

t cov

er c

rop

for

cott

onM

. inc

ogni

taSu

ppre

ssed

pop

ulat

ion

den

sitie

s on

cot

-to

n.

Rob

inso

n et

al.,

199

8

Prep

lan

t cov

er c

rop

for

taro

M. j

avan

ica

Red

uced

nem

atod

e n

umbe

rs o

n ta

ro

and

incr

ease

d ta

ro c

orm

wei

ght b

ette

r th

an c

ontin

uous

taro

pla

ntin

g.

Sipe

s an

d A

raka

ki, 1

997

Prep

lan

t cov

er c

rop

for

toba

cco

M. j

avan

ica

Supp

ress

ed d

amag

e by

M. j

avan

ica

to

toba

cco.

Shep

her

d an

d B

arke

r, 19

93

Prep

lan

t cov

er c

rop

for

pin

eapp

leR

. ren

iform

isR

educ

ed n

emat

ode

popu

latio

n d

ensi

ty

com

pare

d to

fallo

w.W

ang,

200

0

Inte

rcro

ppin

g w

ith b

anan

aH

elico

tylen

chus

mul

ticin

ctus

, H

oplo

laim

us in

dicu

s, R

. sim

ilis,

R. r

enifo

rmis

Red

uced

the

nem

atod

e po

pula

tion

den

-si

ties

bett

er th

an c

arbo

fura

n tr

eatm

ent

and

incr

ease

d ba

nan

a yi

eld.

Ch

arle

s, 1

995

Tabl

e 1.

(C

onti

nue

d) E

xam

ples

of p

osit

ive

effe

cts

of C

rota

lari

a sp

p. o

n p

lan

t-par

asit

ic n

emat

odes

man

agem

ent.

Spec

ies

Exp

erim

enta

l con

diti

ons

Targ

et n

emat

ode

Res

ults

Ref

eren

ces

Crotalaria for nematode management: Wang et al. 41

C. j

unce

aC

rop

rota

tion

M. i

ncog

nita

, M. j

avan

ica

A tw

o-ye

ar c

orn

an

d C

. jun

cea

rota

tion

in

a fo

rmer

sug

arca

ne

fiel

d re

duce

d th

e n

emat

ode

popu

latio

n d

ensi

ties.

Mou

ra, 1

991

Cro

p ro

tatio

nM

eloid

ogyn

e spp

., Pr

atyl

echu

s spp

.R

educ

ed th

e re

surg

ence

of t

hes

e n

ema-

tode

s on

sug

ar c

ane.

Mou

ra, 1

995

C. l

abur

nifo

liaH

ost t

estin

gM

. inc

ogni

ta, M

. jav

anic

a1

juve

nile

g-1 r

oot r

ecov

ered

aft

er 4

m

onth

s.D

esae

ger

and

Rao

, 199

9

C. l

ance

olat

aH

ost t

estin

gP.

bra

chyu

rus,

P. z

ea, R

. ren

iform

isN

o n

emat

ode

dete

cted

.Si

lva

et a

l., 1

989a

, bC

. muc

rona

taH

ost t

estin

gM

. inc

ogni

ta, M

. jav

anic

aN

o n

emat

odes

rec

over

ed a

fter

4 m

onth

s.D

esae

ger

and

Rao

, 199

9H

ost t

estin

gM

. inc

ogni

ta r

ace

3, M

. jav

anic

aR

esis

tan

t.Sa

nto

s an

d R

uan

o, 1

987

Hos

t tes

ting

Prat

ylen

chus

zea

e, P.

bra

chyu

rus

Poor

hos

t.E

ndo

, 195

9H

ost t

estin

gP.

bra

chyu

rus,

P. z

ea, R

. ren

iform

isN

o n

emat

ode

dete

cted

.Si

lva

et a

l., 1

989a

, bPr

epla

nt c

over

cro

pP.

bra

chyu

rus

Red

uced

pop

ulat

ion

s of

P. b

rach

yuru

sE

ndo

, 195

9Pr

epla

nt c

over

cro

pM

. inc

ogni

taR

educ

ed th

e po

pula

tion

den

sitie

s of

M

. inc

ogni

ta b

elow

det

ecta

ble

leve

ls in

1

to 3

yea

rs. D

epen

ds o

n th

e in

itial

pop

ula-

tion

den

sity

.

Mur

phy

et a

l., 1

974

Prep

lan

t cov

er c

rop

M. i

ncog

nita

, P. b

rach

yuru

s, Pa

ra-

tric

hodo

rous

chr

istie

iC

ombi

nat

ion

of 6

-wee

k fa

llow

an

d C

. muc

rona

ta p

lan

ting

redu

ced

thes

e n

emat

ode

popu

latio

n d

ensi

ties

to

alm

ost u

nde

tect

able

leve

ls o

n to

mat

o an

d im

prov

ed to

mat

o yi

eld.

Bro

die

and

Mur

phy,

1975

C. o

chro

leuc

aH

ost t

estin

gE

ctop

aras

itic

nem

atod

esE

ffec

tivel

y re

duce

d n

emat

ode

num

bers

Och

se a

nd

Bre

wto

n, 1

954

Hos

t tes

ting

M. i

ncog

nita

, M. j

avan

ica

1 ju

ven

ile g

-1 r

ecov

ered

aft

er 4

mon

ths.

Des

aege

r an

d R

ao, 1

999

C. p

allid

aH

ost t

estin

gM

. inc

ogni

ta, M

. jav

anic

aD

id n

ot a

llow

nem

atod

es to

rep

rodu

ce.

Gon

zaga

an

d Fe

rraz

, 199

4C

. pau

lina

Hos

t tes

ting

M. i

ncog

nita

, M. j

avan

ica

No

nem

atod

es r

ecov

ered

aft

er 4

mon

ths.

Des

aege

r an

d R

ao, 1

999

Hos

t tes

ting

and

amen

dmen

t ef

fect

M. i

ncog

nita

No

egg

mas

ses

wer

e fo

und

on b

ean

pl

ants

gro

wn

in th

e sa

me

pots

aft

er

C. p

aulin

a w

as c

ultiv

ated

. Soi

l am

end-

men

t did

not

supp

ress

the

nem

atod

e bu

t en

han

ced

bean

gro

wth

.

Gon

zaga

an

d Fe

rraz

, 199

4

Hos

t tes

ting

M. i

ncog

nita

Life

cyc

le n

ot c

ompl

eted

.G

onza

ga a

nd

Ferr

az, 1

994;

Pe

acoc

k, 1

957

Hos

t tes

ting

M. i

ncog

nita

, M. j

avan

ica

No

nem

atod

es r

ecov

ered

aft

er 4

mon

ths.

Des

aege

r an

d R

ao, 1

999

Tabl

e 1.

(C

onti

nue

d) E

xam

ples

of p

osit

ive

effe

cts

of C

rota

lari

a sp

p. o

n p

lan

t-par

asit

ic n

emat

odes

man

agem

ent.

Spec

ies

Exp

erim

enta

l con

diti

ons

Targ

et n

emat

ode

Res

ults

Ref

eren

ces

42 NEMATROPICA Vol. 32, No. 1, 2002

C. p

aulin

aH

ost t

estin

gM

. jav

anic

aPe

net

rate

the

root

s bu

t can

not

dev

elop

in

to a

dult

45 d

ays

afte

r in

ocul

atio

n.

Silv

a et

al.,

198

9c

Hos

t tes

ting

P. b

rach

yuru

s, P.

zea

No

nem

atod

e de

tect

ed.

Silv

a et

al.,

198

9aH

ost t

estin

gR

. ren

iform

isPo

or h

ost.

Silv

a et

al.,

198

9bPr

epla

nt c

over

cro

p fo

llow

ed b

y be

an a

nd

corn

Com

bin

atio

n o

f M. j

avan

ica,

P.

bra

chyu

rus,

C. o

rnat

a an

d H

. dih

yste

ra

Rep

rodu

ctiv

e fa

ctor

s of t

hes

e n

emat

odes

on

bea

n a

nd

corn

pla

nte

d af

ter

C. p

aulin

a w

ere

low

er th

an th

ose

afte

r fa

l-lo

w tr

eatm

ent.

Shar

ma

and

Scol

ari,

1984

C. r

ecta

Hos

t tes

ting

M. i

ncog

nita

, M. j

avan

ica

No

nem

atod

es r

ecov

ered

aft

er 4

mon

ths.

Des

aege

r an

d R

ao, 1

999

C. r

etus

aH

ost t

estin

gE

ctop

aras

itic

nem

atod

esE

ffec

tivel

y re

duce

d n

emat

ode

num

ber.

Och

se a

nd

Bre

wto

n, 1

954

Hos

t tes

ting

Melo

idog

yne s

pp.

Res

ista

nt t

o fi

ve s

peci

es o

f Melo

idog

yne.

Sass

er, 1

954

Hos

t tes

ting

M. j

avan

ica

Pen

etra

ted

the

root

s but

did

not

dev

elop

to

adu

lt 45

day

s af

ter

inoc

ulat

ion

.Si

lva

et a

l., 1

989c

Hos

t tes

ting

P. b

rach

yuru

sN

o n

emat

ode

dete

cted

.Si

lva

et a

l., 1

989a

Hos

t tes

ting

R. r

enifo

rmis

Poor

hos

t.Si

lva

et a

l., 1

989b

C. s

pect

abili

sH

ost t

estin

gM

eloid

ogyn

e spp

.R

esis

tan

t to

five

spe

cies

of M

eloid

ogyn

e.Sa

sser

, 195

4H

ost t

estin

gM

. are

nari

aH

igh

res

ista

nce

an

d lo

w r

oot g

allin

g.G

ood

et a

l., 1

965;

Tay

lor,

1985

Hos

t tes

ting

M. i

ncog

nita

rac

e 3

and

M. j

ava-

nica

Res

ista

nt.

