CRITICAL INVESTIGATION OF VARIOUSSUBCLASSES OF … · 2019. 5. 13. · CRITICAL INVESTIGATION OF...

12
I nnat. J. Math. Mth. Sci. Vol. 4 No. (1981) 89- 99 89 A CRITICAL INVESTIGATION OF VARIOUS SUBCLASSES OF FUNCTIONS- WHOSE REAL PART IS BOUNDED S.K. BAJPAI Universidade de Brasilia Departamento de Matematica 70.910- Brasilia- DF Brasil (Received October 22, 1979) ABSTRACT. In this paper we investigate various subclasses of univalent analytic functions. We find that many of the subclasses introduced in the recent years are no more new and infact coincide with the class due to Jakubowski. We further study the generalised Jakubowski class of univalent functions and obtain a representational formula and use it in deriving the coefficient relations for this class. KEY WORDS AND PHRASES. Univent Stke, onvex, Sp like, Boanded fcurcio, Fanction positive rl pa. 1980 MATHEMATICS SUBJECT CLASSIFICATION CODES. P OA92, Second OA94. i. INTRODUCTION. , The Class S (,v). m,M Let M,m be arbitrary fixed real numbers satisfying the condition

Transcript of CRITICAL INVESTIGATION OF VARIOUSSUBCLASSES OF … · 2019. 5. 13. · CRITICAL INVESTIGATION OF...

  • Innat. J. Math. Mth. Sci.Vol. 4 No. (1981) 89- 99

    89

    A CRITICAL INVESTIGATIONOF VARIOUS SUBCLASSES OF FUNCTIONS-

    WHOSE REAL PART IS BOUNDED

    S.K. BAJPAI

    Universidade de BrasiliaDepartamento de Matematica70.910- Brasilia- DF

    Brasil

    (Received October 22, 1979)

    ABSTRACT. In this paper we investigate various subclasses of univalent analytic

    functions. We find that many of the subclasses introduced in the recent years are

    no more new and infact coincide with the class due to Jakubowski. We further

    study the generalised Jakubowski class of univalent functions and obtain a

    representational formula and use it in deriving the coefficient relations for

    this class.

    KEY WORDS AND PHRASES. Univent Stke, onvex, Sp like, Boanded fcurcio,Fanction positive rl pa.

    1980 MATHEMATICS SUBJECT CLASSIFICATION CODES. P OA92, Second OA94.

    i. INTRODUCTION.,

    The Class S (,v).m,M

    Let M,m be arbitrary fixed real numbers satisfying the condition

  • 90 S.K. BAJPAI

    D*(re,M) E Dlt D2 andI

    Jakubowski [7] introduced the class S*,M(’)m of regular functions f(z)z + akzk defined in E {z Iz[ < I} and satisfying the cndition

    eiUzf’(z)isinu Ucosf(z)- -ml

  • CRITICAL INVESTIGATION OF SUBCLASSES OF FUNCTIONS 91

    Izf’(z) zf’ (z) le-ilYet another class is investigated by Gopalakrishna nd Shetiya ]. They nned

    this class by SA(e,O,) and f E SA(u,O,D) if and only if f E S with

    eiAzf (z)’’f’(’’) isin

    cos I - p < p’ (1.5)But we now show that these classes are not new and some of the results of the

    above authors are also not new. In fact, we have

    THEOREM I.,

    (a) S (u,8) S M,M(e,O) M 112(1-8)

    (e,); S 282/(1-82(b) Sl(e,8) SI+M,M(c) M(e 8) S*m,S(0,0) m (l+e82)/(l-e282) and M (I+e)8/(I-(282)

    (d) SX(,O,) S,s(,) S p/(l-e).,

    PROOF. Suppose X zf’(z)/f(z). Then f e S (e,8) satisfies (1.2). Hence,

    we have

    [(X-n/{2(X-l-(X-) } < . (.61The inequality (1.6) is true if and only if

    slx-l 2 > Re{ (X-s) (-I) }.

    This last inequality is equivalent to

    [X12 {l+e-2eS}. e(l-8) < 0B {x} + (S)By simple manipulations, the last inequality holds if and only if

  • 92 S.K. BAJPAI

    ,:__(z) 1 1< --CT=" (’)

    Hence, if M 2--2, uwith u 0 then f e S (a,8) implies f e SM,M(a,0) mdconversely. This proves (a).

