CNT Nantes- 2011

35
Carbon Nanotubes (CNTs) The Good The Bad & the Ugly Malcolm Mackley, Anson Ma, Kat Y earsley Department of Chemical Engineering and B iotechnology

description

This presentation reviews the Good, the Bad and the Ugly side of Carbon Nanotubes. The presentation was given at the Ecole Centrale Nantes in 2011

Transcript of CNT Nantes- 2011

Page 1: CNT Nantes- 2011

Carbon Nanotubes (CNTs)The Good

The Bad

& the Ugly

Malcolm Mackley, Anson Ma, Kat YearsleyDepartment of Chemical Engineering and Biotechnology

Page 2: CNT Nantes- 2011

2

The Carbon Family

Graphite Graphene Diamond CNT

Carbon Black

Page 3: CNT Nantes- 2011

3

CNTs; “The Good”Super potential properties Stiffness CNT 1000 GPa (steel 210 GPa)

Electrical Conductivity CNT 106 10 S /m (Copper 6 10 S /m)

Thermal Conductivity CNT 3500 W/m

K (Copper 385 W/m

K)

7

7

Page 4: CNT Nantes- 2011

4

Carbon nanotubes and other insoluble fibrous nanoparticles that have the potential to become airborne should be handled under HEPA‡ filtered local exhaust ventilation (LEV).

‡ High Efficiency Particulate Air (HEPA)

University of CambridgeHealth and Safety Office

HSD060C July 2009

CNTs; “The Bad” health risk

Page 5: CNT Nantes- 2011

5

CNTs; “The Ugly” Dispersion

Page 6: CNT Nantes- 2011

6

Dispersion matrix

• Epoxy resin* 10Pas or 1 Pas SWNT, MWNT • UV curing acrylic precursor*

• Thermoplastic Polypropylene (PP) Nanocyl (Compounding required)

• Agarose/water* Carboxyl Methyl Cellulose (CMC )“surfactant” required

• Fuming Sulphuric acid (LCP form) Matteo Pasquali ( Rice University, Houston Texas)

* Personal involvement

Page 7: CNT Nantes- 2011

7

Dispersion devices

Batch Stirred vessel; design, scale, feed protocol*.

High shear mixer*. Ultra sound mixer; Biorupter, Nanorupter*. Compounding device (Nanocyl) Twin screw extruder (Nanocyl)

* Personal involvement

Page 8: CNT Nantes- 2011

8

Best method of Mixing ?

Simple shear

Extension

Stretch and Fold or Mixed flow “Vibration”

Page 9: CNT Nantes- 2011

9

MWCNT vs Carbon Black (CB)

0.25 wt% CNT in epoxy 0.25 wt% CB in epoxy

Kat Yearsley

Page 10: CNT Nantes- 2011

10

Optical Observation of Untreated Multi-Walled CNT

The Linkam, Cambridge Shear System CSS

Page 11: CNT Nantes- 2011

11

Microstructure• Optical Microscope combined with shear cell

• Isotropic CB vs. Anisotropic CNTs

0.5

10

100

15 mins 10 s 10 s

Sh

ear

Rat

e (s

-1)

Images Recorded

0.5

10

100

15 mins 10 s 10 s

Sh

ear

Rat

e (s

-1)

0.5

10

100

15 mins 10 s 10 s

Sh

ear

Rat

e (s

-1)

Images Recorded

Page 12: CNT Nantes- 2011

12

0.25% CB in epoxy

Page 13: CNT Nantes- 2011

13

0.25% CNTs

Page 14: CNT Nantes- 2011

14Flow

CNT after high shear:

Disaggregation & alignment

Flow

CNT after low shear:

Aggregation

Flow

Flow

CB after low shear:

Aggregation

CB after high shear:

Disaggregation

Page 15: CNT Nantes- 2011

15

III. UntreatedMWNT

IV. TreatedMWNT

The “Zoo” of CNT Microstructure

I. UntreatedSWNT

0 s-1 1 s-1 10 s-1 100 s-1 1000 s-1

II. TreatedSWNT

All at 0.05 wt% conc

Page 16: CNT Nantes- 2011

16

Steady Shear (SS) Experiments

CB

0.1

1

10

100

1000

0.1 1 10 100Shear Rate (/s)

h

(Pa.s)

CNT

4%

2%

1%

0%

0.2%

0.4%0.3%

0.1

1

10

100

1000

0.1 1 10 100Shear Rate (/s)

h

(Pa.s)

0%

2%

3%

4%

0.1

1

10

100

1000

0.1 1 10 100

h

(Pa.s)

0%

Page 17: CNT Nantes- 2011

17

2

2

( , ) ( , ) ( , )( , ) ( ) 3 0r n n

d n n nn D n v Ddt n n

ρ ρ ρ ρρ

ρ ρ ρ

Aggregation/orientation model , Paco Chinesta

,

DaNDIp p :22 hh

Diffusion equation

Wheren is population from n = 0 to n = 1

(1 )n d cD v n v n

Destruction rate due to shear creation rate

Constitutive equation

n c dv v v .

d cv v

Page 18: CNT Nantes- 2011

18

10

100

1000

0.1 1 10Shear rate [s-1]

ηa

[Pa.s]

(a) 0.25% CNT

10

100

1000

0.1 1 10

Shear rate [s-1

]

ηa

[Pa.s]

