Creating Preliminary Specifications for Printed Photovoltaics

21
Creating Preliminary Specifications for Printed Photovoltaics By: Andrea Ho Advising: Malcolm G. Keif, Ph.D. Graphic Communication Department College of Liberal Arts California Polytechnic State University, San Luis Obispo March 2010 © 2010 Andrea Ho

Transcript of Creating Preliminary Specifications for Printed Photovoltaics

CreatingPreliminarySpecificationsforPrintedPhotovoltaicsBy:AndreaHoAdvising:MalcolmG.Keif,Ph.D.GraphicCommunicationDepartmentCollegeofLiberalArtsCaliforniaPolytechnicStateUniversity,SanLuisObispoMarch2010©2010AndreaHo

CreatingPreliminarySpecificationsforPrintedPhotovoltaics

AndreaHo

GraphicCommunicationDepartment,March2010

Advisor:MalcolmG.KeifPh.D.

Thepurposeofthisstudyistoexposethetraditionalprintingindustrytoan

emergingfieldofprintedelectronics.Withthepopularityofelectronicdocuments

andtheinternet,thebulkoftheprintingindustrywilleventuallymoveawayfrom

thetraditionalinkandpaperprintingandmovetowardsmoretechnical,functional

applicationsthatwillmeettheupcomingneedsofsociety.Printedphotovoltaics,or

solarpanelsisanexampleofprintedelectronicsthatcanbemanufacturedby

traditionalprintingprocesses.

Thisstudyinvestigatediftheflexographyprintingprocesswasaviablewaytomass

manufactureprintedphotovoltaics.Ifso,whatspecificationsandtoleranceand

specificationswillbeexpectedfromthepressandtheprintedoutputtocreatea

successfulphotovoltaic.Factorssuchasinkfilmthickness,inkuniformity,and

registrationwereexplored.

TheresultsofthisstudyshowthatFlexographyisapossiblewaytomass

manufacturephotovoltaics.However,pressmodificationsandadditionalmaterial

developmentsareneededinordertosuccessfulcreateafunctionalphotovoltaic.

TableofContents

IntroductionandPurposeofStudy ....................................................................................................1

LiteratureReview.......................................................................................................................................3

ResearchMethods......................................................................................................................................8

Results ..........................................................................................................................................................11

Conclusions ................................................................................................................................................1σ

Bibliography ..............................................................................................................................................1ψ

FiguresandTables

Figure1 ...........................................................................................................................................................6

Figure2 ...........................................................................................................................................................7

Table1..........................................................................................................................................................14

ChapterOne:IntroductionandPurposeofStudy

CreatingPreliminarySpecificationsforPrintedPhotovoltaics

Thesignificanceofsolarpowerenergyhasbeengainingmediaattentioninrecent

years.Thesunisaplentifulsourceofenergythatisavailablejustaboutanywherein

theworld,andmostimportantly,itcostsnothingtogenerate.Thenecessityfor

efficientandaffordableenergyisevidentthroughthegrowingprevalenceofthe

sustainabilitymovement,theever‐presentclimatechange,andourdependenceon

limitedfossilfuels.Theseirreplaceableresourcesandourimpactontheearth

increasetheneedforanenvironmentallyfriendlysystemtoharvestenergy.One

solutionforthisproblemissolarpanels.Currently,solarpanelsareanexcellentway

tocollectenergy,however,theyaretoocostlytomanufacture.Onesolutionisto

printsolarpanelswithtraditionalprintingpressesalreadyusedtomanufacture

newspapersandbooks.Byprintingsolarpanels,highproductioncostswouldbe

savedandsolarpanelswillbeaccessibletoeveryone.

