ContSys1 L1 Intro(1)

32
19/03/2014 1 Mechanical Engineering Science 8 Dr. Daniil Yurchenko Introductio n to Systems

Transcript of ContSys1 L1 Intro(1)

Page 1: ContSys1 L1 Intro(1)

8/12/2019 ContSys1 L1 Intro(1)

http://slidepdf.com/reader/full/contsys1-l1-intro1 1/32

19/03/20141

Mechanical Engineering Science 8

Dr. Daniil Yurchenko

Introduction to Systems

Page 2: ContSys1 L1 Intro(1)

8/12/2019 ContSys1 L1 Intro(1)

http://slidepdf.com/reader/full/contsys1-l1-intro1 2/32

19/03/20142

Assessment20% Test (week 6)30% Exam

If you have any questionsJN 1.23Email: [email protected]

Page 3: ContSys1 L1 Intro(1)

8/12/2019 ContSys1 L1 Intro(1)

http://slidepdf.com/reader/full/contsys1-l1-intro1 3/32

19/03/20143

Books

Modern Control EngineeringK. OgataPrentice-Hall.

----------------------------------------------------Automatic Control SystemsF. Golnaraghi, B. KuoJohn Wesley & Sons

Page 4: ContSys1 L1 Intro(1)

8/12/2019 ContSys1 L1 Intro(1)

http://slidepdf.com/reader/full/contsys1-l1-intro1 4/3219/03/20144

What is a system?

We define a system as a set of interactingcomponents making up a whole machine whichcan be isolated from its surroundings.It has a set of prescribed inputs and outputs.The process of isolating the system requires a

boundary to be defined which helps to identify

the system inputs and outputs.

SYSTEM

INPUT OUTPUT

Page 5: ContSys1 L1 Intro(1)

8/12/2019 ContSys1 L1 Intro(1)

http://slidepdf.com/reader/full/contsys1-l1-intro1 5/3219/03/20145

System definition examples

WIND

TURBINE

INPUT OUTPUT

WindElectricity

Single Input Single Output

Page 6: ContSys1 L1 Intro(1)

8/12/2019 ContSys1 L1 Intro(1)

http://slidepdf.com/reader/full/contsys1-l1-intro1 6/3219/03/2014

6

System definition examples

CARENGINE

INPUT OUTPUT

Throttle angle

Load TorqueEngine Speed

Multiple Input Single Output

Page 7: ContSys1 L1 Intro(1)

8/12/2019 ContSys1 L1 Intro(1)

http://slidepdf.com/reader/full/contsys1-l1-intro1 7/3219/03/2014

7

System definition examples

STEAMTURBINE

INPUT OUTPUT

SteamElectrical Power

Steam to Condenser

Single Input Multiple Output

Page 8: ContSys1 L1 Intro(1)

8/12/2019 ContSys1 L1 Intro(1)

http://slidepdf.com/reader/full/contsys1-l1-intro1 8/32

19/03/20148

System definition examples

Airplane

INPUT OUTPUT

Current PositionFuel Left

Distance to Destination

Multiple Input Multiple Output

Current Velocity

Page 9: ContSys1 L1 Intro(1)

8/12/2019 ContSys1 L1 Intro(1)

http://slidepdf.com/reader/full/contsys1-l1-intro1 9/32

Page 10: ContSys1 L1 Intro(1)

8/12/2019 ContSys1 L1 Intro(1)

http://slidepdf.com/reader/full/contsys1-l1-intro1 10/32

Page 11: ContSys1 L1 Intro(1)

8/12/2019 ContSys1 L1 Intro(1)

http://slidepdf.com/reader/full/contsys1-l1-intro1 11/32

B-2 and F-117 areaerodynamically unstable in all three axes and

require constant flightcorrections from a fly-by-wire system to maintaincontrolled flight

Page 12: ContSys1 L1 Intro(1)

8/12/2019 ContSys1 L1 Intro(1)

http://slidepdf.com/reader/full/contsys1-l1-intro1 12/32

Wind turbines withadjustable blades or

pitch control.

This control is essential because sometimes thewind's speed puts toomuch stress on theturbine, causing safetycontrols to kick-in andapply brakes to the rotorto prevent it fromdamage or use pitch

control

Page 13: ContSys1 L1 Intro(1)

8/12/2019 ContSys1 L1 Intro(1)

http://slidepdf.com/reader/full/contsys1-l1-intro1 13/32

To manage traffic in largecities traffic light controlssystems are used.

Page 14: ContSys1 L1 Intro(1)

8/12/2019 ContSys1 L1 Intro(1)

http://slidepdf.com/reader/full/contsys1-l1-intro1 14/32

Robots

Page 15: ContSys1 L1 Intro(1)

8/12/2019 ContSys1 L1 Intro(1)

http://slidepdf.com/reader/full/contsys1-l1-intro1 15/32

CNC Machines

Page 16: ContSys1 L1 Intro(1)

8/12/2019 ContSys1 L1 Intro(1)

http://slidepdf.com/reader/full/contsys1-l1-intro1 16/32

Page 17: ContSys1 L1 Intro(1)

8/12/2019 ContSys1 L1 Intro(1)

http://slidepdf.com/reader/full/contsys1-l1-intro1 17/32

Example

We wish to hold the tank level h constantregardless of the flow through valve V

1

This could be achieved through irregularadjustment of valve V 2

V1

h

V2

Page 18: ContSys1 L1 Intro(1)

