Copy of Teorie Electronic A Rezolvare

download Copy of Teorie Electronic A Rezolvare

of 29

Transcript of Copy of Teorie Electronic A Rezolvare

  • 8/14/2019 Copy of Teorie Electronic A Rezolvare

    1/29

    1.Distributia Fermicaa)Fermi Dirac distribution for electrons. - 001_Mendeleev Table.ppt Pag. 6-9

    Fig. ..1 pct.

    Definitions of probabilities .. 1pct

    This is the probability to have an electron on energy level E1 and E2 (occupied states) and no electronson E3 and E4 (unoccupied states)

    This is the probability to have an electron on energy level E3 and E4 (occupied states) and no electronson E1 and E2 (unoccupied states)Both probabilities must be equal in the case of thermal equilibrium, therefore we can write the followingequality:

    ( ) ( ) ( ) ( )

    =

    1

    P

    11

    P

    11

    P

    11

    P

    1

    2143 EEEE2 pct.

    E E E E1 2 3 4+ = + 1 pct

    ( )kT

    EEeF

    e

    E+

    =1

    1f

    ..2 pct.

    Coments on the shape of F-D distribution ..2 pct

    Bonus 1 pct

    Total .10 pct

    ( ) ( ) ( )( ) ( )( )4321 EP1EP1EPEP

    ( )( ) ( )( ) ( ) ( )4321 EPEPEP1EP1

    ( ) ( ) 2/1k2/3*

    n3kEm2

    h

    4EN

    =

  • 8/14/2019 Copy of Teorie Electronic A Rezolvare

    2/29

    .b)Fermi Dirac for holes.

    E

    E

    E

    E

    1

    2

    4

    3

    This is the probability to have an electron on energy level E1 and E2 (occupied states) and no electronson E3 and E4 (unoccupied states)

    This is the probability to have an electron on energy level E3 and E4 (occupied states) and no electrons

    on E1 and E2 (unoccupied states)

    If the condition of energy conservation

    probability to have an empty state is :

    ( ) ( ) ( )( ) ( )( )4321 EP1EP1EPEP

    ( )( ) ( )( ) ( ) ( )4321 EPEPEP1EP1

    ( ) ( ) ( ) ( )

    =

    1

    EP

    11

    EP

    11

    EP

    11

    EP

    1

    2143

    E E E E1 2 3 4+ = +

    ( ) ( )

    kT

    EEep F

    e

    EfEf

    +

    ==

    1

    11

    ( ) ( ) 2/1k2/3*

    p3kpEm2

    h

    4EN

    =

  • 8/14/2019 Copy of Teorie Electronic A Rezolvare

    3/29

    2.Densitatea purtatorilor de sarcina intr-un semiconductor intrinsicThe density of charge carriers in intrinsic semiconductors. - 002_The Density of Charge Carriers in anIntrinsic.ppt -> Pag. 1-7

    se dau ( )kT

    EEe F

    e

    E

    +=

    1

    1f i ( ) ( ) 2/1

    2/3*

    32

    4knk Em

    hEN

    =

    Barem de corectare:E E Ek c= .. 1 pct

    +

    ==CE

    ee dEENEnn )()(f .1 pct

    ( ) kTEE

    kT

    EEe

    F

    Fe

    e

    E

    +

    =

    1

    1f ..1 pct

    e e eE E E E

    kT

    E E

    kT

    E E

    kTF c c c F c

    +

    = .1 pct

    2

    kTEEx c= ..1 pct

    ( )( ) dxexkTe

    h

    mn xkT

    EE

    nFc

    22

    0

    2/3

    3

    2/3*

    224

    =

    .2 pct

    ( )

    ==

    000

    2

    22

    222 dxexedxex xxx .1 pct

    ( )kT

    EE

    CkT

    EE

    nFcFc

    eNeh

    kTmn

    ==3

    2/3*22

    1 pct

    din oficiu ..1 pct

    Total 10 pctIn an intrinsic semiconductor, the density of the two types of charge carriers is the same

    n=p

    3.P conductor

  • 8/14/2019 Copy of Teorie Electronic A Rezolvare

    4/29

    Se d: ( )kT

    EEe F

    e

    E

    +=

    1

    1f i kT

    EE

    V

    vF

    eNp

    =

    Barem de corectare:

    i comentarii .3pct

    f E

    e

    A E E

    kTA F

    =

    +

    ( )1

    1

    ...1pct

    N N f E N eA A A A

    E E

    kTA F

    = ( )..1pct

    p N e NV

    E E

    kTA

    F v

    = =

    .1pct

    N e N eV

    E EkT

    A

    E EkT

    F V A F = .1pct

    EE E kT N

    NF

    A v V

    Ap=

    ++

    2 2ln i comentarii...2pct

    4.N conductor

  • 8/14/2019 Copy of Teorie Electronic A Rezolvare

    5/29

    Hole (p)