    For.proving (b), we let Y {Xeil isinl acosl}l(1-a)cosl and

    X zf’ (z) S x(z) Then, as before f e (a,) if and rely if

    (1.8)

    (In (1.8), if k -0 c, then this class is due to Caplinger and Causey 3). But

    simple calculations shoe tha (1.8) is equivalent to

    il zf’ (z) isinl-acoslf (z) 282

    282--(l---a) cosX 1 <

    1-2 1-" (1.9)

    Thus, a comparision of (1.9) to (1.1) implies (b) and conversely. The proof for

    (c) is similar. For (d) we observe tha f e Sl(cz,p,q) if md only if

    ejAzf ’(z) isinl acosX’(z)""’(:t’)"cos), < I--" (1.10)

    Again a cmparision of (I.I0) to (I.I) gives (d). Hence the proof of the theorem

    is complete.

    We note as a consequence of theorem I, that the coefficients estimates

    obtained in the Series of ppers (I]-6, 8]-Ol, [-133-27, 29], 30) arecontained in [7]. But some of the coefficients estimates obtained in [I, [6],

    ZI2 are not contained in the theorem 1 of [7]. We also note that the classintroduced in 83, is a very general one but appears unnatural in thepresentation. Therefore, next section,we shall consider the natural generalization

    of the class S*m,M(,v) by admitting m to be complex. This we do as follows.

  • CRITICAL INVESTIGATION OF SUBCLASSES OF FUNCTIONS 93

    ,2. The class Sm,M(,,o,t)._

    ,We define he class Sm,M(,U,a,t)_ to denote the class of f E S with

    elUzf’(z) isinu cosu(I-) cosv 0.

    The following lenna shows that when u 0, the utmost class of Szynal et al

    and he class introduced by Libera and Livingston 1 are obtained.

    S*LEMMA I. f E (U,v,a t) if md only if here exists some w(z) regular inm ,ME, w(0) 0 and [0(z) < 1 such that

    zf’(z) I + (De-iV B) w(z) (2.2)"-EG)-- -- s ,.o(z)where D (A+S)(1-U)cceV; A+B > 0and

    A= _2_ m2+ m(l_2u)+a(l_u)+it_t2B=. 1 +m+ a-i

    PROOF. Let us write

    L(z) R m a i

    g(z) eiVzf’(z) isinv f(z) Uccev f(z)md h(z) (I-) cosy (z).

    ll-m-a-itJ. Hence, there exists a (z) which isThen, we have [L(z)[ < I, L(0) =regular in E and which cm be written in the form

  • 94 S.K. BAJPAI

    (z) L(.Z,.) .L_(0)I-L(O)L(z)

    Clearly, we have 00(0) 0 and l(z) < i. Solving the equation (2.3), we have

    L(z) L(z) m-oiL (0) +.(z)_I+L(0) (z)

    and this in turn on solving gives the lenma.

    Using this lemma, we prove the following theorem which generalizes the

    THEOREM 2. For Izl < I, let f(z) z +k=n+ I

    kz and f E Sm,M(,v,,t).Also, let qo be a natural number such that qo E o-I, Ko where

    (i) If, either Re{Beiv} > O and M(l-)cos[D + 2n Re{BeiV}] _< n2Re{Bei} < 0 md DM(l-)cosv < n2 then we have

    or,

    (p+ l)n(k-l) 2 ak 12

    knp+ I< D2; p i, 2, 3,

    2(ii) If Re{BexV} > 0 and (l-)Mcos + 2n Re{BeXV}] > n(q+l)n q-I 2

    { D+nmBe" }I (k-1)2lak 12 n II n

  • CRITICAL INVESTIGATION OF SUBCLASSES OF FUNCTIONS 95

    The estimates (2.4) are sharp for all k and the estimates in (2.5) are sharp for

    k qn+l, q 1,2,... because equality holds for the functions

    f(z)

    DZe-kB for B 0l-Bzk)

    De-izk/ke for B -0(A)

    PROOF. Under the conditions of theorem 2, we have

    k0J(Z) I bkZk=n

    for which (2.2) is true. Then simple calculations lead to

    [ ak(k-l)zk- z+ I {D+B(k-l)ei}akzk3 [ I bkzk]"k’+l k--n+l k-n

    (2.7)

    Equating the coefficients of zk frcm both sides of (2.7) for k n+l,...,2n,

    we have

    e (k-l) ak Dbk_I.