Conventionalsolarpanels,alsoknownasphotovoltaics,aremanufacturedby

harvestingandcuttingsiliconwafers,whichcanbeanextremelyslowand

expensiveprocess.Printing,ahigh‐speedprocess,isalogicalsolutiontothemass

manufactureneedsofthephotovoltaicindustry.However,inordertosuccessfully

manufacturephotovoltaicsbyaprintedprocess,oneneedstodevelopspecifications

orspecificguidelinesforprinterstofollow.Certainperformancerequirementswill

1

beneededfromthepress,substrates,andink.Thesespecificationswillultimately

pushtheprintingindustryintonewsectorsandpromotemassmanufacture

photovoltaicgrowth.

Thisresearchprojectwillaskthequestion,isflexographyaviablewaytomass

manufactureprintedphotovoltaics.Ifso,whatspecificationsandtoleranceand

specificationswillbeexpectedfromthepressandtheprintedoutputtocreatea

successfulphotovoltaic.Thegoalandoutcomeofthisstudywastofindpreliminary

specificationsandtolerancesforprintedphotovoltaicsbytheflexographyprocess.

Factorssuchasinkfilmthickness,inkuniformity,andregistrationwereexplored.

Thepurposeofthisstudyistoexposethetraditionalprintingindustrytoan

emergingfield.Withthepopularityofelectronicdocumentsandtheinternet,the

bulkoftheprintingindustrywilleventuallymoveawayfromthetraditionalinkand

paperprintingandmovetowardsmoretechnicalapplicationsthatwillmeetthe

upcomingneedsofsociety.Additionally,photovoltaicsareimportantgloballyas

environmentpreservationisbecomingmoreandmoreofanecessity.

2

ChapterTwo:LiteratureReview

BackgroundInformationofPrintedElectronicsMarketandPhotovoltaics

HistoryofPhotovoltaics

ScientistsatBellLaboratoriesaccidentallydiscoveredsolarcelltechnologyin1953.

GeraldPearsonandCalvinFullerdiscoveredawaytocontrolthedoping,or

introductionofimpurities,necessarytotransformsiliconfromapoortosuperior

conductorofelectricity.Someoftheexperimentsthescientiststestedfor

conductingelectricityincludedexposingthesilicontothesunwhileconnectingitto

adevicethatmeasuredelectricalflow.“Thesiliconthatwasdopedhadanelectric

outputalmostfivetimesgreaterthanthebestmaterialproducedbefore.”(Sun&

Sariciftci,2005)However,thecommercialsuccessofsolartechnologyfailedto

expandatthetimeduetothecostofsolarcells.

Thefirstpracticalapplicationofthesiliconsolarcellwasin1955withtheAmerican

government’sintentiontolaunchaspacesatellite,theVanguard.TheVanguardwas

thefirstworkingsatelliteequippedwithsolarcells.(Sun&Sariciftci,2005)The

precedingsatelliteswerepoweredbybatteriesandlostallstoredpowerwithinina

week’stime.Themillionsofdollarsinvestedintoasatellitethatonlyfunctionedfor

aweekonbatterieswasnotcosteffective.TheVanguardwasinstalledwithsilicon

solarcellsforpowerbecausetherewasaneedforareliable,longlastingenergy

sourceforthesatellite.(SunandSariciftci)

3

Whilethepracticalapplicationofsolarcellsboostedthemoraleofadvocatesforthe

technology,theexpensiveproductioncoststillkeptitfromcommercialsuccess.

Researchconcentrationwentintomaterialsandmakinglowergrade,lessexpensive

silicon.Thefirstmajorbuyersofsolarcellswereoilcompanies.Theoilrigsinthe

GulfofMexicowerefittedwithwarninglightsandhornsforsafetythatreliedon

batteriestopowerthesystem.Thesebatteriesneededmaintenanceandhadtobe

replacedapproximatelyeveryninemonths.Duetotheoilrigstructureand

placementofthebattery,alargeexpensewasrequiredforaroutineprocedure.