    Quasi-free electron (n)

    EC

    EV

    CB

    VB

    N e N eC

    E E

    kTV

    E E

    kT

    C F F V

    =

    5.Fenomene fizice in semiconductori

    ckEEE =

    ( ) ( ) 2/12/3*3

    24

    knkEm

    hEN

    =

    EEEvk

    = +

    ==CE

    eedEENEnn )()(f

    ==VE

    ppp dEENEpn )()(f

    ( ) ( ) 2/12/3*3

    24

    knkEm

    hEN

    =

    ( )( ) dEeEEe

    h

    mn kT

    EE

    c

    E

    kT

    EE

    nc

    c

    Fc

    2/1

    3

    2/3*

    24=

    ( )kT

    EE

    C

    kT

    EE

    nFcFc

    eNeh

    kTmn

    ==3

    2/3*22

    kT

    EE

    VCi

    vc

    eNNpnn

    ==2

    kT

    EEEE

    C

    VFcvF

    eN

    N +=

    c

    vvc

    FN

    NkTEEE ln

    22+

    +=

  • 8/14/2019 Copy of Teorie Electronic A Rezolvare

    6/29

    6.Jonctiunea PN

  • 8/14/2019 Copy of Teorie Electronic A Rezolvare

    7/29

    Desen densitate de sarcin...................................... 1pct

    N L N LA n D p= ................................................................1pct

    =S)xL(eN

    S)x(nA

    E ............................................1pct

    )()(

    xLeNx

    pDE

    = ..............................................1pct

    )0(LeNLeN pDnA

    m ax EE =

    =

    = ..................................1pct

    Desen E(x)............................................................... 1pct

    +

    +==

    p

    n

    0

    L

    L

    npmaxb

    2

    )LL(dx)x(V

    EE ..... ...................2pct

    Desen V(x)............................................................... 1pct

    din oficiu ...............................................................................1pctTotal ...................................................................................10pct

    7.Jonctiunea PN la echilibru termic(Einstein)Einsteins relations for Diffusion and Mobility coefficients. - 005_PNjunction.ppt Pag. 6

  • 8/14/2019 Copy of Teorie Electronic A Rezolvare

    8/29

    8.Capacitatile PN

    a)de baraj

    e

    kTD

    p

    p=

    e

    kTD

    n

    n=

  • 8/14/2019 Copy of Teorie Electronic A Rezolvare

    9/29

    b)de difuzie

    9.Tranzistor bipolar(conditii,parametric functionare,curenti)Curenti

  • 8/14/2019 Copy of Teorie Electronic A Rezolvare

    10/29

    Static working point for CEC.- 007_The Bipolar Junction Transistor (BJT).ppt(pag.9)

    IC

    IEVBE

    .Static working point for CBC. - 007_The Bipolar Junction Transistor (BJT).ppt Pag. 11 si

    pagina 8

    ),();,(21 CEBCCEBBE

    VIfIVIfV ==

    ( )0

    1 CBC III ++=

    =1

    )V,I(fI);V,I(fV CBECCBEBE 21 ==

    0CECIII +=

  • 8/14/2019 Copy of Teorie Electronic A Rezolvare

    11/29

    IC

    IBVBE

    The CBC connection is the most stable operating configuration of bipolar transistor. This is provided by the factthat we control the output current IC with a current IE , higher than the residual current of the collector and the

    current gain()is approximately constant, having values in the range 0.98 - 0.99.