8/12/2019 ContSys1 L1 Intro(1)

http://slidepdf.com/reader/full/contsys1-l1-intro1 18/32

19/03/201418

Open-loop Control

Tank level control

manuallycontrolledValve V 2

OBJECTIVE RESULT

Maintain constantlevel of water

V1h

V2

Page 19: ContSys1 L1 Intro(1)

8/12/2019 ContSys1 L1 Intro(1)

http://slidepdf.com/reader/full/contsys1-l1-intro1 19/32

Page 20: ContSys1 L1 Intro(1)

8/12/2019 ContSys1 L1 Intro(1)

http://slidepdf.com/reader/full/contsys1-l1-intro1 20/32

19/03/201420

Closed-loop Control (Feedback)

Tank level control

BARRELwith

automaticallycontrolled

ValveMaintain constantlevel of water

V1h

V2

Page 21: ContSys1 L1 Intro(1)

8/12/2019 ContSys1 L1 Intro(1)

http://slidepdf.com/reader/full/contsys1-l1-intro1 21/32

19/03/201421

Closed-loop Control (Feedback)

Tank level control

V1h

V2

Computer Objective/processReferenceinput

Output

Measurement

Page 22: ContSys1 L1 Intro(1)

8/12/2019 ContSys1 L1 Intro(1)

http://slidepdf.com/reader/full/contsys1-l1-intro1 22/32

19/03/201422

Closed-loop Control (Feedback)ProcessOutput

Comparison

MeasurementController

Give examples of a feedback control used: In a car In an airplane

Page 23: ContSys1 L1 Intro(1)

8/12/2019 ContSys1 L1 Intro(1)

http://slidepdf.com/reader/full/contsys1-l1-intro1 23/32

Components of a closed-loop control

system

Measurement component

ComparatorAmplifierActuator

Corrector (or compensator)

Page 24: ContSys1 L1 Intro(1)

8/12/2019 ContSys1 L1 Intro(1)

http://slidepdf.com/reader/full/contsys1-l1-intro1 24/32

Basic requirement to control system

Stability: the ability to maintain stablestate

Accuracy: stable steady-state accuracy

Dynamic characteristics: response timeand damping characteristics

Page 25: ContSys1 L1 Intro(1)

8/12/2019 ContSys1 L1 Intro(1)

http://slidepdf.com/reader/full/contsys1-l1-intro1 25/32

19/03/201425

Systems

In this course we will normally considersingle input/single output systems

The input is turned into the output via thesystem transfer process.This transfer process will be modelled by a

linear differential equation with constantcoefficients which will be presented as atransfer function

Page 26: ContSys1 L1 Intro(1)

8/12/2019 ContSys1 L1 Intro(1)

http://slidepdf.com/reader/full/contsys1-l1-intro1 26/32

19/03/201426

Linear dynamic systems

These are modelled by a linear differentialequation. A generic example is shown

below

For a linear system the transfer propertiesrelate the system to the output

System TransferProperties

System Output,xo(t)

System Input,xi(t)

Page 27: ContSys1 L1 Intro(1)

8/12/2019 ContSys1 L1 Intro(1)

http://slidepdf.com/reader/full/contsys1-l1-intro1 27/32

19/03/201427

Linear dynamic systems

The transfer properties take the generalform:

Coefficients a k , k = 1,2,…n are constants

xi(t) is a specified function of time

t xt xadt

t xd a

dt

t xd a

iOO

n

nn

On

n 0

1

1 .....

Page 28: ContSys1 L1 Intro(1)

8/12/2019 ContSys1 L1 Intro(1)

http://slidepdf.com/reader/full/contsys1-l1-intro1 28/32

19/03/201428

Properties of linear systems

Linear differential equations exhibit the properties of superposition and homogeneity.

Conversely a system which exhibits these properties is a linear system.

Page 29: ContSys1 L1 Intro(1)

8/12/2019 ContSys1 L1 Intro(1)

http://slidepdf.com/reader/full/contsys1-l1-intro1 29/32

19/03/201429

Principle of superposition

This states that if the system input is broken down into two elements

which individually generate outputsthen when the inputs are appliedsimultaneously (added) then the output isthe sum of the individual outputs.This can be expressed:

B

i

A

i x x

,

BO

AO x x ,

Page 30: ContSys1 L1 Intro(1)

8/12/2019 ContSys1 L1 Intro(1)

http://slidepdf.com/reader/full/contsys1-l1-intro1 30/32

Page 31: ContSys1 L1 Intro(1)

8/12/2019 ContSys1 L1 Intro(1)

http://slidepdf.com/reader/full/contsys1-l1-intro1 31/32

19/03/201431

Homogeneity

A linear system is said to be homogeneouswhen a constant scale factor applied to the

input generates the same scaling of theoutput. i.e. -application of an input

-application of the scaledinput

t xt xOi

t xt xOi

Page 32: ContSys1 L1 Intro(1)

8/12/2019 ContSys1 L1 Intro(1)

http://slidepdf.com/reader/full/contsys1-l1-intro1 32/32

19/03/201432

Order of a linear system

The order of a linear differential equationand hence of the system which it describesis the value of the highest derivative in thedifferential equation.

is a an example of a first order

system

is an example of an n-order system

iOO x

T

x

dt

dx

iOn

O

n

nn

O

n

n xa xa

dt

xd a

dt

xd a

011

1

1 .......