Solarmoduleswouldhelpsavetremendouscostbyeliminatingtheneedforthe

expensiveequipment.By1980,photovoltaicswerethestandardpowersourcefor

warninglightsandhornsfortheoilrigsontheGulfofMexico.(Sun&Sariciftci,

2005)

Fasttrackingtothepresent,thephotovoltaicsindustryhasexperienceda

tremendousgrowthrateof20percentannuallyinthelastdecade.(KahnandDas)

Thesolartechnologyhasbeengainingtremendousattentionforits“green”

purposes.Withtheincreasedconcernoverclimatechangeandgreenhousesgasses

thateffectourenvironment,photovoltaicsarereceivinggreatinterest.Solar

electricitygenerationhasnonoise,harmfulemissions,orpollutinggasses.Thereare

nomovingpartsanditrequiresverylowmaintenancetokeepthesystemsrunning.

(Krebs)“Itisestimatedthattheglobalsolarenergymarketwillreach$34billionin

2010and$100billionin2050.”(Kahn&Das,2007)

4

HowSolarPanelsWork

Solarpanelsworkbyconvertingsunlightintoelectricity,orphotonsintoelectrons.

Thisispossiblebythestructureandmaterialsinphotovoltaiccells,“photo”

meaninglight,and“voltaic”meaningelectricity.Thephotovoltaiccellsarepacked

intomodules,whicharesimplygroupsofcellselectricallyconnectedandpackaged

intooneframeorasolarpanel.(Aldus,2000)

Howthephotovoltaiccellmakesthisconversionpossibleisintheunique

semiconductormaterial,ortheactivelayerinthephotovoltaicstructure.Whenthe

photonfromthesunhitsthesolarpanel,eitheroneofthreethingscanhappen:

1. Thephotonpassesstraightthroughthesolarpanel.Thisisduetothelowenergy

photonnotbeingabletoexciteanyelectronsandserveanyfunctionforthesolar

cells.

2. Thephotonsreflectoffthesurfaceofthesolarpanelandareunabletobeused.

3. Thephotonisabsorbedbythesolarcell.Thisiswhatneedstohappentobeable

tocreateacurrent.Whenthephotonisactuallyabsorbed,theenergyfromthe

sunisthentransferredtothesemiconductormaterial.Thephotonexcitesthe

electronfromoneenergystagetoanother,allowingittofreelymovearoundin

thesemiconductormaterial.Thesefreelymovingelectronsarecalledfree

carriers.Theelectronsthenflowinacertaindirection,generatingthecurrent.

5

Thecurrentandvoltagefromtheelectronsmakethepowercalledelectricity.

(Aldus,2000)

Tocreateaphotovoltaictherearemultiplelayersofmaterialsthatservedifferent

functionstomakeaworkingsystem(seefigure1).Conventionalphotovoltaicsare

manufacturedbyhandusingveryexpensive,highlysensitivematerialsandthat

needspecializedtoolstoproducethem.(NanoMarkets)Newdevelopmentsinthe

markethaveevaluatedprintingasapossiblemeansofproductioninthefuture.

Variouslayerswouldbepatternedontoatransparentsubstrateandwiththe

correctspecificationsandtolerances,createworkingphotovoltaics.

(figure1)NanoMarkets2009

6

FlexographyProcess

Flexographyisaprintingprocesswhereinkistransferredfromtheinktraybyan

aniloxroll,toaraisedimageareacalledablanket,andeventuallytoasubstrate.The

aniloxrollisapatternedroll,whichfunctionstotransferinkfromtheinktraytothe

blanket.Theaniloxrollthentransferstheinktotheprintingplateandthentothe

substrate.Flexographyisonepossibleprintingmethodtoproducephotovoltaics.

In order to determine if flexography is a viable way to produce photovoltaics,

specifications and tolerances need to be determined first and evaluated against

existing flexography presses to determine if it is possible to mass-produce

photovoltaics by this method. For this particular study, focus was on creating an

organic photovoltaic with conventional materials. (see figure 2)

P3HT:PCBM

PET or equivalent

PEDOT:PSSITO or ZnO or silver grid

-

Silver or aluminum+

(figure2)Asampleofthedevicearchitecturethatwasusedforthisstudy.