    10.Caracteristici statice BC

    V f I V I f I V BE E CB C E CB= =1 2( , ); ( , )

    IC

    IBVBE

    11.Caracteristici statice EC

    CE characteristics of BT. - 007_The Bipolar Junction Transistor (BJT).ppt Pag. 9

    ),();,( 21 CEBCCEBBE VIfIVIfV == and comments 2 pct

    IC

    IEVBE

    ( )0

    1 CBC III ++=

    =1

    0CECIII +=

  • 8/14/2019 Copy of Teorie Electronic A Rezolvare

    12/29

    12.Sensibilitatea fata de temperature a BT

    Temperature sensitivity of BT.

    ( )0)()( 000TTa

    CC eTITI= plus comentarii 2pct

    ( )

    +=

    K

    TTTT

    0

    0 1)( plus comentarii 1pct

    V

    T mV CBE = 2 2 0. / ..1pct

    I

    T

    I

    I

    I

    T

    I

    V

    V

    T

    I

    T

    C C

    C

    C C

    BE

    BE C= + + 0

    01pct

    I

    ISC

    C

    I

    0

    = .1pct

    I

    VSC

    BE

    U= ...1pct

    ISC = 1pct

    SI

    I

    I

    B

    C

    =+

    1

    11pct

    13.Modelul de semnal mic-hibrid

    Parametrii hibrizi ce se definesc cu relaiile:

    oii VhIhV += 1211

    oio VhIhI += 2221

  • 8/14/2019 Copy of Teorie Electronic A Rezolvare

    13/29

    Parametrii "h" se utilizeaz n special n joas frecven unde ei sunt mrimi reale, care nu depind de frecven.Experimental aceti parametri se determin prin msurtori n situaia de gol la intrare (i1 = 0) i scurcircuit la ieire (u2 =0) pentru componenta variabil, ceea ce este foarte uor de realizat la un tranzistor bipolar, deoarece acesta areimpedana de intrare Zintrmic i impedana de ieire Zies mareDin relaia de definiie se observ c parametrii hibrizi au semnificaii fizice diferite: h12, h21 -adimensionali, h11-impedan, h21 - admitana, ceea ce justific denumirea deparametrii hibrizi

    14.Conditii in care se poate simplifica un hybrid

    Circuitul hybrid simplificat; condiiile de simplificare(03_General Characteristics of anAmplifier 6-8)

  • 8/14/2019 Copy of Teorie Electronic A Rezolvare

    14/29

    Now, if we take into account the actual typical values for the hybrid parameters in theequation for the input impedance (hre=10-4 ; Ai=hfe=102 ; RL=104-103 ohm ;hie=103 ohm), we will see that the second term in the expression of input impedancecan have values in the range 102-10. In this case we can ignore this term versus thefirst term which has a value 10 to 100 times higher.

    That means, from a practical standpoint of view, that in the hybrid model of thetransistor, we can neglect the reverse transfer factor hre.

    The simplified circuit shown in Fig.4.9 can be used, too, for the computing of theparameters of any amplifier, independent of the transistor connection type (CE;CB orCC). Lets test that right now.

    15.Amplificator in BCAmplificator C.B.C.(04_Common Base Amplifier 1-2)

  • 8/14/2019 Copy of Teorie Electronic A Rezolvare

    15/29

    16.Amplificator in CC

  • 8/14/2019 Copy of Teorie Electronic A Rezolvare

    16/29

    17.Amplificator cu EC

  • 8/14/2019 Copy of Teorie Electronic A Rezolvare

    17/29

    Every amplifier is characterised by:voltage amplification Av , current amplification Ai , input impedance zi and output admittance yo .

    In order to be able to calculate these parameters it is necessary to transform the d.c circuit in its a.c.equivalent circuit. Here are two rules to be followed:

    every capacitance is a short-circuit in a.c. the d.c. biasing source is a short-circuit to the ground in a.c.

    Now, in a.c. circuit, we must replace the hybrid circuit of the tranzistor

    R B

    R g

    vg

    R C R L

    B C

    E E

    hi e

    zi

    zo

    ho e

    hr e o

    v hf e b

    i

    i n p u t o u t p u

    i = ii b

    i = io c

    18.Amplificator cu rezistenta in emitor

  • 8/14/2019 Copy of Teorie Electronic A Rezolvare

    18/29

    05_The Differential Amplifier

    R Ev g v g

    T 1 T 2R B R B

    R C

    + VC C

    - VC C

    R C+ ic 1

    + ie 1

    i

    =

    c

    t.

    e

    - ie 2

    + vb 1

    - ic 2- vo 1 + vo 2

  • 8/14/2019 Copy of Teorie Electronic A Rezolvare

    19/29

    + v / 2g - vg

    + ie 1 - ie 2

    R E

    R BR B

    M i r r o r p

    Then the total a.c. current that flows through the resistor RE is zero. That means the emitters haveconstant potential, as being grounded, from the a.c. standpoint of view.

