CMOS VLSI Design DC Transfer Characteristics and Switch –level RC delay Models.

44
CMOS VLSI Design DC Transfer Characteristics and Switch –level RC delay Models

Transcript of CMOS VLSI Design DC Transfer Characteristics and Switch –level RC delay Models.

CMOS VLSIDesign

DC Transfer Characteristics and Switch –level RC delay Models

Slide 2CMOS VLSI Design

DC Response DC Response: Vout vs. Vin for a gate

Ex: Inverter

– When Vin = 0 -> Vout = VDD

– When Vin = VDD -> Vout = 0

– In between, Vout depends on

transistor size and current– By KCL, must settle such that

Idsn = |Idsp|

– We could solve equations– But graphical solution gives more insight

Idsn

Idsp Vout

VDD

Vin

Slide 3CMOS VLSI Design

Transistor Operation Current depends on region of transistor behavior For what Vin and Vout are nMOS and pMOS in

– Cutoff?– Linear?– Saturation?

Slide 4CMOS VLSI Design

nMOS Operation

Cutoff Linear Saturated

Vgsn < Vgsn >

Vdsn <

Vgsn >

Vdsn >

Idsn

Idsp Vout

VDD

Vin

Slide 5CMOS VLSI Design

nMOS Operation

Cutoff Linear Saturated

Vgsn < Vtn Vgsn > Vtn

Vdsn < Vgsn – Vtn

Vgsn > Vtn

Vdsn > Vgsn – Vtn

Idsn

Idsp Vout

VDD

Vin

Slide 6CMOS VLSI Design

nMOS Operation

Cutoff Linear Saturated

Vgsn < Vtn Vgsn > Vtn

Vdsn < Vgsn – Vtn

Vgsn > Vtn

Vdsn > Vgsn – Vtn

Idsn

Idsp Vout

VDD

Vin

Vgsn = Vin

Vdsn = Vout

Slide 7CMOS VLSI Design

nMOS Operation

Cutoff Linear Saturated

Vgsn < Vtn

Vin < Vtn

Vgsn > Vtn

Vin > Vtn

Vdsn < Vgsn – Vtn

Vout < Vin - Vtn

Vgsn > Vtn

Vin > Vtn

Vdsn > Vgsn – Vtn

Vout > Vin - Vtn

Idsn

Idsp Vout

VDD

Vin

Vgsn = Vin

Vdsn = Vout

Slide 8CMOS VLSI Design

pMOS Operation

Cutoff Linear Saturated

Vgsp > Vgsp <

Vdsp >

Vgsp <

Vdsp <

Idsn

Idsp Vout

VDD

Vin

Slide 9CMOS VLSI Design

pMOS Operation

Cutoff Linear Saturated

Vgsp > Vtp Vgsp < Vtp

Vdsp > Vgsp – Vtp

Vgsp < Vtp

Vdsp < Vgsp – Vtp

Idsn

Idsp Vout

VDD

Vin

Slide 10CMOS VLSI Design

pMOS Operation

Cutoff Linear Saturated

Vgsp > Vtp Vgsp < Vtp

Vdsp > Vgsp – Vtp

Vgsp < Vtp

Vdsp < Vgsp – Vtp

Idsn

Idsp Vout

VDD

Vin

Vgsp = Vin - VDD

Vdsp = Vout - VDD

Vtp < 0

Slide 11CMOS VLSI Design

pMOS Operation

Cutoff Linear Saturated

Vgsp > Vtp

Vin > VDD + Vtp

Vgsp < Vtp

Vin < VDD + Vtp

Vdsp > Vgsp – Vtp

Vout > Vin - Vtp

Vgsp < Vtp

Vin < VDD + Vtp

Vdsp < Vgsp – Vtp

Vout < Vin - Vtp

Idsn

Idsp Vout

VDD

Vin

Vgsp = Vin - VDD

Vdsp = Vout - VDD

Vtp < 0

Slide 12CMOS VLSI Design

I-V Characteristics Make pMOS is wider than nMOS such that n = p

Vgsn5

Vgsn4

Vgsn3

Vgsn2Vgsn1

Vgsp5

Vgsp4

Vgsp3

Vgsp2

Vgsp1

VDD

-VDD

Vdsn

-Vdsp

-Idsp

Idsn

0

Slide 13CMOS VLSI Design

Current vs. Vout, Vin

Vin5

Vin4

Vin3

Vin2

Vin1