IllustrationbyMalcolmKeif.

7

Chapter Three: Research MethodsDerivingSpecificationsofPrintedPhotovoltaics

Thekeytomakingphotovoltaicswidelyusediswithlessexpensiveproduction,

enablingthedistributiontoawideraudience.Interestisbeinggainedinprintingas

ameansofmanufacturingbecauseoftheroll‐to‐rollcapabilitiesofproduction.

However,inordertoprintphotovoltaicssuccessfully,specificationssuchasthose

developedbyASTMandISOneedtobeestablished.Togainspecificationsfor

printingphotovoltaics,eliteandspecializedinterviewingwasusedtogather

research.Thepremisebehindofthisresearchapproachtothisprojectwasthatthe

subjectofphotovoltaicsissoinnovativethatagreatdealofknowledgewasnot

publishedyet,butratherbeingdiscoveredcurrently.Thespecificationsforprinted

photovolaticsarethestarttothehighvolumedistributionofrenewableenergy.

AccordingtoHarveyLevensoninSomeIdeasAboutDoingResearchinGraphic

Communication,“Eliteandspecializedinterviewingiswhereeachandevery

intervieweeistreatedasaspecialandimportantindividual.Inthisparticulartype

ofinterview,theinterviewerwillaskprecise,open‐endedquestionsthatareopento

refinementastheresearchandinterviewcontinues.”Hecontinuesontoexplain,

“whatissoughtinEliteandSpecializedInterviewingiscomprehensibility,

plausibility,andconsistency,notduplicationofresponses.”Furthermore,the

8

intervieweebecomespartoftheresearch“team”ratherthanasubject.(Levenson)

Discussionswithintervieweesweretolearnhowaphotovoltaicsystemworksand

askthemtohelpfilloutatableofspecifications.Thespecificationsandtolerances

aretherangeofparticularvariablesthatarerequiredinordertohaveaworking

photovoltaiccellsuchaskinkfilmthickness,annealingtime,andoxygentrapping

specifications.Thespecificationswerethencompiledintoaspreadsheet.

Variousexpertsintheindustrythathaveexperienceandknowledgein

manufacturingphotovoltaicswereinterviewed.ThefirstintervieweewasSarah

Mednick,aformerCaliforniaPolytechnicStateUniversitygraduateandcurrent

UniversityofCalifornia,SantaBarbaragraduatestudentintheHeegerResearch

Group.Herfocusofstudyisonphotovoltaics.Thepurposeforinterviewingherwas

togainknowledgeonhowphotovoltaicsfundamentallyworkandhaveherfillouta

tableofspecificationsthatwascreated.

ThesecondcontactwasDr.DavidSime,directoroftechnologytransferatSoligie,a

privatelyheldphotovoltaiccompany.Theircompanyincorporatesflexographic

processtoprintphotovoltaics.Hehelpedwiththespecificationssheetand

developedtolerances.

9

ThethirdcontactwasMaryBoone,amarketdevelopmentdirectoratPlextronics,a

privatelyheldphotovoltaiccompany.Sheevaluatedthespreadsheetandgave

commentsonthevarioussections.

ThefinalinterviewconductedwaswithEitanZeira,thevicepresidentofprinted

photovoltaicsatKonarka,aprivatelyheldphotovoltaiccompany.Helookedatthe

spreadsheetasawholeandgavefeedbackonspecificquestionsandoverallprinting

problemsforprintableelectronics.

Thefollowinginformationwaspursuedduringtheeliteandspecializedinterview:

1. Whatistherelationofbandgaptotheefficiencyofthesolarcell?

2. Whatisthedifferencebetweenpolymerphotovoltaicsandorganic

photovoltaics?