  • 8/14/2019 Copy of Teorie Electronic A Rezolvare

    20/29

    19.Amplificator diferential in mod diferential

    20.Amplificator diferential in mod comun

  • 8/14/2019 Copy of Teorie Electronic A Rezolvare

    21/29

    21. Reacia n electronic; definiie; tipuri de reacie;

  • 8/14/2019 Copy of Teorie Electronic A Rezolvare

    22/29

    22. Avantajele reaciei negative. 07_Feedback Amplifiers 5-8

  • 8/14/2019 Copy of Teorie Electronic A Rezolvare

    23/29

    23.Reactia pozitiva(Bauchauser)

    oL

    L

    i

    LL

    i

    ov

    rz

    kz

    v

    iz

    v

    vA

    +===

    ( )

    321

    312

    zzz

    zzzzL

    ++

    += ofi vvv ==

    31

    1

    zz

    z

    +=

    ( ) ( )312321

    211zzzzzzr

    zkz

    o ++++

    =

    0321 =++ XXX

    1

    2

    X

    Xk=

  • 8/14/2019 Copy of Teorie Electronic A Rezolvare

    24/29

    24.Oscilator LC

    Oscilator Hartley/Collpitz+ V

    c c

    Rc

    R B 1

    RB 2

    RE

    j L 1 j L 2

    1 / j C

    H a r t l e y o s c i l l a t o r

    + Vc c

    Rc

    RB 1

    RB 2

    RE

    j L

    1 / j C1 1 / j C2

    C o l l p i t z o s c i l l a t o r

    ( )CLLCjjLjL

    21

    2

    21

    10

    1

    +==+

    LCC

    CCCj

    CjjL

    +

    ==

    21

    21

    2

    21

    10

    11

  • 8/14/2019 Copy of Teorie Electronic A Rezolvare

    25/29

    25.Oscilator RC

    Oscilator RC cu punte Wien. Condiia de oscilaie.

  • 8/14/2019 Copy of Teorie Electronic A Rezolvare

    26/29

    26.Circuite basculante

    a)astabil

    Circuitul astabil. 08_The Astable (free-running) Multivibrator 1-4

    R C 1 R C 2

    T ( o n )1 T ( o f f )2

    C 2C 1

    R B 2

    I B 2 ( d e s c )

    R B 1

    + VC C

    + VC C- VC C+ VC E (s a t )

    R C 1 R C 2

    T ( o n )1 T ( o n )2

    C 2C 1

    R B 2

    I B 1 ( in c a r )

    R B 1

    + VC C

    - VC C+ VC E ( s a t )

  • 8/14/2019 Copy of Teorie Electronic A Rezolvare

    27/29

    b)monostabilCircuitul monostabil. 08_The Astable (free-running) Multivibrator 5

    c)bistabil.Circuitul bistabil. 08_The Astable (free-running) Multivibrator 6-7

  • 8/14/2019 Copy of Teorie Electronic A Rezolvare

    28/29

    27. Amplificator de putere clas A. 06_Power Amplifiers 4-6

    + VC C

    R L

    v i

    F i g . 5 . 2

    R B 1

    R B 2

    R E

    C E

    I C

    I Q

    V QV p e a k

    I p e a k

    I m a x

    I m i n

    V

    =

    V

    m

    in

    s

    a

    t

    V

    =

    V

    m

    a

    x

    C

    C

    Q A

    V C E

  • 8/14/2019 Copy of Teorie Electronic A Rezolvare

    29/29

    9. Amplificator de putere clas B. 06_Power Amplifiers 7-9I C

    V p e a k

    I p e a k

    I m a x

    I m i nV

    =

    V

    m

    in

    s

    a

    t

    V

    =

    V

    m

    a

    x

    C

    C

    Q B

    V C E

    + VC C

    - VC C+

    -

    T 2

    R L

    i c 1

    i c 2

    v i

    T 1