San

tos

and

Rua

no,

198

7

Hos

t tes

ting

M. a

rena

ria,

M. i

ncog

nita

, M. j

ava-

nica

No

galls

or

egg

mas

ses

wer

e ob

serv

ed.

McS

orle

y, 19

99

Hos

t tes

ting

M. i

ncog

nita

Hig

h d

egre

e of

res

ista

nce

an

d lo

w r

oot

galli

ng.

Car

nei

ro a

nd

Car

nei

ro, 1

982;

G

ood

et a

l., 1

965;

Red

dy et

al.,

19

86; T

aylo

r, 19

85H

ost t

estin

gM

. are

nari

aN

o ro

ot g

all s

ympt

oms.

Rod

rígu

ez-K

ában

a et

al.,

199

2aH

ost t

estin

gM

. inc

ogni

taFe

wer

nem

atod

es in

vade

d, d

evel

opm

ent

was

del

ayed

, an

d fe

cun

dity

was

low.

An

war

et a

l., 1

994

Hos

t tes

ting

M. i

ncog

nita

rac

e 1

and

3,

M. a

rena

ria

race

1, M

. jav

anic

aN

o eg

g m

asse

s w

ere

obse

rved

.M

cSor

ley

and

Dic

kson

, 199

5

Hos

t tes

ting

M. j

avan

ica

Hig

h d

egre

e of

res

ista

nce

an

d lo

w r

oot

galli

ng.

Goo

d et

al.,

196

5; T

aylo

r et

al.,

19

85

Tabl

e 1.

(C

onti

nue

d) E

xam

ples

of p

osit

ive

effe

cts

of C

rota

lari

a sp

p. o

n p

lan

t-par

asit

ic n

emat

odes

man

agem

ent.

Spec

ies

Exp

erim

enta

l con

diti

ons

Targ

et n

emat

ode

Res

ults

Ref

eren

ces

Crotalaria for nematode management: Wang et al. 43

C. s

pect

abili

sH

ost t

estin

gM

. jav

anic

aPe

net

rate

d th

e ro

ots b

ut d

id n

ot d

evel

op

to a

dult;

sm

alle

r gi

ant c

ells

an

d fe

wer

gi

ant c

ells

per

fem

ale;

gia

nt c

ells

sh

owed

gr

anul

ar, d

ense

cyt

opla

sm, w

ith fe

w

nuc

lei;

larg

e va

cuol

es fr

eque

ntly

abs

ent.

Silv

a et

al.,

198

9c; S

ilva

et a

l.,

1990

b

Hos

t tes

ting

M. j

avan

ica

Few

gal

ls a

nd

no

egg

mas

ses.

Mar

tin, 1

958

Hos

t tes

ting

Rad

opho

lus s

imili

sN

o re

prod

uctio

n.

Bir

chfi

eld

and

Bri

stlin

e, 1

956

Hos

t tes

ting

P. b

rach

yuru

s, P.

zea

Low

num

bers

com

pare

d to

thos

e in

sor

-gh

um.

Silv

a et

al.,

198

9a

Hos

t tes

ting

R. r

enifo

rmis

Poor

hos

t.Si

lva

et a

l., 1

989b

Cro

p ro

tatio

n w

ith o

kra

M. i

ncog

nita

Alm

ost n

o M

. inc

ogni

ta d

etec

ted

in o

kra

root

s w

hen

C. s

pect

abili

s was

gro

wn

for

8 m

onth

s pr

ior

to o

kra.

Hua

ng

et a

l., 1

981

Prep

lan

t to

coff

eeM

. exi

gua

No

galls

wer

e fo

rmed

an

d gr

eatly

re

duce

d M

. exi

gua

num

bers

in th

e so

il 6

mon

ths

afte

r pl

antin

g. N

o n

emat

odes

de

tect

ed in

cof

fee

root

s 23

mon

ths

afte

r pl

antin

g.

Alm

eida

an

d C

ampo

s, 1

991a

, b.

Cro

p ro

tatio

n w

ith s

quas

h a

nd

eggp

lan

t in

two

crop

pin

g se

ason

sM

. are

nari

aSu

ppre

ssed

the

nem

atod

e on

ly in

the

shor

t sea

son

cro

p, s

quas

h, b

ut s

till

incr

ease

d eg

gpla

nt y

ield

com

pare

d to

pe

anut

rot

atio

n.

McS

orle

y et

al.,

199

4b

Prep

lan

t cov

er c

rop

for

tom

ato

M. i

ncog

nita

Red

uced

M. i

ncog

nita

on

car

rot;

incr

ease

d ca

rrot

yie

ld c

ompa

red

to r

ota-

tion

with

tom

ato.

Hua

ng

et a

l., 1

981

Prep

lan

t cov

er c

rop

for

toba

cco

M. j

avan

ica

Supp

ress

ed d

amag

e of

M. j

avan

ica

on

toba

cco.

Shep

her

d an

d B

arke

r, 19

93

Prep

lan

t cov

er c

rop

for

snap

bea

nM

eloid

ogyn

e spp

.R

educ

ed p

opul

atio

ns

of M

eloid

ogyn

e spp

. co

mpa

red

to fa

llow

ed p

lots

.R

hoa

des,

196

4

Prep

lan

t cov

er c

rop

Com

bin

atio

n o

f R. r

enifo

rmis

, H

elic

otyl

ench

us s

p., P

raty

lenc

hus

sp.

Red

uced

nem

atod

e po

pula

tion

den

si-

ties

in s

oil.

Nav

arro

, 196

8

Prep

lan

t cov

er c

rop

Bel

onol

aim

us lo

ngic

auda

tus,

Pa

ratr

icho

doru

s m

inor

, Xip

hine

ma

amer

ican

um

Red

uced

nem

atod

e po

pula

tion

den

si-

ties

in s

ubse

quen

t tom

ato

fiel

d,

enh

ance

d to

mat

o gr

owth

.

Goo

d et

al.,

196

5; B

rodi

e et

al.,

19

70

Tabl

e 1.

(C

onti

nue

d) E

xam

ples

of p

osit

ive

effe

cts

of C

rota

lari

a sp

p. o

n p

lan

t-par

asit

ic n

emat

odes

man

agem

ent.

Spec

ies

Exp

erim

enta

l con

diti

ons

Targ

et n

emat

ode

Res

ults

Ref

eren

ces

44 NEMATROPICA Vol. 32, No. 1, 2002

C. s

pect

abili

sIn

terp

lan

ted

Mel

oido

gyne

spp

.N

emat

odes

con

trol

led

afte

r C

. spe

ctab

ilis

was

inte

rpla

nte

d in

pea

ch o

rch

ards

for

2 ye

ars.

McB

eth

an

d Ta

ylor

, 194

4

Trap

cro

pM

eloid

ogyn

e spp

.N

o ga

lls d

evel

oped

.R

odrí

guez

-Káb

ana

et a

l., 1

992a

Soil

amen

dmen

tM

. are

nari

aH

igh

deg

ree

of r

esis

tan

ce.

Goo

d et

al.,

196

5So

il am

endm

ent

M. a

rena

ria

Red

uced

roo

t gal

ling

on s

quas

h, n

emat

i-ci

dal e

ffica

cy o

f am

endm

ents

dir

ectly

co

rrel

ated

with

N c

onte

nt o

f th

e am

end-

men

ts.

Mia

n a

nd

Rod

rígu

ez-K

ában

a,

1982

Gro

und

seed

am

endm

ent

M. i

ncog

nita

, M. j

avan

ica

Mix

ture

at 1

% le

vel s

uppr

esse

d n

ema-

tode

rep

rodu

ctio

n b

ette

r th

an n

on-

amen

ded

soil.

Mix

ture

at 2

% le

vel a

lmos

t co

mpl

etel

y su

ppre

ssed

nem

atod

e eg

g m

ass

prod

uctio

n b

ut p

hyt

otox

ic to

to

mat

o.

Ric

h a

nd

Rah

i, 19

95

C. s

tria

taH

ost t

estin

gM

. inc

ogni

taL

ife c

ycle

not

com

plet

ed.

Peac

ock,

195

7H

ost t

estin

gM

. inc

ogni

ta r

ace

3 an

d M

. jav

an-

ica

Res

ista

nt.

San

tos

and

Rua

no,

198

7

Hos

t tes

ting

H. g

lyci

nes

Nem

atod

e po

pula

tion

leve

ls r

educ

ed

and

fres

h w

eigh

t of s

oybe

an in

crea

sed.

Valle

et a

l., 1

995

Hos

t tes

ting

P. b

rach

yuru

s, P.

zea

No

nem

atod

e de

tect

ed.

Silv

a et

al.,

198

9aH

ost t

estin

gR

. sim

ilis

No

repr

oduc

tion

.B

irch

fiel

d an

d B

rist

line,

195

6H

ost t

estin

gR

. ren

iform

isPo

or h

ost.

Silv

a et

al.,

198

9bC

. usa

ram

oens

isH

ost t

estin

gM

. inc

ogni

taN

on-h

ost.