Vin0

Vin1

Vin2

Vin3

Vin4

Idsn |Idsp|

VoutVDD

plot absolute value of pMOS

Slide 14CMOS VLSI Design

Load Line Analysis

Vin5

Vin4

Vin3

Vin2Vin1

Vin0

Vin1

Vin2

Vin3Vin4

Idsn, |Idsp|

VoutVDD

For a given Vin:

– Plot Idsn, Idsp vs. Vout

– Vout must be where |currents| are equal in

Idsn

Idsp Vout

VDD

Vin

Slide 15CMOS VLSI Design

Load Line Analysis

Vin0

Vin0

Idsn, |Idsp|

VoutVDD

Vin = 0

Slide 16CMOS VLSI Design

Load Line Analysis

Vin1

Vin1Idsn, |Idsp|

VoutVDD

Vin = 0.2VDD

Slide 17CMOS VLSI Design

Load Line Analysis

Vin2

Vin2

Idsn, |Idsp|

VoutVDD

Vin = 0.4VDD

Slide 18CMOS VLSI Design

Load Line Analysis

Vin3

Vin3

Idsn, |Idsp|

VoutVDD

Vin = 0.6VDD

Slide 19CMOS VLSI Design

Load Line Analysis

Vin4

Vin4

Idsn, |Idsp|

VoutVDD

Vin = 0.8VDD

Slide 20CMOS VLSI Design

Load Line Analysis

Vin5Vin0

Vin1

Vin2

Vin3Vin4

Idsn, |Idsp|

VoutVDD

Vin = VDD

Slide 21CMOS VLSI Design

Load Line Summary

Vin5

Vin4

Vin3

Vin2Vin1

Vin0

Vin1

Vin2

Vin3Vin4

Idsn, |Idsp|

VoutVDD

Slide 22CMOS VLSI Design

DC Transfer Curve Transcribe points onto Vin vs. Vout plot

Vin5

Vin4

Vin3

Vin2Vin1

Vin0

Vin1

Vin2

Vin3Vin4

VoutVDD

CVout

0

Vin

VDD

VDD

A B

DE

Vtn VDD/2 VDD+Vtp

Slide 23CMOS VLSI Design

Operating Regions Revisit transistor operating regions

CVout

0

Vin

VDD

VDD

A B

DE

Vtn VDD/2 VDD+Vtp

Region nMOS pMOS

A

B

C

D

E

Slide 24CMOS VLSI Design

Operating Regions Revisit transistor operating regions

CVout

0

Vin

VDD

VDD

A B

DE

Vtn VDD/2 VDD+Vtp

Region nMOS pMOS

A Cutoff Linear

B Saturation Linear

C Saturation Saturation

D Linear Saturation

E Linear Cutoff

Slide 25CMOS VLSI Design

Beta Ratio If p / n 1, switching point will move from VDD/2

If p / n < 1, the inverter is LO-skewed

If p / n > 1, the inverter is HI-skewed

Vout

0

Vin

VDD

VDD

0.51

2

10p

n

0.1p

n

Slide 26CMOS VLSI Design

Noise Margins How much noise can a gate input see before it does

not recognize the input?

IndeterminateRegion

NML

NMH

Input CharacteristicsOutput Characteristics

VOH

VDD

VOL

GND

VIH

VIL

Logical HighInput Range

Logical LowInput Range

Logical HighOutput Range

Logical LowOutput Range

NMH= VOH-VIH

NML = VIL - VOL

Slide 27CMOS VLSI Design

Logic Levels To maximize noise margins, select logic levels at

VDD

Vin

Vout

VDD

p/n > 1

Vin Vout

0

Slide 28CMOS VLSI Design

Logic Levels To maximize noise margins, select logic levels at

– unity gain point of DC transfer characteristic

VDD

Vin

Vout

VOH

VDD

VOL

VIL VIHVtn

Unity Gain PointsSlope = -1

VDD-|Vtp|

p/n > 1

Vin Vout

0

Slide 29CMOS VLSI Design

Pass Transistors We have assumed source is grounded What if source > 0?

