Claude Henry,IDDRI Sciences Po Parigi - Columbia University New York

8
1 INNOVATION FOR SUSTAINABLE DEVELOPMENT UNDER CLIMATE CHANGE ENERGY, FOOD, WATER Claude HENRY, Sciences Po Paris and Columbia University (June 2015) Introduction Why should we muster the best of our resources both human and material in order to implement a more sustainable and equitable form of development? .because billions of our fellow humans live in unacceptable poverty .because the condition of our planet worsens at such a pace that all forms of life, including ours, will come under the most serious threats during the present century, be they biodiversity erosion, water and fertile soil scarcity, energy obesity and climate change. Current generations are – at an unbearable pace squandering the heritage of natural capital in their hands. It will not be easy, to say the least, to switch from the present development trajectory to a significantly more sustainable one. Success requires mobilizing the resources and strengthening the will of human societies: scientific, technical and managerial resources on one hand, behaviors and institutions on the other hand. More of the required methods and instruments than currently appreciated are available; and among those that are not, some of the most critical ones might be developed in time (electricity storage, carbon capture from ambient air, biological rather than chemical technologies in agriculture, etc.). However mobilizing science and technology would be of little value if sweeping changes are not made as regards: the channels for science and technology dissemination; the incentives orienting individual and collective behaviors; the design and conduct of institutions for the governance of common concerns, at all levels from local to worldwide. These changes require huge efforts – and right now mankind obviously doesn’t seem prepared to make enough of them

Transcript of Claude Henry,IDDRI Sciences Po Parigi - Columbia University New York

Page 1: Claude Henry,IDDRI Sciences Po Parigi - Columbia University New York

1

     

INNOVATION  FOR  SUSTAINABLE  DEVELOPMENT  UNDER  CLIMATE  CHANGE  

ENERGY,  FOOD,  WATER    

Claude  HENRY,  Sciences  Po  Paris  and  Columbia  University  (June  2015)  

     

Introduction   Why  should  we  muster  the  best  of  our  resources  -­‐  both  human  and  material  -­‐  in  order  to  implement  a  more  sustainable  and  equitable  form  of  development?    .because  billions  of  our  fellow  humans  live  in  unacceptable  poverty    .because  the  condition  of  our  planet  worsens  at  such  a  pace  that  all  forms  of  life,  including  ours,  will  come  under  the  most  serious  threats  during  the  present  century,  be  they  biodiversity  erosion,  water  and  fertile  soil  scarcity,  energy  obesity  and  climate  change.  Current  generations  are  –  at  an  unbearable  pace  -­‐  squandering  the  heritage  of  natural  capital  in  their  hands.    It  will  not  be  easy,  to  say  the  least,  to  switch  from  the  present  development  trajectory  to  a  significantly  more  sustainable  one.  Success  requires  mobilizing  the  resources  and  strengthening  the  will  of  human  societies:  scientific,  technical  and  managerial  resources  on  one  hand,  behaviors  and  institutions  on  the  other  hand.  More  of  the  required  methods  and  instruments  than  currently  appreciated  are  available;  and  among  those  that  are  not,  some  of  the  most  critical  ones  might  be  developed  in  time  (electricity  storage,  carbon  capture  from  ambient  air,  biological  rather  than  chemical  technologies  in  agriculture,  etc.).      However  mobilizing  science  and  technology  would  be  of  little  value  if  sweeping  changes  are  not  made  as  regards:  the  channels  for  science  and  technology  dissemination;  the  incentives  orienting  individual  and  collective  behaviors;  the  design  and  conduct  of  institutions  for  the  governance  of  common  concerns,  at  all  levels  from  local  to  worldwide.  These  changes  require  huge  efforts  –  and  right  now  mankind  obviously  doesn’t  seem  prepared  to  make  enough  of  them  

Page 2: Claude Henry,IDDRI Sciences Po Parigi - Columbia University New York

2

–  but  they  are  not  incompatible  with  economic  growth,  albeit  growth  with  a  quickly  shifting  content,  some  activities  being  developed  very  fast,  others  being  dramatically  downsized.    Science  and  technology  appropriate  conception  and  dissemination,  behavioral  innovations,  proper  institutional  design,  are  of  special  significance  and  potential  in  developing  countries.  This  I  will  illustrate  for  three  different  resources  in  three  different  countries,  energy  in  India,  food  in  Kenya,  water  in  Cambodge.  To  be  in  coherence  with  this  session’s  topic,  I’ll  only  briefly  allude  to  water  and  food;  I  nevertheless  want  to  stress  that  the  concerns  and  approaches  are  similar.    As  emphasized  by  Richard  Nelson:  “technological  solutions  to  global  problems  must  be  deployed  throughout  the  world  by  many  different  actors  in  decentralized  ways”  (2010);  see  also  von  Hippel  (2005).  This  is  particularly  true  as  regards  the  provision  of  adequate  energy  to  all  people  on  earth  while  containing  climate  change.  It  is  also  true  for  meeting  other  essential  needs,  in  priority  food  and  water  availability.    Let  us  thus  consider  how  to  carry  and  support  decentralized  initiatives  for  designing  and  deploying  systems  -­‐  with  their  various  components,  technical,  social,  economical  -­‐  meant  at  sustainably  meeting  fundamental  needs  in  developing  countries.  We  base  our  discussion  on  three  remarkable  endeavors  aimed,  in  the  same  spirit,  at  electricity,  food  or  water  provision  to  disadvantaged  communities,  in  ways  that  are  renewable  and  sustainable;  the  convergences  in  the  three  approaches  are  illuminating.  We  put  special  emphasis  on  the  following  factors  that  sustain  innovation  and  development:    .    entrepreneurship  .    technical  versatility    .    managerial  skills  and  social  awareness  .    education  and  knowledge  dissemination  along  appropriate  channels.      Husk  Power  Systems:  providing  electricity  in  rural  India    

Page 3: Claude Henry,IDDRI Sciences Po Parigi - Columbia University New York

3

In  2007,  an  Indian  engineer,  Gyanesh  Pandey,  who  had  graduated  in  electrical  engineering  at  Rensselaer  Polytechnic  (Troy,  NY,  USA),  and  who  at  the  time  had  a  gratifying  job  in  Los  Angeles,  decided  to  head  back  to  his  native  Bihar.  Bihar  is  mostly  rural  and  is  one  of  the  poorest  states  in  the  Indian  Federation.  More  than  80%  of  households  there  are  deprived  of  access  to  electricity,  a  proportion  that  both  reveals  and  breeds  poverty.  Those  who  can  afford  them  use  inconvenient  and  costly  kerosene  lamps  that  generate  indoor  pollution;  diesel  generators,  also  polluting  and  costly,  are  used  to  pump  water  for  irrigation  and  sustain  artisanal  and  commercial  activities.    Pandey  himself  doesn’t  come  from  a  well-­‐off  family,  and  when  a  child  suffered  from  the  lack  of  proper  lighting.  By  2007  he  was  determined  to  try  and  muster  his  technical  skills  to  remedy  the  situation  in  his  home  state.  After  a  few  unconvincing  attempts  with  solar  cells  and  biofuels,  he  came  to  the  idea  of  using  rice  husk  to  generate  electricity.  He  teamed  with  a  local  entrepreneur  and  with  two  Indian  graduates  from  Virginia  University’s  Darden  Business  School.  Husk  Power  Systems  was  started  in  2009.    In  Bihar  rice  is  the  dominant  crop;  husk,  i.e.  the  envelope  of  the  rice  grains,  is  thus  abundant.  It  is  good  neither  for  burning  in  stoves  (because  of  its  very  high  content      in  silica)  nor  for  returning  nutrients  to  the  soil  (because  of  its  low  content  in  nutrients).  However  it  can  be  decomposed  by  fermentation  in  a  gasifier.  Because  it  had  very  few  uses,  75/80%  of  the  2M  tons  obtained  each  year,  as  byproduct  of  the  rice  crop,  were  rotting  in  landfills.  The  resource  is  thus  plentiful,  and  its  use  as  precursor  of  fuel  doesn’t  harm  any  other  activity  food  production  in  particular.    At  Husk  Power  Systems  small  simple  gasifiers  are  fed  with  husk.  The  gas  is  then  burnt  to  drive  a  turbine,  from  which  electricity  is  produced  in  a  standard  way.  Typically  a  32kw  plant  consumes  50kg  of  husk  per  hour.  The  components,  from  which  these  mini  power  plants  are  made,  are  not  tailor-­‐made;  they  are  bought  in  such  conditions  that  costs  are  minimized;  however  their  arrangement  into  a  specific  equipment  is  innovative,  with  its  quest  for  simplicity  and  efficiency  in  using  an  unusual  fuel.    

Page 4: Claude Henry,IDDRI Sciences Po Parigi - Columbia University New York

4

Typically  the  investment  cost  is  about  $  1300  per  kw,  partially  paid  for  by  consumers  and  partially  by  modest  grants  from  the  Indian  Federal  Government,  the  International  Finance  Corporation  and  foundations  like  the  Shell  Foundation  and  the  Fondation  Alstom.  The  variable  cost  is  about  $  0.15  per  kwh,  and  is  covered  by  consumers  in  counterpart  for  the  delivery  of    enough  electricity  for  one  or  two  low  consumption  bulbs  and  mobile  phone  recharges;  what  consumers  pay  is  about  half  the  expense  of  a  kerosene  lamp.  At  a  modest  additional  price,  electric  stoves  can  also  be  powered.    Electricity  is  distributed  through  local  mini  networks,  i.e.  simple  wiring  of  a  few  villages  totalling  up  to  4000  inhabitants,  for  whom  it  becomes  possible  to  extend  home  activities,  in  particular  student  work,  beyond  daylight  hours.  For  artisanal  and  commercial  activities  it  represents  a  less  polluting,  more  convenient  and  cheaper  source  of  energy,  making  them  more  productive.  Each  local  network  allows  the  saving  of  about  40.000l  of  kerosene  and  20.000l  of  diesel  per  year;  it  also  saves  firewood,  and  for  women  the  time  and  effort  of  collecting  firewood.  Last  but  not  least,  one  of  the  greatest  benefits  is  the  reduction  of  indoor  pollution  and  the  health  hazards  such  pollution  provokes.    At  the”  Husk  Power  University”  (in  German  it  would  more  accurately  be  called    “Technische  Schule”),  most  students  are  recruited  locally.  They  are  trained  either  as  “plant’s  junior  mechanic”-­‐    with  the  perspective  of  being  put  in  charge  of  operation  and  maintenance  of  a  single  plant  (an  eight  weeks  course)  or  “senior  mechanic”  and  middle  manager  for  a  number  of  plants,  with  the  ability  to  face  more  intricate  problems  than  those  dealt  with  at  plant  level  (  a  six  months  course).    Husk  Power  System  is  more  than  a  technical  innovation,  however  valuable  it  is  in  this  respect.  It  integrates  into  the  economic  life  of  the  communities  involved  a  local,  abundant  and  underutilized  raw  resource.  It  also  promotes  local  talents.  And  providing  an  essential  service,  it  transforms  the  economic,  social  and  health  conditions  of  the  communities  it  serves.  Within  four  years,  almost  100  plants  and  networks  have  been  set  up  with  cumulative    improvements  in  service  and  costs.  The  pace  of  development  is  accelerating  and  inroads  have  been  made  into  a  neighbouring  state,  Utar  Pradesh;  there  is  interest  in  Bangladesh  as  well  (see  Islam  and  Ahiduzzaman  2013).  Pandey  himself  

Page 5: Claude Henry,IDDRI Sciences Po Parigi - Columbia University New York

5

concludes  that  the  main  lesson  of  the  endeavor  is  about  how  to  create  a  system  providing  an  essential  service,  adapted  to  the  needs  of  poor  people,  out  of  the  material  and  labor  resources  that  are  readily  available  locally.        Push  pull  systems:  protecting  crops  in  Kenya    This  biology-­‐based  method  of  protecting  maize  in  East  Africa  is  the  product  of  a  joint   project   (see   Icipe   2011)   at   the   International   Centre   of   Insect   Physiology  and   Ecology   (Icipe,   Kenya)   and  Rothamsted  Research,  UK,   one   of   the   longest  running   and   most   productive   agricultural   research   stations   in   the   world,  established   in   1843   and   known   for   a   long   time   as   Rothamsted   Experimental  Station.   The   targets   are   maize   stemborers,   i.e.   larvae   of   various   moths   that  attack  maize   -­‐   the  main   crop   in   East   Africa   -­‐   from   the   inside   of   the   stems;   if  unchecked,   stemborers   reduce   yields   by   20-­‐40%;   sometimes   up   to   80%.   As  research  progressed  a  second  target  popped  up  by  chance,  or  more  accurately  by   recognition   of   an   unexpected   side   effect:   striga   hermontica,   a   weed  extremely   difficult   to   eradicate   by   conventional  methods   as   it   parasitizes   the  maize,  the  yield  losses  ranging  from  30  to  100%  in  the  infested  fields.    Pesticides   are   not   very   effective   to   reach   larvae   inside   the   stems.   An   all   too  common   reaction   is   for   the   farmers   to   increase   the   quantities   applied;   that  results   in  more  harm  to  soil  biodiversity  than  to  pests.  And  yet  the  stakes  are  high;  according  to  Icipe  (2011),  ”preventing  crop  losses  from  stemborers  could  increase  maize  harvests  by  enough   to   feed  an  additional  27  million  people   in  the  region.”  This  sounds  like  a  strong  motivation  to  try  and  find  effective  ways,  if  not  to  eradicate  the  pest,  at  least  to  keep  the  stemborer  populations  within  limits   so   they   cause   little   harm,  while  minimizing   negative   effects   to   soil   and    environment.   Research   led   to   identifying   a   tree   (that   it   is   a   tree   that   fixes  nitrogen  from  ambient  air  is  a  bonus),  silverleaf  desmodium,  for  the  push,  and  two   varieties   of   grass,   Napier   grass   and   Sudan   grass,   for   the   pull.   The  reseachers  considered  a  few  candidates  for  push,  and  a  stunning  400  varieties  of  grass  for  pull.  Desmodium  and  Napier/Sudan  grass  were  selected  for  several  interrelated  reasons:    

Page 6: Claude Henry,IDDRI Sciences Po Parigi - Columbia University New York

6

.  Desmodium,   that   is   intercropped  with  maize,   repels   female  moths  and   thus  deters   them  to   lay   their  eggs  on   the  maize   lines.  That  worked  as  anticipated.    What   was   not   anticipated   is   that   their   roots   emit   in   the   soil   a   chemical  substance  that  checks  the  growth  of  the  striga  weed;  in  the  experimental  fields  with   maize   and   desmodium,   the   progressive   disappearance   of   striga   was  observed  with  a  measure  of  surprise  and  then  great  satisfaction.        .  Napier/Sudan  grass,  which  is  planted  along  the  borders  of  maize-­‐desmodium  parcels,  emits  volatile  chemical  substances  that  attract  female  moths  and  make  them   lay   their   eggs   there;   the  grass   is   also  home   to   various  predators  of   the  eggs,   or   of   the   larvae   coming   out   of   these   eggs;   these   are   ants,   earwigs,  spiders,   and   a   remarkable   variety   of   tiny  wasps   that   parasitize   eggs.   Another  reason  why  Napier/Sudan  grass  was  selected  is  that  it  provides  valuable  fodder  for  livestock.      Adoption   by   50,000   smallholders   (by   2012)   has   resulted   from   an   effort   of  associating   farmers   to   the   experiments,   and   from   broad   knowledge  dissemination   and   demonstration   of   results.   Adoption   takes   place   at   an  accelerating  rate  that  makes  the  million  adopters  by  2020  a  realistic  objective.  This   is  mainly  the  effect  of  demonstrated  increases  in  yields:  control  yields  on  maize  monocrop   fields   are   typically   between  1   and  2   tons/ha/year;   on  push-­‐pull  fields  they  are  between  4  and  5,  moreover  with  less  volatility.    At   this   point,   Voltaire  would  warn   against   the  Candide  delusion.  And   indeed,  with   all   its   virtues,   push-­‐pull   is   not   without   its   problems:   the   broad   use   of  Napier  grass  causes  the  spread  of  a  disease  hitherto  marginal,  and  desmodium  is  attacked  by  its  own  variety  of  borer.  Nothing  is  more  inventive  than  life,  with  positive   effects   that   human   endeavors   can   take   advantage   of,   and   negative  ones   that   they  must   try  and  circumvent.   In   this   case,   researchers  are  back   to  work,  trying   inter  alia  to   identify  and  transfer  resistance  genes  among  various  strains  of  desmodium.      Mille  et  une  fontaines:  providing  drinking  water  in  Cambodia    

Page 7: Claude Henry,IDDRI Sciences Po Parigi - Columbia University New York

7

Aiming  at  the  provision  of  safe  drinking  water  in  rural  Cambodge.    Mille  et  une  fontaines  has  been  designed  independently  from  Husk  Power  Systems,  but  their  structures  have  striking  similarities,  that  reflect  converging  assessments  of  similar  circumstances.  In  both  cases  :    .  entrepreneurship  is  a  driving  force  (see  Rambicur  et  Jaquenoud  2013)  .  technology  is  characterized  by  innovative  sobriety    .  production  is  centered  on    preexisting  communities  of  consumers,  a  village  or          a  small  cluster  of  villages  .  the  articulation  between  (i)  local  plants  run  by  local  technicians-­‐managers        recruited  from  the  local  communities  and  trained  in  the    Mille  et  une        Fontaines  «  Academy  »  (similar  to  the  HPS  «  University  »)  and  (ii)  a  central        body  for  dealing  with  problems  that  cannot  be  solved  at  local  level  and  for          sustaining  the  geographic  expansion  of  the  system  (60  plants  in  2011,  120  in            2013  and  250  in  2015-­‐6),  is  carefully  designed  and  monitored        .  interactions  with  consumers  are  also  closely  monitored.  In  the  case    of    Mille  et  une  fontaines,  the  priority  in  this  respect  is  to  convince  the  villagers  that  getting  safe  drinking  water  is  worth  paying  a  price  that,  however  modest,  is  not  negligible  for  them.  HSP  has  similar  concerns.      Conclusion    In  defining  and  implementing  objectives  in  the  above  situations,  it  appears  that:    .  entrepreneurship  is  a  driving  force  ,  embodied  in  small  teams  of  pioneers  or          in  local  R&D  organizations    .  technology  is  “as  simple  as  possible,  but  no  simpler”  -­‐  to  paraphrase  Albert        Einstein’s  recommendation  about  the  use  of  mathematics  by  his  students  in            physics  -­‐  with  special  attention  to  the  specificities  of  the  problem  at  hand  and            the  reliability  of  the  system  designed    .  implementation  is  centered  on  preexisting  communities  of  consumers  or    

Page 8: Claude Henry,IDDRI Sciences Po Parigi - Columbia University New York

8

   producers  and  on  underused  locally  available  human  and  material  resources      .  there  is  a  duality  between  the  running  of  the  local  means  of  production  and   the impulse and supervision from the core of entrepreneurship, with interactions closely monitored.    References    Icipe (2011), Push-pull: A model for Africa’s green revolution, Report.  Islam, S. and M. Ahiduzzaman, « Green electricity from rice husk : a model for Bengladesh », chapter 6 in Mohammad Rasul, ed. (2013), Thermal power plants – Advanced applications, InTech Open Access Publishing. Mowery, D., R. Nelson and B. Martin (2010), “Technology policy and global warming: Why new policy models are needed”, Research Policy, 39: 1011-1023. Rambicur,  J.-­‐F.  et  F.  Jaquenoud  (2013),  «  Pour  une  nouvelle  économie  de  l’eau  potable  »,  Le  Journal  de  l’Ecole  de  Paris,  102  :  25-­‐31.   Von   Hippel,   E.   (2005),   Democratizing   Innovation,   Cambridge,   Mass.:   M.I.T.  Press.