Net

cher

an

d Si

kora

, 199

0C

. usa

ram

oens

isC

rop

rota

tion

with

pin

eapp

leP.

bra

chyu

rus

Dec

reas

ed n

emat

ode

popu

latio

n d

ensi

-tie

s an

d im

prov

ed p

inea

pple

yie

ld.

Gué

rout

, 196

9

C. v

allic

ola

Hos

t tes

ting

M. i

ncog

nita

, M. j

avan

ica

No

nem

atod

es r

ecov

ered

aft

er 4

mon

ths.

Des

aege

r an

d R

ao, 1

999

Tabl

e 1.

(C

onti

nue

d) E

xam

ples

of p

osit

ive

effe

cts

of C

rota

lari

a sp

p. o

n p

lan

t-par

asit

ic n

emat

odes

man

agem

ent.

Spec

ies

Exp

erim

enta

l con

diti

ons

Targ

et n

emat

ode

Res

ults

Ref

eren

ces

Crotalaria for nematode management: Wang et al. 45

Tabl

e 2.

Exa

mpl

es o

f neg

ativ

e or

no

effe

cts

of C

rota

lari

a sp

p. o

n p

lan

t-par

asit

ic n

emat

odes

man

agem

ent.

Spec

ies

Exp

erim

enta

l con

diti

ons

Targ

et n

emat

ode

Res

ults

Ref

eren

ces

Cro

tala

ria

sp.

Inte

rcro

pPr

atyl

ench

us b

rach

yuru

sC

ontr

ol M

eloi

dogy

ne s

pp. b

ut in

crea

sed

P. b

rach

yuru

s to

dam

agin

g le

vel o

n p

ine-

appl

e in

Ivo

ry C

oast

.

Luc

et a

l., 1

993

C. a

gatifl

ora

Hos

t tes

tin

gH

elic

otyl

ench

us s

p., S

cute

llone

ma

sp.

As

susc

epti

ble

as m

aize

.D

esae

ger

and

Rao

, 200

1Pr

epla

nt c

over

cro

p fo

r m

aize

Prat

ylen

chus

zea

eIn

crea

sed

popu

lati

on d

ensi

ties

of P

. zea

e to

a le

vel t

hat

can

lim

it g

row

th o

f mai

ze.

Des

aege

r an

d R

ao, 2

000

C. g

raha

mia

naH

ost t

esti

ng

Hel

icot

ylen

chus

sp.

, Scu

tello

nem

a sp

.A

s su

scep

tibl

e as

mai

ze.

Des

aege

r an

d R

ao, 2

001

Hos

t tes

tin

gP.

zea

e, P

. bra

chyu

rus

As

susc

epti

ble

as m

aize

.D

esae

ger

and

Rao

, 200

1H

ost t

esti

ng

Tric

hodo

rida

e50

00 n

emat

odes

L-1 s

oil a

fter

4 m

onth

s.D

esae

ger

and

Rao

, 199

9C

. inc

ana

Hos

t tes

tin

gP.

zea

e, P

. bra

chyu

rus

As

susc

epti

ble

as m

aize

.D

esae

ger

and

Rao

, 200

1C

. jun

cea

Hos

t tes

tin

gM

. are

nari

a su

bsp.

tham

esi,

M. h

apla

, M. i

ncog

nita

var

acr

ita,

M. j

avan

ica

Th

ese

nem

atod

es fr

om S

outh

Afr

ica

wer

e fo

und

pen

etra

tin

g an

d re

prod

uc-

ing

in r

oots

. Dat

a w

ere

not

qua

nti

fied

.

Van

der

Lin

de, 1

956

Hos

t tes

tin

gM

. hap

laR

oots

alm

ost t

otal

ly g

alle

d, b

ut fe

w e

gg

mas

ses

foun

d.M

arti

n, 1

958

Hos

t tes

tin

gM

. inc

ogni

ta v

ar. a

crita

, M. j

avan

-ic

aG

alls

vis

ible

.M

arti

n, 1

958

Hos

t tes

tin

gR

adop

holu

s si

mili

sN

emat

ode

num

bers

rec

over

ed n

ot d

if-

fere

nt f

rom

that

in a

sta

nda

rd h

ost,

Sor-

ghum

bic

olor

.

Inom

oto,

199

4

Prep

lan

t cov

er c

rop

Prat

ylen

chus

sef

aens

isN

ot e

ffec

tive

aga

inst

P. s

efae

nsis

.W

ilson

an

d C

aven

ess,

198

0C

. lab

urni

folia

Hos

t tes

tin

gP.

zea

e, P

. bra

chyu

rus

As

susc

epti

ble

as m

aize

.D

esae

ger

and

Rao

, 200

1C

. muc

rona

taPr

epla

nt c

over

cro

pP.

bra

chyu

rus,

X. a

mer

ican

umIn

crea

sed

nem

atod

e po

pula

tion

den

si-

ties

.M

urph

y et

al.,

197

4

C. o

chro

leuc

aH

ost t

esti

ng

M. i

ncog

nita

var

. acr

itaG

alls

rea

dily

foun

d.M

arti

n, 1

958

Hos

t tes

tin

gM

. hap

laR

oots

alm

ost t

otal

ly g

alle

d bu

t no

egg

mas

ses

foun

d.M

arti

n, 1

958

Hos

t tes

tin

gP.

zea

e an

d P.

bra

chyu

rus

As

susc

epti

ble

as m

aize

.D

esae

ger

and

Rao

, 200

1Pr

epla

nt c

over

cro

p in

mic

ropl

otM

eloi

dogy

ne s

pp.

Not

eff

ecti

ve fo

r n

emat

ode

con

trol

.Ij

ani e

t al.,

200

0H

ost t

esti

ng

Tric

hodo

rida

e50

00 n

emat

odes

L-1 s

oil a

fter

4 m

onth

s.D

esae

ger

and

Rao

, 199

9C

. pau

lina

Hos

t tes

tin

gP.

zea

e, P

. bra

chyu

rus

As

susc

epti

ble

as m

aize

.D

esae

ger

and

Rao

, 200

1

46 NEMATROPICA Vol. 32, No. 1, 2002

C. p

anci

raPr

epla

nt c

over

cro

p in

mic

ropl

otM

. inc

ogni

taD

id n

ot r

educ

e th

e n

emat

ode

popu

la-

tion

den

siti

es s

uffi

cien

tly

to p

rote

ct fo

l-lo

win

g to

mat

o cr

op.

Bue

nte

an

d M

uelle

r, 19

97

C. r

etus

aH

ost t

esti

ng

P. z

eae

Goo

d h

ost.

Jord

aan

an

d W

aele

, 198

9C

. sph

aero

carp

aH

ost t

esti

ng

M. h

apla

Not

res

ista

nt t

o M

. hap

la, h

eavy

roo

t gal

l-in

g, s

ausa

ge-s

hap

ed la

rvae

foun

d.G

ood

et a

l., 1

965

C. s

pect

abili

sC

rop

rota

tion

wit

h o

kra

H. d

ihys

tera

Plan

ted

C. s

pect

abili

s fo

r 8

mon

ths

prio

r to

okr

a, w

ith

no

effe

ct o

n H

. dih

yste

ra.

Hua

ng

et a

l., 1

981

Prep

lan

t cov

er c

rop

Prat

ylen

chus

spp

.Su

ppor

ted

hig

h p

opul

atio

n d

ensi

ties

of

Prat

ylen

chus

spp

.R

obin

son

et a

l., 1

998

Cro

p ro

tati

on w

ith

tom

ato

Mel

oido

gyne

inco

gnita

an

d M

. jav

a-ni

caD

id n

ot r

educ

e M

eloi

dogy

ne s

pp. s

uffi

-ci

entl

y to

mee

t USA

cer

tifi

cati

on r

egul

a-ti

on a

fter

4 y

ears

of C

rota

lari

a-to

mat

o ro

tati

on.

Joh

nso

n a

nd

Cam

pbel

l, 19

80

Inte

rcro

p w

ith

cof

fee

M. j

avan

ica

Did

not

red

uce

nem

atod

e in

fect

ion

on

co

ffee

suf

fici

entl

y an

d di

d n

ot im

prov

e co

ffee

yie

ld.

Jaeh

n a

nd

Reb

el, 1

984

Cro

p ro

tati

on w

ith

tom

ato

Cri

cone

mel

la s

pp.,

Para

tric

hodo

rus

min

or, P

. bra

chyu

rus,

P. z

eae

Supp

orte

d la

rge

num

bers

of t

hes

e n

em-

atod

es a

fter

4 y

ears

of C

rota

lari

a-to

mat

o cr

oppi

ng

sequ

ence

.

Joh

nso

n a

nd

Cam

pbel

l, 19

80

Inte

rcro

p w

ith

pea

chC

rico

nem

ella

xen

opla

xN

o ef

fect

.W

hit

tin

gton

an

d Z

ehr,

1992

C. s

tria

taH

ost t

esti

ng

Hel

icot

ylen

chus

sp.

, Scu

tello

nem

a sp

.A

s su

scep

tibl

e as

mai

ze.

Des

aege

r an

d R

ao, 2

001

Hos

t tes

tin

gP.

zea

e an

d P.

bra

chyu

rus

As

susc

epti

ble

as m

aize

.D

esae

ger

and

Rao

, 200

1

Tabl

e 2.

(C

onti

nue

d) E

xam

ples

of n

egat

ive

or n

o ef

fect

s of

Cro

tala

ria

spp.

on

pla

nt-p

aras

itic

nem

atod

es m

anag

emen

t.