    This immediately gives us,

    2nD2 2 D2I (k-l)21ak 12 < . Ibkl <

    k=n+ I k=n+I(2.9)

    But, for p > n+l, (2.7) can be written in the form

    G(z) H(z) 0(z) (2.10)

    where

    and

    n+pG(z) e:l’V n (k-l)akzk + [k= + I k-n+p+ I dkzk

    P kH(z) Dz + [ {D+B(k-l)eiV}akzk=n+ I

    Then (2.10) gives us

  • 96 S.K. BAJPAI

    n+p2 2, (k-l)[ak[ +

    k=p+ 1 k=n+p+ 1

    k=n+ 1(k-)

    From the hypothesis of (i) of theorem 2, we have

    and so

    ID+(k-1) BeiVl2_

    (k-l) 2

    pn (k-1)21ak 12 < D2;k=p+l p >n+l.

    Replacing p by pn in (2.12) then we have

    (Pl)n(k-1)2]akl2 < D2k=pn+l

    f or p-2,3,...

    Combining (2.13) with (2.9), we get (i).

    If Re{Bei9} > 0 then the functicx%

    (k_ll) 2 [i D+ (k_l) Bei 12_ (k_l) 2]is always a decreasing function of k-l.

    On using this fact, we get,.by (2.11) for p > n+l.

    (k-l) akl < D2+ D+nBei 12 n2k--p+ 1 k=n+ I n (k- I)

    Let p 2n. Then (2.14) gives us

    (2+l)n(k-l)mlak 12 < D,-----6

    2n+lby (2.9),

    Under the conditions of (ii) of theorem 2, we intend to prove the following.(q+l)n, (k-l) 2 ak 12k=qn+ 1 < ’nl)’ qKl D+mnBezu 2.m=0 n

    (2.zz)

    (2. 2)

    (2.13)

    (2.14)

    (2.15)

    (2.16)

  • CRITICAL INVESTIGATION OF SUBCLASSES OF FUNCTIONS 97

    The relation (2.16) is true for q I and 2, so let us assume (2.16) to be true

    for 1,2,...,q-I and let us prove it for q if q < qo + I. By (2.14) we have(q/l)n

    2 i72[ lakl2(k-l) < + ID+(k-l)Be1912 (k-l) 2 II 2k=qn+ I k--n+I

    D2 + m--q-ll k(m+l)n!n+I { ID+ (k- l) Beiv12(k-l)2 (k-l) 2 l(k-l)2 ak 12

    +m:l m

    2 2 "(m-l)’m=0

    m=0 n

    The last inequality also follows by induction. This proves (ii) of theorem 2.

    Also, if k > (qo+2)n then+l)n(q+l)n 2 -’(qi qn 2 2} 2]+ [ l)n+l ID+Be19(k-I) -(k-l) akl

    (qo+l)n< D2+ I ID+Bei(k_l) 12_(k_I)2> 2 2

    k-n+l [ (k-l)2(k-l) ak

    m--I k--mn+l (k-l) 2(k-l) 21ak 12

    m=0

    This proves (iii) of theorem 2. Hence the proof of the theorem is complete.

    COROLLARY. From (2.11) we obtain

    {(k_l) 2k--n+ I

    [D + (k-l)Bei[2}[ak 12 < D2.

    obtained in (13-73) are contained in theorem 2 for the different choices of theparameters, m,M,/,9,o and t.

  • 98 S.K. BAJPAI

    REFERENCES

    [I] BAJPAI, S.K. and Mehrok, T.J.S.: On the coefficient structure and a growththeorem for the functions f(z) for which zf’(z) is spiralllke, Publ.De L’Inst.itu_te Mathematiqu_e 16 (30), (1973), 5-12.

    ] BOYD, A.V.: Coefficients estimates for starlike functions of orderProc. /er. Math. Soc. 17 (1966), 1016-1018.

    CAPLINGER, T.R. and Causey, W.M. A class of univalent functions, Proc. Amer.Math. Soc. 39 (1973), 35 7-361.

    ] CLUNIE, J. and Keogh, F.R.: On starlike and convex schlicht functions.J. London Math. Soc. 35 (1960), 229-233.

    EENIGENBURG, P.J.: A class of starlike mappings in the unit disc,composition Math 24 (1972), 235-238.

    GOPALAKRISHNAH.S. and Shetiya, V.S.: Coefficient estimates for spiral likefunctions. Annales Polon Math. 35 (1977), 1-9.

    JAKUBOWSK Z.J.: On the coefficients of starlike functions of some ,classes.Bull. Acad. P_0_olon. d_es. S.ci., Se.rie des SCi. _Ma_th., As__t. et phys. 191971), 811-815.