3. Whatdefinesthegenerationofaphotovoltaiccell?

4. Whatfactorsaffecttheefficiencyofaphotovoltaiccell?

5. Towhatextentdoesinkfilmthickness,adhesionspecification,andoxygen

trappingspecificationshaveanaffectontheefficiencyofaphotovoltaic?Ifso,

howcriticalisittokeepthematerialsandprocessingunderthetolerances?

6. Whatisthemostimportanttolerancetokeepinaphotovoltaiccell?

7. Whatroledoesflexographyhaveintheprintedelectronicsindustry?

10

ChapterFour:Results

ResultsofEliteandSpecializedInterviewing

Afterinterviewingexpertsinthisindustry,specificationsandtolerancesnecessary

forasuccessful,functioningphotovoltaicwerederived.Duetotheproprietary

natureoftheindustry,therewerevaryingopinionsonwhatspecificationswere

crucialandonthenumbersthemselves.Fourinterviewswereadministeredbyelite

andspecializedinterviewingprocess.

ThefirstinterviewwaswithSarahMednick,agraduatestudentatUniversityof

California,SantaBarbaraandfellowoftheHeegerResearchGroup.Sarahprovideda

sitetourofherlaboratoryaswellasadetailedexplanationofhowphotovoltaics

wereprocessedattheuniversity.Sarah’sexpertisewasinlabtestingphotovoltaics

sosomeofthespecificationsshegavewerealittleunreasonableforprinted

photovoltaics.Theinterviewwithherwasconsideredasastartingpointto

understandhowphotovoltaicsactuallyfunctionandhowtheyaretraditionally

fabricated.Shepointedouttheimportanceofproperlydryingorannealing

materialstomakethecircuitfunction.

ThesecondinterviewwaswithDavidSime,directoroftechnologytransferat

Soligie,aprivatelyheldphotovoltaiccompany.Theircompanyincorporatesthe

flexographicprocesstoprintphotovoltics,sohisknowledgewasvaluableforthis

11

particularpaper.Anin‐personinterviewwasconductedatthePrintedElectronics

USAconferenceinSanJose,CaliforniaonDecember3rd.Dr.Simewasabletolookat

thespreadsheetwiththedifferentcategoriesthatweredeemedimportantbySarah

Mednick.Hepointedoutthatthesubstratethicknesswouldbeconsiderablythinner

foraprintedphotovoltaicthanonespin‐coatedontoglass,typicaltothelabwork

SarahdidatUCSB.Hewasalsoabletogivetransparencyandsurfaceuniformity

specificationswhilepointingouttheimportanceofproperlydrying,orannealinga

material.Dr.Simefurtherexpandedthespreadsheetfromwhatwasderivedwith

Sarah.ThemajorityofthespreadsheetwasbuiltupontheinformationDr.Sime

gave.

ThethirdinterviewwaswithMaryBoone,amarketdevelopmentdirectorat

Plextronics.ShewasabletolookoverthespecificationsthatDr.Simegavebyemail

andwasabletogiveinputofsurfaceuniformityandoxygentrapping.Mary’s

feedbackwassomewhatlimited.

ThefinalphoneinterviewconductedwaswithEitanZeira,thevicepresidentof

printedphotovoltaicsatKonarka,aprivatelyheldphotovoltaiccompany.Hewas

abletoanswerspecificquestionspertainingtothespreadsheetandoverall

questionswithprintingtrends.Manyoftheconclusionsbasedonprintingpress

capabilitiessuchaspinholefreelayersweredevelopedwhileinterviewingEitan.

12

ChapterFive:Conclusions

ConclusionsofDerivedSpecifications

Thecontentattainedduringtheinterviewswasprocessedandthencompliedintoa

spreadsheet.(seetable1)Thespreadsheetcontainsthedeterminedcriticalfactors

necessaryforaflexiblephotovoltaicprintedonaflexographicpress.Inklayer

thickness,surfaceuniformity,contactangle,registration,annealing,conductivity,

oxygentrapping,opticaltransparency,andadhesionwereconcludedtobethemost

importantspecificationstoaheadto.Thesespecificationsweredeterminedfora

conventional,organicpolymerphotovoltaic.