Spec

ies

Exp

erim

enta

l con

diti

ons

Targ

et n

emat

ode

Res

ults

Ref

eren

ces

Crotalaria for nematode management: Wang et al. 47

monly found in temperate regions. How-ever, in South Africa, C. spectabilis allowedM. hapla penetration but not reproduction(van der Linde, 1956). Even though C. specta-bilis suppressed most Meloidogyne spp., itdid not reduce M. incognita and M. javan-ica population densities sufficiently to meetUSA certification regulation after 4 yearsof Crotalaria-tomato rotation (Johnson andCampbell, 1980). However, C. spectabilis, asa preplant cover crop in Florida, sup-pressed R. similis successfully (Birchfieldand Bistline, 1956). Duration of plantingand field history might affect Crotalariaperformance. For instance, 1 or 2 years ofC. mucronata in land previously cropped tonative pasture or okra, respectively, wererequired to achieve suppression of M. incog-nita population densities below detectablelevels (Murphy et al., 1974). Duration ofcrop growth after soil incorporation ofC. spectabilis also influenced nematode con-trol. Reduction of numbers of M. arenariawas adequate for squash but not eggplantwhich is a longer-term crop planted afterC. spectabilis (McSorley et al., 1994b). Nev-ertheless, C. spectabilis still increased egg-plant fruit weight compared to thatfollowing peanut. The effect of C. junceaon Radopholus similis varied and may berelated to the method of cover crop appli-cation (Inomoto, 1994; Jasy and Koshy,1994). When C. juncea was applied as a pre-plant cover crop without soil incorpora-tion, it failed to suppress R. similis (Inomoto,1994), but was effective when its leaf extractwas tested against the nematode (Jasy andKoshy, 1994). In another case, populationdensities of P. brachyurus increased consid-erably on M. mucronata after 3 years, butwas not detectable if soil was fallow for 6weeks prior to C. mucronata planting (Bro-die and Murphy, 1975).

Intercropping: Intercropping refers tospatially mixed plantings of species in afield, usually by planting a row of one spe-

cies next to the row of another. There hasbeen little research on nematode popula-tions when intercropping Crotalaria withcash crops. Successful examples of usingCrotalaria as an intercrop against plant-para-sitic nematodes were reported for peachand banana orchards (McBeth and Taylor,1944; Charles, 1995). However, Crotalariaintercropped with peach had no effect onMesocriconema spp. (Whittington and Zehr,1992) and C. spectabilis intercropped withcoffee did not suppress M. incognita (Jaehnand Rebel, 1984). This practice is con-strained by the competition in growthbetween the cash crops and cover crops.Desaeger and Rao (2001) proposed tointercrop C. grahamiana with other legumi-nous cover crops such as Sesbania sesban andTephrosia vogelii as these latter legumes aregood hosts to Meloidogyne but poor hosts toPratylenchus and Helicotylenchus. They foundthat intercropping S. sesban and T. vogeliiwith Crotalaria did not reduce the numbersof the vermiform stage of Meloidogyne butdid reduce nematode egg mass productionas compared to broadcast cropping ofS. sesban and T. vogelii individually (Desae-ger, 2001). However, intercropping withC. grahamiana resulted in higher P. zeae pop-ulation densities than in cropping S. sesbanand T. vogelii alone (Desaeger, 2001).

Wang (2000) intercropped C. junceawith pineapple and then alternated theC. juncea and pineapple planting bed inthe next cropping cycle. This cropping sys-tem is similar to using Crotalaria as a pre-plant cover crop for pineapple except thatCrotalaria was planted for a longer periodof time. When pineapple was planted intothe previously C. juncea-intercropped plots,R. reniformis population densities, egg pro-duction and mobility were lower than thatin the previously weedy fallow plots (Wang,2000). After one C. juncea-pineapple inter-cropping cycle (23 months), C. junceaenhanced bacterivorous nematode popula-

48 NEMATROPICA Vol. 32, No. 1, 2002

tion densities and nematode-trapping fun-gal propagules compared to weedy fallowor pineapple beds (Wang, 2000), indicat-ing that microbial activities against R. reni-formis may have been enhanced.

Soil Amendment: Incorporating biomasscan play an important role in nematodesuppression. Most Crotalaria preplant covercrops were followed by soil incorporationof the biomass and subsequent reductionof plant-parasitic nematode numbers.However, incorporation of C. paulina bio-mass did not suppress M. incognita betterthan allowing the biomass to remain ontop of the ground as mulch (Gonzaga andFerraz, 1994). Rich and Rahi (1995) foundthat soil amended with C. spectabilis seedssuppressed M. incognita and M. javanicabetter than non-amended soil.

MECHANISMS OF NEMATODESUPPRESSION

Cover crops such as Crotalaria reduceplant-parasitic nematode populations by:1) acting as a nonhost or a poor host(Rodríguez-Kábana et al., 1988, 1989, 1990,1992b, 1994), 2) producing allelochemi-cals that are toxic or inhibitory (Haroonand G. C. Smart, 1983; Gommers and Bak-ker, 1988; A Halbrendt, 1996), 3) provid-ing a niche for antagonistic flora andfauna (Linford, 1937; Evans et al., 1988;Caswell et al., 1990; Kloepper et al., 1991),and 4) trapping the nematode (Gallaheret al., 1991; Gardner and Caswell-Chen,1994; LaMondia, 1996).

Poor or Non-host Effects: A non-host to anematode species is a plant in which thenematode fails to reproduce (Trudgill,1991). Seinhorst (1967) defined a poorhost as having low a and M in the popula-tion increase equation, Pf = M(1-e-a), wherePf is the final population, M is the maxi-mum nematode population, a is the maxi-mum multiplication rate, e is the natural

logarithm (=2.1416). The criteria for hostplant resistance are 1) failure of the nema-tode to live inside the host or early nema-tode death in the host, 2) decreasedproduction of eggs, or 3) inhibition ofnematode growth or development.

The mode of resistance in Crotalariaagainst different nematodes varies amongplant and nematode species. Meloidogynejavanica is less attracted to C. spectabilisroots as compare to tomato roots (Silvaet al., 1989c). The life cycle of M. incognitawas not completed in the roots of C. striataand C. retusa (Peacock, 1957). Developmentof M. arenaria, M. incognita, and M. javanicain the roots of C. spectabilis was arrested atthe sausage-shaped late J2 stage (Goodet al., 1965). Although the Meloidogyne spp.juveniles were able to penetrate the rootsof C. spectabilis, C. juncea, C. retusa andC. paulina, none of them become adultswithin 45 days after inoculation (Silva et al.,1989c). In other studies nematodes devel-oped but produced few eggs (Rich andRahi, 1995; McSorley, 1999). Giant cells ofC. spectabilis and C. juncea induced byM. javanica were granular, had dense cyto-plasm, few nuclei, lacked large vacuoles,and were smaller and fewer compared tothose in tomato roots (Silva et al., 1990b).Penetration of M. javanica into roots ofC. juncea was suppressed (Araya andCaswell-Chen, 1994b). Although C. junceasupports M. javanica reproduction to someextent, galls did not develop (Araya andCaswell-Chen, 1994a). However, this effectcan vary among nematode populationsand species. One population of M. javanicafrom South Africa penetrated and repro-duced on C. juncea, whereas only 5 out of 9populations of M. incognita var. acrita pene-trated and reproduced on C. juncea (vander Linde, 1956). Crotalaria junceaallowed R. reniformis infection but the nem-atode did not develop (Silva et al., 1990b)or reproduce (Caswell et al., 1991). How-

Crotalaria for nematode management: Wang et al. 49

ever, when the observation time was pro-longed, R. reniformis developed to femaleand eggs were produced, but at a slowerrate than on a good host, cowpea (Wang,2000a).

Allelopathic Effects: Allelopathy was origi-nally designated for plant-plant and plant-microorganism biochemical interactions(Rice, 1984). Secondary plant metabolitesare suspected as the allelopathic com-pound against nematodes. Several plantallelochemicals have effectively suppressedphytopathogens, including nematodes, withminimal environmental impact (Soler-Serratosa et al., 1996).

Crotalaria spp. produce pyrrolizidinealkaloids and monocrotaline which havehigh vertebrate toxicity and could poten-tially be toxic to nematodes (Rich andRahi, 1995). Upon exposure of root-knotnematode juveniles to monocrotaline solu-tions, their bodies began to jerk (Fassuli-otis and Skucas, 1969). Infectivity oftreated nematodes is therefore reduced.Crotalaria juncea leaf extract was lethal toR. similis at dilutions of 1:5 within 24 hours(Jasy and Koshy, 1994). Crotalaria juncealeaf leachate essentially stopped move-ment of R. reniformis (Wang, 2000a). How-ever, Fassuliotis and Skucas (1969) did notfind a relationship between the pyrrolizi-dine-containing plants and root-knot nem-atode resistance.

It is possible that the low C/N ratio ofCrotalaria may also contribute to its allelo-pathic effect against nematodes (Fassuli-otis and Skucas, 1969; Rich and Rahi,1995). The nematicidal efficacy of C. specta-bilis used as a soil amendment was relatedto the nitrogen content of the amendment(Mian and Rodríguez-Kábana, 1982).Materials with very low C/N or high con-tent of ammonia will either result in plas-molysis of nematodes, or proliferation ofnematophagous fungi due to the release ofNH4+-N (Rodríguez-Kábana, 1986). Some

of the nitrogenous amendments containchitin. When added to the soil, enhancedsoil chitinase activities could result in dis-tortion of the chitin layer of the nematodeeggshell (Rodríguez-Kábana, 1986). Mech-anisms involved in the action of low C/Nratio remain complex.