    JANOWSKI, W.: About the extremal spiral schlicht functions, Annales Polon.Math. 9 (1962), 265-273.

    ] JUNEJA,O.P. and Mogra, M.L.: On starlike functions of order e and type 8.Key. Rum. Math. 23 (1978), 751-765.

    0 KACEMARSKI, J.: On the coefficients of some classes of starlike functionsBull. Acad. Polon. Sci. Sr. Sci. Math., ast. Phys. 17 (1969), 495-501.

    i] KLEIN,M.: Functions starlike of order e. T.rans._ Amer. Math. Soc. 131___(I),(1968), 99-106.

    LIBERR.J. and Livingston,A.E.: Bunded functions with positive real part.Czechoslovak Math. J. 22(97), (1972).

    3 LAKSHMINARASIMHAN, T.V.: On sub-classes of functions starlike in the unitdisc. J. Indian Math. Soc. 41 (1977), 233-243.

    LIBERA, R.J.: Univalent e-spiral functions. Canadian J. Math. 19 (1967),449-456.

    5] MACGREGOR, T.H.: Coefficient estimates for starlike mappings. Michigan Math.: J.I0 (1963) 277-281.

    63 MCCARTY, C.P.: Starlike functions. Proc. Amer. Math. Soc. 43 (1974), 361-366.7] MOGRM.L.: On a subclass of starlike functions in the unit disc. J. Indian

    Math. Soc. 40 (1976).

  • CRITICAL INVESTIGATION OF SUBCLASSES OF FUNCTIONS 99

    8 MOGRA, M.L. and Juneja, O.P.: Coefficient estimates for starlike functions,Bull. Aust. Math. Soc. 16 (1977), 415-425.

    9] MOKOWKA, B. On some subclasses of univalent functions Politechn. Lodz,Zeszyty Nank 254, Mat 9 (1977), 71-76.

    NEVANLINR.: Uber die Konforme abbildung yon sterngebieten, Ofvers FinskaVet+/- Ser_. Forh, 53(A) (1921), 6.

    i] PADMANABHAN, K.S.: On certain classes of starlike fun ctions in the unit disc.J.__Indian Math._ Soc. 32 (1968), 89-103.

    PLASKOTA, W.: On the coefficients of some families of regular functions,.Bull. Acad. Polon.. Sci. Sr. Sci..Math. aat. phys. 17 (1969), 715-18.

    33 PLASKOTA, W.: Limitation des coefficients dns une fmille de functionsholom-orphes dans de cercle Izl < i. Annales Polon Math. Soc.24 (1970),65-70.

    43 ROBERTSON, M.S.: On the theory of univalent functions, An.n._of Ma_th_. 37(1936), 374-408.

    5 SCHILD, A.: On a class of univalent star shaped mappings. Proc. Amer. Math.Soc. 9 (1958), 751-757.

    6 SCHILD, A.: On starlike functions of order u. Amer J. Math. 87 (1965), 65-70.SINGI,RAM: On a class of starlike functions, Compositio Math. 1__9 (1967),

    78-82.

    8 SZYNAL A.; Szynal, J. and Zygmunt, J.: On the coefficients of functionswhose real part is bounded. Anna!es_Univ._’ M_aiae Curie-Sklod.Polon. 2..6 (5) (1972), 63-69.

    TONTI N.E. and Trahan, D.D. Analytic functions whose real parts arebounded below. Math. Z. 115 (1970), 252-258.

    0 WRIGHT, D.J.: On a class of starlike function. Comp_ositip M.a.th. 2__1 (1969),122-124.

  • Submit your manuscripts athttp://www.hindawi.com

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    MathematicsJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Mathematical Problems in Engineering

    Hindawi Publishing Corporationhttp://www.hindawi.com

    Differential EquationsInternational Journal of

    Volume 2014

    Applied MathematicsJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Probability and StatisticsHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Journal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Mathematical PhysicsAdvances in

    Complex AnalysisJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    OptimizationJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    CombinatoricsHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    International Journal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Operations ResearchAdvances in

    Journal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Function Spaces

    Abstract and Applied AnalysisHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    International Journal of Mathematics and Mathematical Sciences

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    The Scientific World JournalHindawi Publishing Corporation http://www.hindawi.com Volume 2014

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Algebra

    Discrete Dynamics in Nature and Society

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Decision SciencesAdvances in

    Discrete MathematicsJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com

    Volume 2014 Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Stochastic AnalysisInternational Journal of