Layerthicknesswasdeterminedtobeoneofthemostcriticalspecificationsfor

efficiencyofthephotovoltaic.Thematerialswouldfunctionatoptimalconductance

withcorrectthicknesses.Ideally,thesemiconductorlayershouldbearound150

nanometers.

Surfaceuniformitywasdeemedofupmostimportanceduetothepotentialpin

holingthatcouldbecausedbytheprintingpress.Anypinholespresentwouldcause

ashortinthecircuit,causingittobecomeinactive.Thefilmsubstrateshouldbeat

3‐5Rswhereasthesemiconductorlayerwillbesolventdependant.Whilethe

uniformityofalllayersisnotnecessarilycritical,theymustbepinholefree.

13

And

rea

Ho

Cre

atin

g Pr

elim

inar

y Spe

cific

atio

ns f

or P

rint

ed P

hoto

voltai

cs

Mate

rial

Laye

r th

ickn

ess

sp

ec

To

lera

nce

/C

riti

cali

tyS

urf

ace

un

ifo

rmit

y sp

ec

To

lera

nce

/C

riti

cali

ty

Film

Sub

stra

te~

50

mic

ron

Doe

sn't m

atte

r un

less

tra

nspa

renc

y or

di

men

sion

al s

tabi

lity

are

sacr

ifice

dRs~

3-5

nmN

ot t

oo c

ritica

l

ITO

(al

t. s

ilver

grid)

~15

0 nm

Critica

l par

amet

ers

here

are

con

duct

ivity

and

tran

spar

ency

(bo

th s

houl

d be

hig

h)Rs~

10-1

5 nm

Not

too

critica

l but

mus

t be

pin

-hol

e fr

ee

PED

OT:

PSS

300-

350

nm±

5 n

mRs~

10-1

5 nm

Not

too

critica

l but

mus

t be

pin

-hol

e fr

ee

P3H

T:PC

BM

*10

0-15

0 nm

Idea

l thi

ckne

ss v

arie

s ba

sed

on m

ater

ial

prop

erties

(th

ese

can

vary

fro

m b

atch

to

batc

h),

and

on t

he h

eat

trea

tmen

ts a

nd

solv

ent

anne

alin

g us

ed p

ost-

depo

sition

.

Sol

vent

dep

enda

ntN

ot t

oo c

ritica

l but

mus

t be

pin

-hol

e fr

ee

Alu

min

um/s

ilver

>1

mic

ron

Not

critica

l. A

dditio

nal t

hick

ness

mak

es

cont

acts

mor

e ro

bust

.

Sm

ooth

, ev

en la

yer

for

first

50

nm

, th

en n

ot s

o cr

itic

al

but

shou

ld b

e pi

n-ho

le fre

e

Mate

rial

Co

nta

ct A

ng

le/

wett

ing

sp

ec

To

lera

nce

/C

riti

cali

tyR

eg

istr

ati

on

sp

ec

To

lera

nce

/C

riti

cali

tyFi

lm S

ubst

rate

N/A

N/A

ITO

(al

t. s

ilver

grid)

30 d

egre

es,

Sur

face

te

nsio

n 40

+10

deg

rees

Very

loos

e fo

r PV

0.25

"

PED

OT:

PSS

30 d

egre

es,

Sur

face

te

nsio

n 35

+10

deg

rees

Very

loos

e fo

r PV

0.25

" -

only

critica

l if

edge

ble

eds

onto

an

othe

r la

yer

P3H

T:PC

BM

*30

deg

rees

, Sur

face

te

nsio

n 30

+10

deg

rees

Very

loos

e fo

r PV

0.25

" -

only

critica

l if

edge

ble

eds

onto

an

othe

r la

yer

Alu

min

um/s

ilver

30 d

egre

es,

Sur

face

te

nsio

n 25

+10

deg

rees

Very

loos

e fo

r PV

0.25

" -

only

critica

l if

edge

ble

eds

onto

an

othe

r la

yer

Mate

rial

Dry

ing

/A

nn

eali

ng

sp

ec

To

lera

nce

/C

riti

cali

tyC

on

du

ctiv

ity/

Mo

bil

ity

spec

To

lera

nce

/C

riti

cali

tyFi

lm S

ubst

rate

<=

140

°CBas

ed o

n di

men

sion

al s

tabi

lity

of s

ubst

rate

N/A

ITO

(al

t. s

ilver

grid)