Enhancement of Nematode Antagonistists:Nematode antagonist is a general term forparasites, predators, pathogens, competi-tors, and other organisms that repel, inhibit,or kill plant-parasitic nematodes. Antago-nists, most likely favored by selected covercrops, include fungal egg parasites, trappingfungi, endoparasitic fungi, fungal parasitesof females, endomycorrhizal fungi, plant-health promoting rhizobacteria, and obli-gate bacterial parasites (Sikora, 1992). Otherantagonists including mites, collembola,tardigrades, oligochaetes, predatory nema-todes, turbellarians, and protozoans thatreduce nematode population densities areseldom discussed because data relevant totheir management are insufficient (Sikora,1992). For practical plant-parasitic nema-tode control to be successful in agricul-tural soils, the antagonists need the abilityto proliferate under intensive farmingpractices (Morgan-Jones and Rodríguez-Kábana, 1987).

There are several hypotheses on howcover crops can enhance nematode-antag-onistic activities. Linford (1937) specu-lated that incorporation of organic matterprovides an environment that favors popu-lation growth and activities of nematopha-gous fungi. A series of ecological events maybe involved. The decomposing organicmaterial is a significant event because thebacteria which proliferate after organicmatter incorporation become a food basefor microbiovorous nematodes. In turn,these nematodes serve as a food source fornematophagous fungi (van den Boogertet al., 1994b). For example, incorporationof C. juncea enhanced Acrobeloides bodenhei-

50 NEMATROPICA Vol. 32, No. 1, 2002

meri, one of the most susceptible bacteri-vorous nematodes to parasitism by Hirsutellarhossiliensis (a nematode-endoparasitic fun-gus) (Venette et al., 1997).

Mycostasis, the inability of fungalspores to germinate in natural soils whentemperature and moisture condition arefavorable for germination, may also beinvolved in the enhancement of nematodeantagonistic fungi following the incorpora-tion of organic matter (Stirling, 1991).Nematode-trapping fungal activity isenhanced when N is limiting (Barron,1982). During the early stages of incorpo-ration of organic matter into the soil, theC/N ratio increases. This high C concen-tration may aid spore germination (Ko andLockwood, 1967).

Leguminous crops enhance nematoph-agous fungi better than other crops. Root-knot symptoms were reduced more byalfalfa amendments in a 4-year microplottest than by chemical fertilization of plots(Mankau, 1968). Meloidogyne incognita wassuppressed in soil amended with alfalfainoculated with Arthrobotrys conoides (Al-Hazmi et al., 1982). Microplots amendedwith alfalfa meal increased nematode-trap-ping fungal activity of two efficient nema-tode-trapping fungal species, A. dactyloidesand Dactylellina ellipsospora (van den Boogertet al., 1994a). Pea enhanced the densitiesand species diversity of nematode-trappingfungi more than white mustard or barley(Persmark and Jansson, 1997). In addi-tion, formation of conidial traps of nema-tode-trapping fungi was more prevalent inthe pea rhizosphere than in root-free soil(Persmark and Nordbring-Hertz, 1997).

Being a legume, Crotalaria juncea hascharacteristics that may make the crop use-ful for nematode antagonism. For exam-ple, C. juncea has soil enzymatic activitycorrelated with microbial activity and sup-pressiveness to soil borne plant pathogens(Quiroga-Madrigal et al., 1999). Plant exu-

dates from Crotalaria spp. were selective formicrobial species antagonistic to phyto-pathogenic fungi and nematodes (Rodrí-guez-Kábana and Klopper, 1998).

Nematode-trapping fungi are a majorgroup of nematode antagonists that can beenhanced by incorporation of residues ofC. juncea (Wang, 2000). These fungi havebeen categorized into two groups: parasiticand saprophytic (Cooke, 1963). Thesaprophytic group consists of predatorscharacterized by sticky three-dimensionalnetworks and non-spontaneous trap for-mation. These fungi have a saprophyticand a predatory (trap formation) phase. Inthe presence of nematodes, or even exu-dates and homogenates of nematodes,trap formation is induced (Nordbring-Hertz, 1973). The parasitic group consistsof nematode-trapping fungi that form con-stricting rings, adhesive knobs, or adhesivebranches. These fungi form traps sponta-neously, and thus are more effective trap-pers. Among these two groups of nematode-trapping fungi, the population densities ofparasitic fungi are more likely to beenhanced by organic matter due to therich microbial flora and fauna (Gray, 1983).The nematode trapping by these fungi arenot nematode species- or trophic group-specific, therefore the enhancement ofnematode-trapping fungi by organic mat-ter incorporation should lead to increasedtrapping of plant-parasitic nematodes (Jans-son and Nordbring-Hertz, 1980).

Soil amended with C. juncea to give a1:100 (w:w) concentration, enhanced para-sitic nematode-trapping fungi, nematodeegg parasitic fungi, vermiform stage para-sites, and bacterivorous nematode popula-tion densities more efficiently than soilamended with chopped pineapple tissuesor non-amended soil (Wang, 2000). Crota-laria juncea amendment enhanced thepopulation densities of nematode-trappingfungi and the percentage of eggs parasit-

Crotalaria for nematode management: Wang et al. 51

ized by the fungi. Enhancement of nema-tode-trapping fungi was most effective insoils that had not been treated with 1,3-dichloropropene for at least 5 months(Wang, 2000). Suppression of R. reniformisby C. juncea amendment was correlatedwith parasitic nematode-trapping fungi,fungal egg parasites, and bacterivorousnematodes (Wang, 2000). Nematode-trap-ping fungi population densities werehigher in C. juncea planted plots than weedfallow plots (Wang, 2000). However, fourmonths after removal of C. juncea, andreplacement with pineapple plants, thepopulation densities of nematode-trappingfungi greatly decreased (Wang, 2000b).

PROSPECTS

Nematode management is rarely suc-cessful in the long term with unitacticapproaches. It is important to integratemultiple-tactics into a strategy. Crotalariaoffers the potential to be one of the tactics.Some Crotalaria species are potential covercrops for managing several important plant-parasitic nematodes including Meloidogynespp. and R. reniformis. Unfortunately, theresidual effects are short term (a fewmonths). Crotalaria, a poor host, generallyhelps reduce nematode population densi-ties, but the number of nematodes willresurge on subsequent host crops. Thedamage threshold level, especially onlonger-term crops, will often be reached orexceeded (McSorley et al., 1994b). This sce-nario strongly suggests that integrating theCrotalaria rotation system with other nema-tode management strategies is necessary.Among the possibilities for integration arecrop resistance, enhanced crop tolerance,selection for fast growing crop varieties, soilsolarization, and biological control.

Solarization of soil amended with Crota-laria tissues may enhance nematode con-trol over either tactic alone. Pyrrolizidine

alkaloids and monocrotaline are releasedfrom Crotalaria tissues upon decomposi-tion (Rich and Rahi, 1995). Soil solariza-tion could enhance the “biofumigation”process. Nematodes will be affected by thesublethal heat in conjunction with thenematicidal effects from Crotalaria.

Chemical nematicides should beavoided in a cropping system if the objectiveis to enhance nematode-antagonistic micro-organisms in the cropping system. Severalstudies have demonstrated the destructiveeffect of fumigation treatments to nematodeantagonistic microorganisms. For example,formaldehyde treatment increased the mul-tiplication of Heterodera avenae as comparedto non-fumigated nematode-suppressivesoil after the chemical degenerated in Roth-amstead (Kerry et al., 1995). Preplant treat-ment with metam sodium, methyl bromide,methyl iodide, or formaldehyde reducedsuppressiveness of soil against H. schachtii(Westphal and Becker, 1999). Crotalaria jun-cea amendments failed to enhance nema-tode-trapping fungi populations in soils thatwere recently treated with 1,3-dichloropro-pane (Wang, 2000).

We hypothesize that intercropping Cro-talaria with a longer term cash crop willallow the nematode-antagonisitc microor-ganisms associated with Crotalaria to estab-lish after one cycle of the cash crop.Previous research had demonstrated thatC. juncea could enhance nematode-trap-ping fungi activities in the rhizosphere(Wang, 2000). However, development ofmicrobial populations to a density neededto control nematodes has occurred onlyunder perennial crops or those grown inmonocultures (Kerry, 1987). Prolongedculture of Crotalaria in an intercropping sys-tem enhanced the nematode suppressiveeffect in both peach (McBeth and Taylor,1944) and pineapple systems (Wang, 2000).

Another approach worth exploring isthe search for biocontrol agents compati-

52 NEMATROPICA Vol. 32, No. 1, 2002

ble with Crotalaria cropping systems. Intro-duction of biocontrol agents to manageplant-parasitic nematode has met with lim-ited success in the field (Stirling, 1991).This might be due to microbiostasis prop-erties of the soil (Ho and Ko, 1986) andthe legume rhizosphere may overcomefungistasis against the nematode-trappingfungi better than that of root-free soil(Persmark and Nordbring-Hertz, 1997).Although several attempts have failed toenhance some nematophagous fungi byCrotalaria (Venette et al., 1997), in situ nema-tode-antagonistic microorganisms associ-ated with the Crotalaria rhizosphere andCrotalaria amended soils have not beenstudied in depth. Such research mightimprove the prospect of prolonging thenematode suppressive effect of Crotalariacropping systems.