(b) 0.1% CNT

max

max 5 1

1339

5 10

182

p

r

N

D s

max

max 5 1

556

3.58 10

222

p

r

N

D s

1

10

100

0.1 1 10Shear rate [s-1]

ηa

[Pa.s]

(c) 0.05% CNT

max

max 4 1

208

1 10

350

p

r

N

D s

1

10

100

0.1 1 10

Shear rate [s-1]

ηa

[Pa.s]

(d) 0.025% CNT

max

max 1

23

0.0541

907

p

r

N

D s

Page 19: CNT Nantes- 2011

19

CNT Fibre makers

Pasqualli Group Rice University Houston Windle team Cambridge University

Page 20: CNT Nantes- 2011

20

Rice University Houston.; Anson Ma and Matteo Pasquali, Oct 2010

Page 21: CNT Nantes- 2011

21

10 min 60 min

CNTs dissolve spontaneously

in chlorosulfonic acid

1 min

Davis, Pasquali, et al, Nature Nanotech, 4, 830, 2009Pasquali et al, US Patent Application under review (2009)

TRUE SOLUTIONS OF SWNTs

Page 22: CNT Nantes- 2011

22

12% vol SWNT in chlorosulfonic, CROSS POLARS

-15O-30O0O

analyzer

polarizer

-45O-60O-75O 50 m

Davis, Pasquai, et al, Nature Nanotech, 4, 830, 2009

BEHAVIOR AT HIGH CONCENTRATION

ISOTROPICCONCENTRATED

LIQUIDCRYSTALLINE

higher

concentration

Page 23: CNT Nantes- 2011

23

SPINNING NEAT SWNT FIBERS

Ericson, Pasquali, Smalley, et al., Science, 305, 1447 (2004)Smalley, Pasquali, et al., US Patent 7,125,502 (2006)Davis, Pasquali, et al., Nature Nanotech., (2009)Pasquali et al., patent application under review

Page 24: CNT Nantes- 2011

24

TYPICAL ACID-SPUN SWNT FIBER

Sub-optimal mesostructure (bundles), affect transportExcellent macrostructure

Ø=37±3µm

Ø=50±2µm

Wang, Pasquali, Smalley, et al., Chem. Mater., 17, 6361 (2005)

Page 25: CNT Nantes- 2011

25

7 WT% SWNT in chlorosulfonic acid, coagulated in 96% H2SO4

1 m

100 m 100 m

1 m

7 wt% SWNT in chlorosulfonic acid: Solvent evaporation

7 wt% SWNT in chlorosulfonic acid, coagulated in dichloromethane

13 m

30 m

13 m

1 m

• Smooth, compact fibersvia slow coagulation

• Coagulants: dichloromethane,chloroform, ether, sulfuric acid (96%)

SPINNING FROM CHLOROSULFONIC ACID

Davis, Pasquali, et al, Nature Nanotech, 4, 830, 2009

Page 26: CNT Nantes- 2011

Carbon Nanotube Fibres and their Composites

acromolecularaterialsab

New Museums Site, Pembroke StreetCambridge, CB23QZ, UK

Alan WindleAnd

Team

Page 27: CNT Nantes- 2011

27

Fibre spinning in furnace

H2

Ethanol or HexaneFerrocene 2%Thiophene 0.3%

110

0 -

13

00`°

C NanotubeSmoke

Its elastic!an aerogel

Ya-Li Li, Ian Kinloch and Alan Windle, Science, 304, p 276, 9 April 2004

Page 28: CNT Nantes- 2011

28

Department of Materials, Cambridge,

Injection system

Reactor

Gas exchange valve

Fibre collection

Page 29: CNT Nantes- 2011

29

n.b. 20m/min at 0.05 tex is only 1mg/min or ~ 1g/day

Continuous wind up with drawing (10 - 50 m/min)

Page 30: CNT Nantes- 2011

30

The knot test; (Get Knotted)

Tensile strength not degraded by presence of a knot.

c.f. For carbon fibre with a knot, strength can be only 10 % of unknotted sample

Page 31: CNT Nantes- 2011

31

Winding rate = 20 m/min Winding rate = 30 m/min

Wide angle X-ray of fibreESRF synchrotron source Grenoble

Unoriented graphitic component

002

Very good orientation of CNTs,

but an unoriented component (particles ?)

Page 32: CNT Nantes- 2011

32

Carbon nanotube fibre properties

Physical: Specific Gravity 0.5 – 1.1(Diameter 10 micron)

Mechanical: Strength 0.5 - 2.3 GPa/SG

Stiffness 20 – 80 GPa/SG

Thermal: Conductivity 50 – 1000 Wm-1K-1

Electrical: Conductivity 8 x 105 S/m(no influence of sample length, but only 1/60 of

copper or 1/8 on a unit mass basis). Mix of metallic and semiconducting tubes.

Page 33: CNT Nantes- 2011

33

Carbon nanotube fibres

Carbon fibre Polymer fibres

Yarns

CarbonNanotube

Fibres

A new sort of stuff ?

Page 34: CNT Nantes- 2011

34

Conclusions

•CNTs (still) have exciting potential.•Handle with care.•Dispersion still a challenging problem.

Next generation Composite reinforcement ? “Carbon Fibre” ?

Page 35: CNT Nantes- 2011

35

Molecular dynamics simulations of entangled polymers (or maybe CNTs?) Prof Aleksei Likhtman (University of Reading)

The problem! Polymers - CNTs