Evap

tem

p of

sol

vent

Mus

t ev

ap s

olve

nt -

no

max

tim

e<

20

ohm

sCritica

l for

dev

ice

perm

form

ance

PED

OT:

PSS

140º

C -

long

er t

he b

ette

rM

ust

evap

wat

er -

no

max

tim

eN

/AU

sed

as a

hol

e tr

ansf

er la

yer

only

P3H

T:PC

BM

*

(pha

se t

rans

form

atio

n re

st

period

)70

ºC -

long

er t

he b

ette

r

Mus

t ev

ap s

olve

nt -

no

max

.Ef

ficie

ncy

is im

prov

ed w

ith

phas

e se

pera

tion

re

st p

erio

d10

^-3

cm

2 Vs

Critica

l for

dev

ice

perm

form

ance

Alu

min

um/s

ilver

Evap

tem

p of

sol

vent

Ann

ealin

g w

ill im

prov

e co

nduc

tion

< 2

0 oh

ms

Critica

l for

dev

ice

perm

form

ance

Mate

rial

Oxyg

en

tra

pp

ing

sp

ec

To

lera

nce

/C

riti

cali

tyO

pti

cal

tran

spare

ncy

sp

ec

To

lera

nce

/C

riti

cali

tyFi

lm S

ubst

rate

N/A

95%

tra

nspa

rent

±2%

ITO

(al

t. s

ilver

grid)

N/A

80-9

0% t

rans

pare

nt±

10%

PED

OT:

PSS

N/A

N/A

P3H

T:PC

BM

*N

itro

gren

cha

mbe

r re

quired

<10

0 PP

M o

xyge

n/w

ater

N/A

Alu

min

um/s

ilver

N/A

N/A

Mate

rial

Ad

hesi

on

sp

ec

To

lera

nce

/C

riti

cali

tyFi

lm S

ubst

rate

N/A

*PCD

TBT

- a

lter

native

ITO

(al

t. s

ilver

grid)

ASTM

tes

t fo

r cr

oss

hatc

h ta

pe t

est

*PSBTB

T -

alter

native

PED

OT:

PSS

ASTM

F18

42 -

09

P3H

T:PC

BM

*Alu

min

um/s

ilver

Table 1 : Preliminary Speci�ications for Printed Photovoltaics

14

Contactangleisdeterminedbyhowresistanttheinkistobeadinguponthe

substrate.Thisinturnalsocreatespinholes.Havingthecorrectsurfaceenergyhelps

theinkstowetoutproperly.Contactanglesshouldbe30degreesorless.The

surfaceenergyofthefluidhastobehigherwitheachlayerthatisadded.A

minimumof5dynedifferencesshouldbebetweenthedifferentlayers.

Registrationwasfoundtobenotasimportantwithphotovoltaicscomparedto

transistorsoranyotherprintedelectronicdevice.Theelectrodedoesnotshortwith

bleedingbeyondtheactivelayer.

Dryingandannealingisaconsiderablechallengeforprinting.Themajorityofthe

materialsrequireextremelyhightemperaturestoannealtheink.Additionally,to

properlyanneal,theinksneedacertainperiodoftime,whichmayprovedifficultfor

aprintingpressrunningattopspeed.Itwasdiscoveredthatsomeprintersmodify

theirpressestohaveenhanceddryersorofflineprocessesthatwillannealthe

material.Additionalproblemsincludedthelimitonsubstratesthatcouldbeused.If

theinkneeds140°Ctodry,manypaperandpolymersubstratewouldlosestability.

Conductivityisoneofthemostimportantspecificationsbecauseitdetermines

efficiencyoftheelectrode.Whenthematerialisdepositedontothesubstrate,it

15

shouldbeinamannerwheretheinkwillfunctionatoptimalconditions.The

mobilityoftheP3HT:PCBMshouldbe10^‐3cm2/Vs.

Oxygentrappingisneededwithcertainmaterialstoproperlyadheretothe

substrateanddrycorrectly.ThematerialP3HT:PCBMisbestappliedinanitrogen

environment.Itmaybenecessarytouseanitrogenairknifeandchambertoapply

theink.

Boththecathodeandsubstratehavetobehighlytransparenttoallowsunintothe

circuit.Thesubstrateshouldbeabove95%transparentandthecathodeas

transparentaspossible,around80%.

Inkadhesiondetermineshowwelltheinkstickstothesubstrate.Thiswill

determinetheintegrityandstabilityofthephotovoltaicovertime.Adhesioncanbe

determinedbytheASTMcrosshatchtapetest.

Initially,registrationandsurfaceuniformitywasthoughtofasthemostimportant

specificationsaprintingpresshadtomeet.However,afteralltheinterviews,itwas

apparentthatdryingandannealingaswellassurfaceuniformitywouldbethe

greatestchallengeforatraditionalflexographypress.

16

Thehardestchallengeforprintwouldbeabletocreateathin,pinholefreelayer.

Ideally,therewouldbesomesortofsystemtoevaluatethelayersasitisbeingin

production.Theresolutionlevelsoftraditionalpressesneedtobeincreasedto

avoidpinholing.Microflexographyormicrogravurecanberesearchedforthese

purposes.

Takingthespecificationsintoaccount,isitfeasibleforflexographytobeameansof

massproductionforprintedphotovoltaics?Itispossible,howeverfrom

interviewingexpertsintheindustry,itiscommontohavehybridtechnologiesto

takethestrengthsfromeachindividualprintingprocess.Additionally,press

modificationssuchasextendeddryersandoxygentrappingchambersareneeded.

Theflexographyindustryshouldfocusonbuildingstrengthstomanufacture

functionalprintingproducts.Researchinnewmethodstoincreaseinkfilm

thicknesscontrolandimprovingdryingcapabilitiesisneeded.

Printedphotovoltaicswilleventuallychangetheentireenergymarketandhelpwith

theaffordabilityofsolarpower.Flexographycanbeahugeleaderinthisupcoming

change.Thefirststepistodiscoverandunderstandtheimportantvariablesina

photovoltaicandbuildequipmentthatcanmanufactureaqualityproductatalow

cost.Thisinturn,willrevolutionizetheindustry.

17

Bibliography

Aldus,Scott.“HowSolarCellsWork.”1April2000.HowStuffWorks.1July2009<http://science.howstuffworks.com/solar‐cell.htm>.

Kahn,BruceandRaghDas.PrintedanThinFilmPhotovoltaicsandBatteries.Cambridge:IDTechEx,2007.

Krebs,FrederikC.PolymerPhotovoltiacsAPracticalApproach.Bellingham:SocietyofPhoto‐OpticalInstrumentationEngineers,2008.

Levenson,Harvey.SomeIdeasAboutDoingResearchinGraphicCommunication.TheGoodNeighborPress&Services,2009

Sun,Sam‐ShajingandNiyaziSedarSariciftci.OrganicPhotovoltaics:Mechanisms,Materials,andDevices.BocaRaton:CRCPress,2005.

NanoMarkets.NanoMarkets:PrintableElectronics‐PrintableElectronicsMarketOutlook.11February2008.22October2009<http://www.nanomarkets.new/product/prod_detail.cfm?prod=3&id=250>.

Figure1.Diagram.GlenAllen,VA:NanoMarkets,2009.Internet.

18