In summary, Crotalaria, besides beingan efficient green manure, is a poor hostto many important plant-parasitic nema-todes, producing allelopathic compoundtoxic to nematodes, and is able to enhancesome nematode-antagonisitc microorgan-isms. Therefore using Crotalaria as a covercrop may offer alternatives to nematicides.Integrating the use of Crotalaria with otherpest management strategies offers promisefor the development of new sustainableagricultural cropping systems.

ACKNOWLEDGMENT

The authors thank Drs. Robert McSor-ley and Johan Desaeger for providing newinformation and reviewing the paper, andDrs. Maria Mendes and Roseangela Oliveirafor literature translation.

LITERATURE CITED

AGUILLERA, M. M., S. MATSUOKA, and O. T. IDO.1984. Efeitos da adubação verde com Crotalariajuncea sobre nematóides e a produção de cana-de-açucar. Nematologia Brasileira 8: 25-26.

AL-HAZMI, A. S., D. P. SCHMITT, and J. N. SASSER.1982. Population dynamics of Meloidogyne incog-nita on corn grown in soil infested with Arthrobot-rys conoides. Journal of Nematology 14:44-50.

ALMEIDA, V. F., and V. P. CAMPOS. 1991a. Reprodu-tividade de Meloidogyne exigua em plantas antago-nistas e em culturas de interesse econômico.Nematologia Brasileira 15: 24-29.

ALMEIDA, V. F., and V. P. CAMPOS. 1991b. Alternân-cia de culturas e sobrevivência de Meloidogyne ex-igua em áreas de cafezal infestado e erradicado.Nematologia Brasileira 15:30-42.

ANWAR, S. A., D. L. TRUDGILL, and M. S. PHIL-LIPS. 1994. The contribution of variation in in-vasion and development rates of Meloidogyneincognita to host status differences. Nematologi-ca 40:579-586.

ARAYA, M., and E. P. CASWELL-CHEN. 1994a. Hoststatus of Crotalaria juncea, Sesamum indicum, Doli-chos lablab, and Elymus glaucus to Meloidogyne jav-anica. Journal of Nematology 26:492-497.

ARAYA, M., and E. P. CASWELL-CHEN. 1994b. Pene-tration of Crotalaria juncea, Dolichos lablab and Ses-amum indicum roots by Meloidogyne javanica.Journal of Nematology 26:238-240.

BARRON, G. L. 1982. Nematode-destroying fungi.Pp. 533-551 in R. G. Burns and J. H. Slater, eds.Experimental Microbiologial Ecology. BlackwellScientific Publications, Oxford, U.K.

BIRCHFIELD, W., and F. BISTLINE. 1956. Cover cropin relation to the burrowing nematode, Radopho-lus similis. Plant Disease Reporter 40:398-399.

BRATLEY, H. E. 1942. Weed host plants of the nema-tode found in the three year tobacco rotation.Proceeding of Soil Science Society of Florida4:118-120.

BRODIE, B. B., J. M. GOOD, and C. A. JAWORSKI.1970. Population dynamics of plant nematodesin cultivated soil: effect of summer cover cropsin old agricultural land. Journal of Nematology2:147-148.

BRODIE, B. B., and W. S. MURPHY. 1975. Populationdynamics of plant nematodes as affected by com-binations of fallow and cropping sequence. Jour-nal of Nematology 7:91-92.

BUENTE, R., and J. MUELLER. 1997. Influence ofresistant oil radish genotypes on the populationdynamics of Meloidogyne hapla and M. incognita.Zeitschrift fuer Pflanzenkrankheiten und Pflan-zenschutz 103:527-534.

CARNEIRO, R. G., and CARNEIRO, R. M. D. G.1982. Selecao preliminar de plantas para rota-cao de culturas em areas infestadas por M. incog-nita nos anos de 1979 e 1980. Reuniao deNematologia 6:141-148.

Crotalaria for nematode management: Wang et al. 53

CASWELL, E. P., J. DEFRANK, W. J. APT, and C.-S.TANG. 1991. Influence of nonhost plants onpopulation decline of Rotylenchulus reniformis.Journal of Nematology 23:91-98.

CASWELL, E. P., J.-L. SARAH, and W. J. APT. 1990.Nematode parasites of pineapple. Pp. 519-537 inM. Luc, R. A. Sikora, and J. Bridge, eds. Plant-Par-asitic Nematodes in Subtropical and Tropical Ag-riculture. CAB International, Wallingford, UK.

CHARCHAR, J. M., and C. S. HUANG. 1981. Hostrange of Pratylenchus brachyurus: 3. Different spe-cies. Fitopathologia Brasileira 6:469-474.

CHARLES, J. S. K. 1995. Effect of intercropping an-tagonistic crops against nematodes in banana.Annals of Plant Protection Sciences 3:185-187.

CHITWOOD, B. G., and M. C. TOUNG. 1960. Host-parasite interactions of the Asiatic pyroid citrusnema. Plant Disease Reporter 44:848-854.

COOKE, R. C. 1963. Ecological characteristics ofnematode-trapping fungi Hyphomycetes. Annu-al Review of Applied Biology 52:431-437.

DAULTON, R. A. C. 1955. Progress on eelworm con-trol experiments. Rhodesian Tobacco 11:21-27.

DAVIS, C. J. 1964. The introduction, propagation, lib-eration, and establishment of parasites to con-trol Nezara oviridula variety smaragdula(Fabricius) in Hawaii (Heteroptera: Pentatomi-dae). Proceeding of Hawaiian EntomologicalSociety 18:369-375.

DESAEGER, J., and M. R. RAO. 1999. The root-knotnematode problem in sesbania fallow and scopefor managing it in western Kenya. AgroforestrySystems 47:273-288.

DESAEGER, J., and M. R. RAO. 2000. Parasitic nema-tode populations in natural fallows and im-proved cover crops and their effects onsubsequent crops in Kenya. Field Crops Re-search 65:41-56.

DESAEGER, J. 2001. Implications of plant-parasiticnematodes for improved fallows in Africa. Dis-sertation. Katholieke Universiteit Leuven, Bel-gium.

DESAEGER, J., and M. R. RAO. 2001. The potentialof mixed covers of Sesbania, Tephrosia and Crota-laria to minimise nematode problems on subse-quent crops. Field Crops Research 70:111-125.

ENDO, B. Y. 1959. Responses of root-lesion nema-todes, Pratylenchus brachyurus and P. zea, to vari-ous plants and soil types. Phytopathology 49:417-421.

EVANS, D. O., R. J. JOY, and C. L. CHIA. 1988. Covercrops for orchards in Hawaii. Research Exten-sion Series 094. College of Tropical Agricultureand Human Resources, University of Hawaii,Honolulu, HI, U.S.A.

FASSULIOTIS, G., and G. P. SKUCAS. 1969. The ef-fect of pyrrolizidine alkaloid ester and plantscontaining pyrrolizidine on Meloidogyne incognitaacrita. Journal of Nematology 1:287-288.

GALLAHER, R. N., R. McSORLEY, and D. W. DICK-SON. 1991. Nematode densities associated withcorn and sorghum cropping systems in Florida.Supplement to Journal of Nematology 23:668-672.

GARDNER, J., and E. P. CASWELL-CHEN. 1994.Raphanus sativus, Sinapis alba, Fagopyrum esculen-tum as hosts to Meloidogyne incognita, Meloidogynejavanica, and Plasmodiophora brassicae. Supple-ment to Journal of Nematology 26:756-760.

GUÉROUT, R. 1969. Action des plantes ameliorantesen culture ananas. III. Bilan NématologiqueFruits outre mer. 24:436-443.

GODFREY, G. H. 1928. Legumes as rotation and trapcrops for pineapple fields. Experiment Stationof the Association of Hawaiian Pineapple Can-ners Bulletin 10:3-21.

GOMMERS, F. J., and J. BAKKER. 1988. Physiologicaldiseases induced by plant responses or products.Pp. 3-22 in G. O. Poinar Jr., and H.-B. Jansson,eds. Diseases of Nematodes., Vol. I,. CRC PressInc., Boca Raton, FL, U.S.A.

GONZAGA, V., and S. FERRAZ. 1994. Control of Me-loidogyne incognita race 3 by some plant specieswith or without incorporation of the aboveground plant parts into the soil. NematologiaBrasileira 18:42-49.

GOOD, J. M., N. A. MINTON, and C. A. JAWORSKI.1965. Relative susceptibility of selected covercrops and Coastal Bermudagrass to plant nema-todes. Phytopathology 55:1026-1030.

HALBRENDT, J. M. 1996. Allelopathy in the manage-ment of plant-parasitic nematodes. Journal ofNematology 28:8-14.

HAROON, S., and J. G. C. SMART. 1983. Effects ofPangola digitgrass on Meloidogyne arenaria, M. ja-vanica, and M. hapla. Journal of Nematology15:649-650.

HO, W.-C., and W.-H. KO. 1986. Microbiostasis by nu-trient deficiency shown in natural and syntheticsoils. Journal of General Microbiology 132:2807-2815.

HUANG, C. S., J. M. CHARCHAR, and R. C. V. TE-NENTE. 1981. Control of root-knot nematode(Meloidogyne incognita) in carrot (Daucus carota)through rotation. Fitopathologia Brasileira5:329-336.