– e.g. pass transistor passing VDD

VDDVDD

Slide 30CMOS VLSI Design

Pass Transistors We have assumed source is grounded What if source > 0?

– e.g. pass transistor passing VDD

Vg = VDD

– If Vs > VDD-Vt, Vgs < Vt

– Hence transistor would turn itself off nMOS pass transistors pull no higher than VDD-Vtn

– Called a degraded “1”

– Approach degraded value slowly (low Ids)

pMOS pass transistors pull no lower than Vtp

VDDVDD

Slide 31CMOS VLSI Design

Pass Transistor Ckts

VDDVDD

VSS

VDD

VDD

VDD VDD VDD

VDD

Slide 32CMOS VLSI Design

Pass Transistor Ckts

VDDVDD Vs = VDD-Vtn

VSS

Vs = |Vtp|

VDD

VDD-Vtn VDD-Vtn

VDD-Vtn

VDD

VDD VDD VDD

VDD

VDD-Vtn

VDD-2Vtn

Slide 33CMOS VLSI Design

Slide 34CMOS VLSI Design

Tristate Inverter

Why (d) is a bad design?

If EN = 0, Y is supposed to be float, but if A changes, charge at internal node may disturb node Y. more in section 6.3.4)

Slide 35CMOS VLSI Design

Effective Resistance Shockley models have limited value

– Not accurate enough for modern transistors– Too complicated for much hand analysis

Simplification: treat transistor as resistor

– Replace Ids(Vds, Vgs) with effective resistance R

– Ids = Vds/R

– R averaged across switching of digital gate Too inaccurate to predict current at any given time

– But good enough to predict RC delay

Slide 36CMOS VLSI Design

Slide 37CMOS VLSI Design

RC Delay Model Use equivalent circuits for MOS transistors

– Ideal switch + capacitance and ON resistance– Unit nMOS has resistance R, capacitance C– Unit pMOS has resistance 2R, capacitance C

Capacitance proportional to width Resistance inversely proportional to width

kg

s

d

g

s

d

kCkC

kCR/k

kg

s

d

g

s

d

kC

kC

kC

2R/k

Slide 38CMOS VLSI Design

A nMOS transistor of unit size: minimum length and minimum contacted diffusion width, size = 1 means that W = 4 , L = 2 , W/L = 2

A nMOS transistor size = k

Slide 39CMOS VLSI Design

Unit nMOS has resistance R, capacitance CUnit pMOS has resistance 2R, capacitance C

Slide 40CMOS VLSI Design

RC Values Capacitance

– C = Cg = Cs = Cd = 2 fF/m of gate width

– Values similar across many processes Resistance

– R 6 K/m in 0.6um process– Improves with shorter channel lengths

Unit transistors– May refer to minimum contacted device (4/2 )– Or maybe 1 m wide device– Doesn’t matter as long as you are consistent

Slide 41CMOS VLSI Design

Inverter Delay Estimate Estimate the delay of a fanout-of-1 inverter

2

1A

Y 2

1

Slide 42CMOS VLSI Design

Inverter Delay Estimate Estimate the delay of a fanout-of-1 inverter

C

CR

2C

2C

R

2

1A

Y

C

2C

Y2

1

Slide 43CMOS VLSI Design

Inverter Delay Estimate Estimate the delay of a fanout-of-1 inverter

C

CR

2C

2C

R

2

1A

Y

C

2C

C

2C

C

2C

RY

2

1

Slide 44CMOS VLSI Design

Inverter Delay Estimate Estimate the delay of a fanout-of-1 inverter

C

CR

2C

2C

R

2

1A

Y

C

2C

C

2C

C

2C

RY

2

1

d = 6RC