HUANG, C. S., R. C. V. TENENTE, F. C. C. DA SILVA,and J. A. R. LARA. 1981. Effect of Crotalaria spect-abilis and two nematicides on numbers of Meloido-gyne incognita and Helicotylenchus dihystera. 27:1-5.

54 NEMATROPICA Vol. 32, No. 1, 2002

IJANI, A. S. M., R. B. MABAGALA, and M. S. NCHIM-BI. 2000. Efficacy of different control methodsapplied separately and in combination in man-aging root-knot nematodes (Meloidogyne spp.)on common beans. European Journal of PlantPathology 106:1-10.

INOMOTO, M. M. 1994. Host reaction of some plantspecies to the burrowing nematode. Nematolo-gia Brasileira 18:21-27.

JAEHN, A. 1984. Recuperação de lavoura cafeeira re-cepada, com utilização de Crotalaria spectabilis,torta de mamona e nematicidas, em ãrea infesta-da por Meloidogyne incognita. NematologiaBrasileira 8:257-264.

JAEHN, A., and E. K. REBEL. 1984. Uso de palha decafé, leguminosas e nematicida em mudas de ca-feeiro, plantadas em ãrea infestada por Meloido-gyne incognita. Nematologia Brasileira 8:309-317.

JANSSON, H. B., and B. NORDBRING-HERTZ. 1980.Interaction between nematophagous fungi andplant-parasitic nematodes: attraction, inductionof trap formation and capture. Nematologica26: 383-389.

JASY, T., and P. K. KOSHY. 1994. Effect of certain leafextracts and leaves of Glyricidia maculata, (H. B.& K) Steud. as green manure on Radopholus simi-lis. Indian Journal of Nematology 22:117-121.

JOHNSON, A. W., and G. M. CAMPBELL. 1980. Man-aging nematode population densities on tomatotransplants (Lycopersicon esculentum) using croprotation and a nematicide. Journal of Nematolo-gy 12:6-19.

JORDAAN, E. M., and D. DEWAELE. 1989. Host sta-tus of five weed species and their effects onPratylenchus zeae infestation of maize. Journal ofNematology 20:620-624.

KERRY, B. R. 1987. Biological control. In R. H. Brownand B. R. Kerry, eds. Principles and Practice ofNematode Control in Crops. Academic Press,Sydney, Australia.

KERRY, B. R., D. H. CRUMP, and F. IRVING. 1995.Some aspects of biological control of cyst nema-todes. Biocontrol 1:5-14.

KLOEPPER, J. W., R. RODRÍGUEZ-KÁBANA, J. A.McINROY, and D. J. COLLINS. 1991. Analysis ofpopulations and physiological characterizationof microorganisms in rhizospheres of plantswith antagonistic properties to phytopathogen-ic nematodes. Plant and Soil 136:95-102.

KO, W.-H., and J. L. LOCKWOOD. 1967. Soil fung-istasis: relation to fungal spore nutrition. Phyto-pathology 57:894-901.

LAMONDIA, J. A. 1996. Trap crops and populationmanagement of Globodera tabacum tabacum. Jour-nal of Nematology 28:238-243.

LINFORD, M. B. 1937. Stimulated activity of naturalenemies of nematodes. Science 85:123-124.

LUC, M., R. A. SIKORA, and J. BRIDGE. 1993. Intro-duction: Reflections on nematology in subtropicaland tropical agriculture. Pp. xi-xvii in M. Luc, R.A. Sikora, and J. Bridge, eds. Plant parasitic nema-todes in subtropical and tropical agriculture, 2nded. CAB International, Wallingford, UK.

MALDEN, J. M., and A. RATNADASS. 1998. Crotalariajuncea (Fabaceae) cited for the first time as alter-native host of Eurystylus oldi important pest ofsorghum and ricinus (Hem., Miridae). Bulletinde la Societe Entomologique de France 103:272.

MANKAU, R. 1968. Reduction of root-knot diseasewith organic amendments under semifield con-ditions. Plant Disease Reporter 52:315-319.

MARTIN, G. C. 1956. The common root-knot nema-tode, Meloidogyne javanica, and crop rotation.2. Showy Crotalaria (C. spectabilis). RhodesianFarmer 27:35.

MARTIN, G. C. 1958. Root-knot nematodes (Meloidog-yne spp.) in the Federation of Rhodesia andNyasaland. Nematologica 3:332-349.

McBETH, C. W., and A. L. TAYLOR. 1944. Immuneand resistant cover crops valuable in root-knot-infested peach orchards. American Society ofHorticultural Science Proceeding 45:158-166.

McSORLEY, R. 1999. Host suitability of potential cov-er crops for root-knot nematodes. Supplementto the Journal of Nematology 31:619-623.

McSORLEY, R. 2001. Multiple cropping systems fornematode management: A review. Soil and CropScience Society of Florida Proceedings 60:132-142.

McSORLEY, R., and D. W. DICKSON. 1995. Effect oftropical rotation crops on Meloidogyne incognitaand other plant-parasitic nematodes. Supple-ment to the Journal of Nematology 27:535-544.

McSORLEY, R., D. W. DICKSON, and J. A. BRITO.1994a. Host status of selected tropical rotationcrops to four populations of root-knot nema-todes. Nematropica 24:45-53.

McSORLEY, R., D. W. DICKSON, J. A. BRITO, T. E.HEWLETT, and J. J. FREDERICK. 1994b. Effectsof tropical rotation crops on Meloidogyne arenariapopulation densities and vegetable yields in mi-croplots. Journal of Nematology 26:175-181.

MIAN, I. H., and R. RODRÍGUEZ-KÁBANA. 1982.Survey of the nematicidal properties of some or-ganic materials available in Alabama USA asamendments to soil for control of Meloidogynearenaria. Nematropica 12: 235-246.

MORGAN-JONES, G., and R. RODRÍGUEZ-KÁBA-NA. 1987. Fungal biocontrol for the manage-ment of nematodes. Pp. 94-99 in J. A. Veech, and

Crotalaria for nematode management: Wang et al. 55

D. W. Dickson eds. Vistas on Nematology. Soci-ety of Nematologists, Hyattsville, U.S.A.

MOURA, R. M. 1991. Two years of crop rotation onsugarcane fields to control root-knot part I; Ef-fect of the treatments on the nematode popula-tion. Nematologia Brasileira 15:1-7.

MOURA, R. M. 1995. Two years of crop rotation onsugar cane fields to control root-knot nema-todes. II. Comments on the method and reflexeson cane and sugar production. FitopatologiaBrasileira 20:597-600.

MURPHY, W. S., B. B. BRODIE, and J. M. GOOD.1974. Population dynamics of plant nematodesin cultivated soil: Effects of combinations ofcropping systems and nematicides. Journal ofNematology 6:103-107.

NATIONAL RESEARCH COUNCIL. 1979. Tropical le-gumes: resources for the future. National Acade-my of Science, Washington, D.C. pp. 272-278.

NAVARRO, R. 1968. Rotacion de cultivos para el con-trol de nematodos fitoparasiticos en el Valle delCauca. Soil and Crop Science Society of Florida28:276-279.

NETCHER, C., and R. A. SIKORA. 1990. Nematodeparasites of vegetables. P. 251 in M. Luc, R. A.Sikora, and J. Bridge, eds. Plant Parasitic Nema-todes in Subtropical and Tropical Agriculture.CAB International, Wallingford, U.K.

NORDBRING-HERTZ, B. 1973. Peptide-inducedmorphogenisis in the nematode-trapping fun-gus Arthrobotrys oligospora. Physiology of Plant29:223-233.

OCHSE, J. J., and W. S. BREWTON. 1954. Prelimi-nary report on Crotalaria versus nematodes.Florida Horticulture Society Proceedings67:218-219.

PEACOCK, F. C. 1957. Studies on root-knot nema-todes of the genus Meloidogyne in the Gold Coast.I. Comparative development on susceptible andresistant host species. Nematologica 2:76-84.

PERSMARK, L., and H.-B. JANSSON. 1997. Nemato-phagous fungi in the rhizosphere of agriculturalcrops. Federation of European MicrobiologicalSocieties Microbiology Ecology 22:303-312.

PERSMARK, L., and B. NORDBRING-HERTZ. 1997.Conidial trap formation of nematode-trappingfungi in soil and soil extracts. Federation of Eu-ropean Microbiological Societies MicrobiologyEcology 22:313-323.

PURSEGLOVE, J. W. 1974. Tropical crops: Dicotylen-dons. Longman Group Limited, London.

QUIROGA-MADRIGAL, R. RODRÍGUEZ-KÁBANA,D. G. ROBERTSON, C. F. WEAVER, and P. S.KING. 1999. Nematode populations and enzy-matic activity in rhizospheres of tropical legumes

in Auburn, Alabama. Nematropica 29:129 (ab-stract).

REDDY, K. C., A. R. SOFFES, G. M. PRINE, and R. A.DUNN. 1986. Tropical legumes for green ma-nure: II. Nematode populations and their effectson succeeding crop yields. Agronomy Journal78:5-10.

REEVES, D. W., Z. MANSOER, and C. W. WOOD.1996. Suitability of sunn hemp as an alternativelegume cover crop. in Proceedings of the NewTechnology and Conservation Tillage 96(7):125-130. University of Tennessee Agricultural Exper-iment Station, TN, U.S.A.

RHOADES, H. L. 1964. Effect of Crotalaria spectabilisand Sesbania exaltata on plant nematode popula-tions and subsequent yield of snap beans andcabbage. Proceedings of the Florida State Horti-cultural Society 77:233-237.

RICE, E. L. 1984. Allelopathy. Academic Press, NewYork, NY, U.S.A.

RICH, J. R., and G. S. RAHI. 1995. Suppression of Me-loidogyne javanica and M. incognita on tomatowith ground seed of castor, Crotalaria, hairy indi-go and wheat. Nematoropica 25:159-164.

ROBINSON, A. F., C. G. COOK, and A. C. BRIDGES.1998. Comparative reproduction of Rotylenchulusreniformis and Meloidogyne incognita race 3 onkenaf and sunn hemp grown in rotation withcotton. Nematropica 28:143 (abstract).

RODRÍGUEZ-KÁBANA, R. 1986. Organic and inor-ganic nitrogen amendments to soil as nematodesuppressants. Journal of Nematology 18:129-135.

RODRÍGUEZ-KÁBANA, R., and J. W. KLOEPPER.1998. Cropping systems and the enhancementof microbial activities antagonistic to nema-todes. Nematropica 28:144 (abstract).

RODRÍGUEZ-KÁBANA, R., N. KOKALIS-BURELLE,D. G. ROBERTSON, P. S. KING, and L. W.WELLS. 1994. Rotations with coastal burmuda-grass, cotton, and bahiagrass for management ofMeloidogyne arenaria and southern blight in pea-nut. Supplement to Journal of Nematology26:665-668.

RODRÍGUEZ-KÁBANA, R., J. PINOCHET, D. G.ROBERTSON, C. F. WEAVER, and P. S. KING.1992a. Horsebean (Canavalia ensiformis) andCrotalaria (Crotalaria spectabilis) for the manage-ment of Meloidogyne spp. Nematropica 22:29-35.

RODRÍGUEZ-KÁBANA, R., J. PINOCHET, D. G. ROB-ERTSON, and L. W. WELLS. 1992b. Crop rota-tion studies with velvetbean (Mucuna deeringiana)for the management of Meloidogyne spp. Supple-ment to Journal of Nematology 24:662-668.

RODRÍGUEZ-KÁBANA, R., D. G. ROBERTSON, L.WELLS, P. S. KING, and C. F. WEAVER. 1989.

56 NEMATROPICA Vol. 32, No. 1, 2002

Crops uncommon to Alabama for the manage-ment of Meloidogyne arenaria in peanut. Supple-ment to Journal of Nematology 21:712-716.

RODRÍGUEZ-KÁBANA, R., C. F. WEAVER, D. G. ROB-ERTSON, and H. IVEY. 1988. Bahiagrass for themanagement of Meloidogyne arenaria in peanut.Annals of Applied Nematology 2:110-114.

RODRÍGUEZ-KÁBANA, R., D. B. WEAVER, D. G.ROBERTSON, P. S. KING, and E. L. CARDEN.1990. Sorghum in rotation with soybean for themanagement of cyst and root-knot nematodes.Nematropica 20:111-119.

ROMÁN, J. 1964. Immunity of sugarcane to the reni-form nematode. Journal of Agriculture, Univer-sity of Pueto Rico 48:162-163.

ROTAR, P. P., and R. J. JOY. 1983. ‘Tropic Sun’ sunnhemp, Crotalaria juncea L. Research ExtensionSeries 036. College of Tropical Agriculture andHuman Resources, University of Hawaii, Hono-lulu, HI, U.S.A.

SANTOS, M. A., and O. RUANO. 1987. Reação deplantas usadas como adubos verdes a Meloidogyneincognita raça 3 e M. javanica. NematologiaBrasileira 11:184-197.

SASSER, J. N. 1954. Identification and host-parasiterelationships of certain root-knot nematodes(Meloidogyne spp.). Maryland Agriculture Experi-ment Station Technical Bulletin A:77.

SEINHORST, J. W. 1967. The relationships betweenpopulation increase and population density inplant parasitic nematodes, III and IV. Nemato-logica 13:429-442.

SHARMA, R. D., and D. D. G. SCOLARI. 1984. Effi-ciency of green manure and crop rotation in thecontrol of nematodes under Savannah condi-tions. Nematologia Brasileira 8:193-212.

SHEPHERD, J. A., and K. R. BARKER. 1993. Nematodeparasites of tobacco. Pp. 493-518 in M. Luc, R. A.Sikora and J. Bridge, eds. Plant Parasitic Nema-todes in Subtropical and Tropical Agriculture,2nd ed. CAB International, Wallingford, UK.

SIKORA, R. A. 1992. Management of the antagonisticpotential in agricultural ecosystems for the bio-logical control of plant parasitic nematodes. An-nual Review of Phytopathology 30:245-247.

SILVA, G. S., S. FERRAZ, and J. M. SANTOS. 1989a.Resistência de espécies de Crotalaria a Pratylen-chus brachyurus e P. zeae. 13:81-86.

SILVA, G. S., S. FERRAZ, and J. M. SANTOS. 1989b.Resistencia de especies de Crotalaria a Rotylenchu-lus reniformis. 13:87-92.

SILVA, G. S., S. FERRAZ, and J. M. SANTOS. 1989c.Atraçâo, penetraçâo e desenvolvimento de lar-vas de Meloidogyne javanica em raízes de Crotalar-ia spp. 13:151-163.

SILVA, G. S., S. FERRAZ, and J. M. SANTOS. 1990a.Effect of Crotalaria spp. on Meloidogyne javanica,Meloidogyne incognita race 3 and Meloidogyne ex-igua. Fitopatologia Brasileira 15:94-95.

SILVA, G. S., S. FERRAZ, and J. M. SANTOS. 1990b. His-topathology of Crotalaria roots infected with Meloid-ogyne javanica. Fitopatologia Brasileira 15:46-47.

SIPES, B. S., and A. S. ARAKAKI. 1997. Root-knotnematode management in dryland taro withtropical cover crops. Supplement to Journal ofNematology 29:721-724.

SOLER-SERRATOSA, A., N. KOKALIS-BURELLE, R.RODRIGUEZ-KABANA, C. F. WEAVER, and P. S.KING. 1996. Allelochemicals for control of plant-parasitic nematodes. Nematropica 26:57-71.

STIRLING, G. R. 1991. Biological Control of PlantParasitic Nematodes. CAB International, Bris-bane, Australia.

TAYLOR, S. G. 1985. Interactions between six warm-season legumes and three species of root-knotnematodes. Journal of Nematology 17:367-370.

TRUDGILL, D. L. 1991. Resistance to and toleranceof plant parasitic nematodes in plants. AnnualReview of Phytopathology 29:167-192.

VALLE, L. A. C., S. FERRAZ, and W. P. DIAS. 1995. Ef-fect of legumes used as green manure on Hetero-dera glycines. Nematropica 25:106-107 (Abstract).

VAN DEN BOOGERT, P. H. J. F., H. VELVIS, C. H.ETTEMA, and L. A. BOUWMAN. 1994a. Therole of organic matter in the population dynam-ics of the endoparasitic nematophagous fungus,Drechmaria coniospora in microcrosms. Nemato-logica 7:139-145.

VAN DEN BOOGERT, P. H. J. F., H. VELVIS, C. H.ETTEMA, and L. A. BOUWMAN. 1994b. Therole of organic matter in the population dynam-ics of the endoparasitic nematophagus fungusDrechmeria coniospora in microcosms. Nematolog-ica 40:249-257.

VAN DER LINDE, W. J. 1956. The Meloidogyne prob-lem in South Africa. Nematologica 1:177-183.

VENETTE, R. C., F. A. M. MONSTAFA, and H. FER-RIS. 1997. Trophic interactions between bacteri-al-feeding nematodes in plant rhizospheres andthe nematophagus fungus Hirsutella rhossiliensisto suppress Heterodera schachtii. Plant and Soil191:213-223.

VISSER, T., and M. K. VYTHILINGAM. 1959. The ef-fect of marigolds and some other crops on thePratylenchus and Meloidogyne populations in teasoil. Tea Quarter 30:30-38.

WANG, K.-H. 2000. Management of Rotylenchulus reni-formis in Hawaiian pineapple with tropical covercrops. Dissertation, University of Hawaii atManoa, Honolulu, HI, U.S.A.

Crotalaria for nematode management: Wang et al. 57

WANG, K.-H., B. S. Sipes, and D. P. Schmitt. 2002a.Suppression of Rotylenchulus reniformis by Crota-laria juncea, Brassica napus, and Tagetes erecta.Nematropica 31:237-251.

WANG, K.-H., B. S. Sipes, and D. P. Schmitt. 2002b.Management of Rotylenchulus reniformis in pine-apple, Ananas comosus, by intercycle cover crops.Journal of Nematology 34:(in press).

WESTPHAL, A., and J. O. BECKER. 1999. Biologicalsuppression and natural population decline of

Heterodera schachtii in a California field. Phytopa-thology 89:434-440.

WHITTINGTON, D. P., and E. I. ZEHR. 1992. Popula-tions of Criconemella xenoplax on peach interplant-ed with certain herbaceous plants. Supplement toJournal of Nematology 24:688-692.

WILSON, G. F., and F. E. CAVENESS. 1980. The ef-fects of rotation crops on the survival of root-knot, root lesion and spiral nematodes. Nemat-ropica 10:56-61.

Received: Accepted for publication:14.VII.2001 21.IX.2001

Recibido: Aceptado para publicacion: