Circuit Characterization

download Circuit Characterization

of 44

Transcript of Circuit Characterization

  • 8/3/2019 Circuit Characterization

    1/44

    Microwave circuit

    characterization

    1LEMA-EPFL

    Microwave component

    1

    2

    4

    5

    Portesports

    2LEMA-EPFL

    3 6

    Elments de circuit

    Circuit elements

  • 8/3/2019 Circuit Characterization

    2/44

    Reference planes

    On each access line i of a

    z

    n

    znz1

    1

    component, a coordinate axis zi

    is defined. The origin of this axis

    lies in the reference plane of the

    port i.

    Assumptions :

    3LEMA-EPFL

    i

    They support only the dominant mode

    The reference plane is distant enough

    From discontinuities to ensure that the

    Higher order modes are attenuated

    Available models

    Currents and voltages ill defined

    Well known from low frequency circuit analysis

    Not adapted to system approach

    Scattering matrix

    4LEMA-EPFL

    Well suited to microwaves

    Not known from low frequency circuit analysis

    Adapted to system analysis

  • 8/3/2019 Circuit Characterization

    3/44

    Kirchhoffs model

    i1 i4

    1

    2

    3

    4

    5

    6

    i2

    i3

    i5

    i6

    u1

    u2

    u3

    u4

    u5

    u6

    5LEMA-EPFL

    [Z]

    Current, voltages and impedances

    Current voltages and impedances

    Current and voltage difficult to measure

    Current and voltage not always uniquelydefined

    6LEMA-EPFL

  • 8/3/2019 Circuit Characterization

    4/44

    Example : TEM line

    V= E

    +EH

    V= E dl+

    I= H dlC+

    7LEMA-EPFL

    -

    Zc =V

    I=

    L

    C

    Example : TEM line

    Fields identical to static fields

    Zero cutoff frequency

    Needs at least two separate conductors

    8LEMA-EPFL

  • 8/3/2019 Circuit Characterization

    5/44

    Non-TEM line : the rectangular

    waveguide

    V j= E A

    Ey x,y,z( )= E0ja

    sin

    x

    ae

    jz = E0ey x,y( )ejz

    =ja x jz = jz

    Example : mode TE10 of a rectangular

    waveguide

    9LEMA-EPFL

    x , ,

    ay ,

    V=E0j a

    sin

    x

    ae

    jzdy

    y

    Thusa

    b

    Non TEM voltage and current definition

    Onl defined for one mode

    The voltage is proportional to the transverseelectric field

    The current is proportional to the transversemagnetic field

    The characteristic impedance is equal to U/I. Wechoose the characteristic im edance e ual to the

    10LEMA-EPFL

    wave impedance

    The power flux is given by the product of thevoltage and the current

  • 8/3/2019 Circuit Characterization

    6/44

    Arbitrary line

    Et x,y,z( ) = et x,y( ) Eo+e

    jz + Eoe

    jz( )=

    et x,y( )C1

    V+ejz + Vejz(

    Ht x,y,z( ) = ht x,y( ) Eo+ejz Eo

    ejz(

    V z( ) = V+ejz + Vejz

    I z( ) = I+ejz Iejz

    Zc =V

    +

    I+=

    V

    I=

    C1Eo+

    C2Eo+ =

    C1

    C2

    11LEMA-EPFL

    = t x,yC2

    I+ejz Iejz( )C1

    C2= Zmod

    Different impedances

    Wave impedance :

    Line characteristic impedance :

    Impedance matrix of a circuit

    o

    Zmod =Et

    HtZc = V

    +

    I+ =V

    I =LC

    12LEMA-EPFL

  • 8/3/2019 Circuit Characterization

    7/44

    Impedance matrix

    13LEMA-EPFL

    Single port element

    V

    Circuit une porteaccs

    plan de rfrence

    Zin

    I

    V

    n

    S

    Ref. plane

    Single port

    Zin =I

    Power delivered to the component

    14LEMA-EPFL

    port

    P =1

    2E H* ds= Pr+ 2j Wm We( )

    s

    (Poynting)

  • 8/3/2019 Circuit Characterization

    8/44

    Single port element

    Et x,y,z( ) = V z( )

    et x,y( )C1

    ejz

    Ht x,y,z( ) = I z( )ht x,y( )

    C2e

    jz

    with1

    et ht ds=1 thus P = 1 VI*et ht ds =1VI

    *

    15LEMA-EPFL

    1 2 s 1 2 s

    and

    Zin = R + jX=V

    I=

    VI*

    I2=

    2P

    I2

    =2 Pr+ 2j Wm We( )( )

    I2

    Single port element

    dissipated in the system (Losses)

    X is proportional to the mean reactivestored energy in the system

    16LEMA-EPFL

  • 8/3/2019 Circuit Characterization

    9/44

    Impedance and admittance matrix

    v1+,i1+

    v1-,-i1-

    v2+,i2+

    v2-,-i2-

    v3+,i3+

    v4+,i4+

    v4-,-i4-

    v5+,i5+

    v5-,-i5-

    v6+,i6+

    t2

    t3

    et

    17LEMA-EPFL

    [Z]

    v3-,-i3- v6-,-i6-

    Vn = Vn+ + Vn

    In = In+ In

    At each port ti

    Impedance and admittance matrix

    obtained in open

    circuit conditions

    Admittance matrix is

    obtained in short

    circuit conditions

    =

    I[ ] = Y[ ] V[ ]

    Zij =ViI

    18LEMA-EPFL

    k

    Yij =Ii

    Vj Vk=0 pour kj

  • 8/3/2019 Circuit Characterization

    10/44

    Properties of the impedance and

    admittance matrix

    Yi = Yi

    Lossless circuit :

    Zij = Zji

    Re Zmn{ }= 0

    19LEMA-EPFL

    Example : transmission line

    = =dI(0) I(d)

    U(0)U(d

    ( ) ( )2

    , ,

    , 2U U d I I d = =

    ( )

    ( )

    e e

    e e

    z z

    z z

    U z U U

    I z I I

    ++

    ++

    = +

    =

    20LEMA-EPFL

    1 2

    U1 U2( ) ( )

    ( ) ( )

    0 e e

    0 e e

    d d

    d d

    U U U U d U U

    I I I I d I I

    ++ +

    ++ +

    = + = +

    = =

  • 8/3/2019 Circuit Characterization

    11/44

    Example : transmission line

    U Z Z I dI(0) I(d)

    U(0) U(d ( ) ( )

    ( )( )

    2 21 22 2

    1

    2

    1coth

    sinh

    1coth

    sinh

    c

    U Z Z I

    dd I

    ZI

    dd

    =

    =

    21LEMA-EPFL

    1 2

    U1 U2( )

    ( )

    ( )( )

    2 21 22 2

    1

    2

    1coth

    sinh

    1coth

    sinh

    c

    I Y Y U

    dd U

    YU

    dd

    =

    =

    Equivalent T circuit of a reciprocal

    two-port

    11 12Z12 Z22

    I1 I2

    U1 U2

    Za Zb

    Zc

    Za = Z11 Z12Zb = Z22 Z12

    22LEMA-EPFL

    c 12

  • 8/3/2019 Circuit Characterization

    12/44

    Equivalent T circuit of a transmisson

    line

    I1 I2

    U1 U2

    Za Za

    Zc

    Za = Zcaract coth d( )1

    sinh d( )

    = Zcaractch d( ) 1sinh d( )

    = Zcaracttanh

    d

    2

    23LEMA-EPFL

    Zc = caractsinh d( )

    Equivalent circuit of a reciprocaltwo-port

    11 12Y12 Y22

    I1 I2Yc Ya = Y11 + Y12

    =

    24LEMA-EPFL

    1 2a b

    Yc = Y12

  • 8/3/2019 Circuit Characterization

    13/44

    Equivalent circuit of atransmisson line

    I1 I2

    U1 U2Ya Ya

    Yc

    Ya = Ycaract coth d( )1

    sinh d( )

    = Ycaractch d( )1sinh d( )

    = Ycaracttanh

    d

    2

    25LEMA-EPFL

    Yc = Ycaractsinh z( )

    Scattering parameters

    26LEMA-EPFL

  • 8/3/2019 Circuit Characterization

    14/44

    Normalized wave amplitudes :

    definition

    ai =vi + Zciii2 Zci

    , bi =vi Zciii2 Zci

    [W1/2]

    27LEMA-EPFL

    vi = Zci ai + bi( ) , ii =ai bi( )

    Zci

    Normalized wave amplitudes :

    properties

    Transmission lines

    vi = vi+

    e

    jz

    + vi

    e

    + jz

    ii = ii+ejz + ii

    e+ jz

    ai

    =vi

    +

    Zcie

    jz

    vi

    + z

    28LEMA-EPFL

    i =Zci

    ai : progressive wave

    bi : retrograde wave

  • 8/3/2019 Circuit Characterization

    15/44

    Power at one component port

    Pi = Re viii*[ ]= Re ai + bi( ) ai* bi*( )[ ]= ai 2 bi 2

    /a /2 : ower enterin ort i

    29LEMA-EPFL

    /bi/2 : power leaving port i

    Signal model

    Plans de rfrenceReference planes

    a1

    b1a2

    b2

    a4

    b4a5

    b

    t1

    t2

    t4

    t5

    b[ ]= S[ ] a[ ]

    =bi

    30LEMA-EPFL

    [S]

    a3

    b3

    a6

    b6

    t3 t6 aj ak=0 , kj

  • 8/3/2019 Circuit Characterization

    16/44

    Scattering matrix : definition

    ai =vi + Zciii2 Zci

    , bi =vi Zciii2 Zci

    orma ze wave amp u e

    vi = Zci ai + bi( ) , ii =ai bi( )

    Zci

    31LEMA-EPFL

    b[ ]= S[ ] a[ ] sij =bi

    aj ak=0 , kj

    Signal model

    Signals are easy to measure

    Well suited to a system approach (transferfunctions)

    Drawbacks :

    32LEMA-EPFL

    Not known at low frequencies

  • 8/3/2019 Circuit Characterization

    17/44

    Scattering matrix : properties

    Depends on the component and its

    properties

    To change the connecting lines implies to

    chna e the scatterin matrix

    33LEMA-EPFL

    The scattering matrix is obtained termiating

    the ports by matched loads

    Reciprocity

    ass ve, near, so rop c c rcu

    The circuit is reciprocal

    34LEMA-EPFL

    zij = zji

    sij = sji

  • 8/3/2019 Circuit Characterization

    18/44

    Lossless circuit

    * tai = bi a[ ] a[ ] b b[ ] = 0 a[ ] = a

    Moreoverb[ ] = S[ ] a[ ]

    b[ ]= a[ ] S[ ]a[ ] a[ ] a[ ] S[ ]S[ ] a[ ] = 0a[ ] 1[ ] S[ ]S[ ]{ }a[ ] = 0S S[ ] = 1[ ]

    35LEMA-EPFL

    sij*sik = jk

    i=1

    N

    jk =1 si j = k

    0 si j k

    Matched circuit

    Sii = 0

    36LEMA-EPFL

  • 8/3/2019 Circuit Characterization

    19/44

    Change of reference planeti

    aib

    [S].

    .

    .

    tn

    37LEMA-EPFL

    [S'].

    .

    .

    t i

    t'n

    z

    b'i

    a'i

    Change of reference plane

    a' i = aie i

    b' i = bieji

    i = izi

    thus s' ii = siiej2i

    And in general

    a[ ] = diag ej[ ]a'[ ] j

    38LEMA-EPFL

    a'[ ] = diag e j[ ]a[ ]b[ ] = diag ej[ ]b'[ ]b'[ ] = diag ej[ ]b[ ]

    diag ej[ ]=

    ...

    0 ej2 :

    :

    0 ... ejn

  • 8/3/2019 Circuit Characterization

    20/44

    Change of reference plane

    [ ] [ ] [ ]

    [ ] [ ]

    ' e e '

    ' e e

    j j

    j j

    b diag S diag a

    S diag S diag

    =

    =

    39LEMA-EPFL

    ' e i jjij ijs s +=

    Passive circuits : questions

    .

    2. Reciprocity

    3. Losslessness

    4. Matched

    40LEMA-EPFL

    . ymme ry

  • 8/3/2019 Circuit Characterization

    21/44

    [S]->[Z][b] = [S] [a] ai= (Ui+ZciIi)/2Zci Ui= Zci(ai + bi)

    [U] = [Z] [I] bi= (Ui ZciIi)/2Zci Ii= (ai bi)/Zci

    We define two auxiliary matrices

    [G] = [diag(Zci)] [F] = [diag(1/2Zci)]

    And we can write

    41LEMA-EPFL

    [a] = [F] {[U] + [G] [I] } ([a] + [b]) = 2 [F] [U]

    [b] = [F] {[U] [G] [I] } ([a] [b]) = 2 [F] [G] [I]

    [S]->[Z]

    [a] = [F] {[U] + [G] [I] } -> [a] = [F] {[Z] + [G] } [I]

    -> = a

    [b] = [F] {[U] [G] [I] } -> [b] = [F] {[Z] [G] } [I]

    -> [b] = [F] {[Z] [G] } {[Z] + [G] }1 [F]1 [a] = [S] [a]

    = 1 1

    42LEMA-EPFL

    In one dimension, we have = S11 = (Zt Zc)/(Zt + Zc)

  • 8/3/2019 Circuit Characterization

    22/44

    [Z]->[S]([a] + [b]) = 2 [F] [U] -> [U] = (2 [F])1([a] + [b]) = (2 [F])1([1] + [S]) [a]

    a = = a-> a =

    regrouping, we obtain:

    [U] = (2 [F])1([1] + [S]) ([1] [S])1 2 [F] [G] [I] = [Z] [I]

    1 1

    43LEMA-EPFL

    For a single acess component, we have

    Zt = Zc(1 + r)/(1 r)

    Flow charts

    are represented as arrows

    a sij b

    44LEMA-EPFL

  • 8/3/2019 Circuit Characterization

    23/44

    Flow charts

    Two port

    a1

    b1

    b2

    a2s11

    s21

    s22s12

    45LEMA-EPFL

    Flow charts

    a1 b2s21

    b

    1

    a

    2

    s11 s22

    s

    12

    s13s32

    s23s31

    Three port

    46LEMA-EPFL

    a3b3

    s33

  • 8/3/2019 Circuit Characterization

    24/44

    Flow chartsa1 b2s21

    b1 a2

    11 22

    a3 b4

    s13 s42

    4-port

    47LEMA-EPFL

    b3 a4

    s33

    s34

    s44

    Flow chart reduction rules

    1 multi lication

    ab

    s1 s2

    a s1s2 b

    48LEMA-EPFL

  • 8/3/2019 Circuit Characterization

    25/44

    Flow chart reduction rules

    2 addition

    a b

    s1

    49LEMA-EPFL

    s2

    a b

    s1+s2

    Flow chart reduction rules

    3 retroaction

    ab

    s1

    s2

    50LEMA-EPFL

    a b

    1-s1s2

    s1

  • 8/3/2019 Circuit Characterization

    26/44

    Example

    a1 b'2s21 s'21b2=a'1

    b1 a'2

    s11 s22s12

    s'11 s'22s'12

    a2=b'1

    51LEMA-EPFL

    Example

    a1 s21 b2='a1

    b1

    s11 s22

    s12

    s'11

    52LEMA-EPFL

    a2=b'1

  • 8/3/2019 Circuit Characterization

    27/44

    Examplea1 s21

    b1

    s11

    s12

    a1

    s'11

    1-s'11s22

    53LEMA-EPFL

    s'11

    1-s'11s22b1

    s11+s21s12

    Example

    a1 b'2s21 s'21b2=a'1

    s22 s'11

    a2=b'1

    54LEMA-EPFL

  • 8/3/2019 Circuit Characterization

    28/44

    Example1

    a1 b'2s21 s'21

    1-s'11s22

    a

    s21

    1-s'11s22

    s'21

    b'

    55LEMA-EPFL

    Example

    b2=a'1

    b1 a'2

    s22

    s12

    s'11

    s'12

    a2=b'1

    56LEMA-EPFL

  • 8/3/2019 Circuit Characterization

    29/44

    Example

    ''

    1

    a'2

    b12s12 s 121-s22s'11

    s12s'12

    1-s s'

    57LEMA-EPFL

    Example

    b'2s'21b2=a'1

    a'2

    s22 s'11 s'22s'12

    58LEMA-EPFL

    a2=b'1

  • 8/3/2019 Circuit Characterization

    30/44

    Exampleb'2s'21

    a'2

    s'22s'12

    22

    1-s'11

    s22

    59LEMA-EPFL

    b'2

    a'2

    s'22+s'12s'21

    s22

    1-s'11

    s22

    Single port components

    60LEMA-EPFL

  • 8/3/2019 Circuit Characterization

    31/44

    Single port components

    single portcircuitacces

    Zin

    I

    V Single portcircuitacces

    a

    s11b

    61LEMA-EPFL

    [ ] [ ] [ ], , have only one term. They are scalars Z Y S

    Single port components

    s11 =

    Zin ZcZin + Zc

    , Zin =1+ s111 s11

    Equivalences

    a1

    62LEMA-EPFL

    Flow chart b1s11, ,

  • 8/3/2019 Circuit Characterization

    32/44

    Examples

    short circuit : s11 = -1

    open circuit : s11 = 1

    total reflection : s11 = ej

    matched sin le ort com onents :

    63LEMA-EPFL

    matched load

    Others : antennas, loads, etc.

    Short circuits

    spring contact

    64LEMA-EPFL

    g/4

  • 8/3/2019 Circuit Characterization

    33/44

    Matched loads

    65LEMA-EPFL

    Matched load

    1

    b1a

    2

    b2a3

    4

    b4

    a5b5

    a6

    =0

    =0

    The measurement ofs21 has to be done

    by terminating all non

    concerned orts b

    66LEMA-EPFL

    [S]

    3

    s21 =b2

    a1 ai =0, i1

    matched loads

  • 8/3/2019 Circuit Characterization

    34/44

    Two port circuits

    67LEMA-EPFL

    Two port circuits

    [S]

    a1

    b1

    b2

    a2

    a1

    b1

    b2

    a2s11

    s21

    s22s12

    68LEMA-EPFL

    [ ] 11 1221 22

    s sS

    s s

    =

  • 8/3/2019 Circuit Characterization

    35/44

    Examples

    , ,

    Lossy : attenuators, isolators

    69LEMA-EPFL

    Phase shifters

    matched

    lossless

    =0 e

    j

    70LEMA-EPFL

    ej

    o

  • 8/3/2019 Circuit Characterization

    36/44

    Phase shifters

    Matched transmission line

    L

    71LEMA-EPFL

    S[ ] = 0 e jL

    e jL 0

    Phase shifters

    Fox' phase shifter

    Non reciprocal phase shifters

    S[ ] =0 e

    j1

    ej2 0

    1 2

    72LEMA-EPFL

    Gyrators

    S[ ] =0 1

    1 0

    1 2 =

  • 8/3/2019 Circuit Characterization

    37/44

    Fox' phase shifters

    /2

    /4

    73LEMA-EPFL

    /4

    Fox' phase shifters

    mode 1mode 2pol. lin.pol. cir.

    (1- 2)l= /2

    74LEMA-EPFL

    quarter wave line

  • 8/3/2019 Circuit Characterization

    38/44

    Fox' phase shifters

    mode 1mode 2

    pol. cir. (1- 2)l=

    pol. cir inverse

    75LEMA-EPFL

    rotation of + = phase shift of + for both components

    Fox' phase shifters

    mode 1mode 2

    (1- 2)l= /2

    pol. lin.pol. cir.

    76LEMA-EPFL

    rotation of - = phase shift of + for both components

  • 8/3/2019 Circuit Characterization

    39/44

    Attenuators

    Reciporcal

    Lossy

    Attenuation level given by:

    S[ ] =0 s12

    s12 0

    s12

  • 8/3/2019 Circuit Characterization

    40/44

    Attenuators using absorbers

    79LEMA-EPFL

    Rotative attenuator

    lame mobile

    lame fixefixed slab

    rotatin slab

    80LEMA-EPFL

    lame fixefixed slab

  • 8/3/2019 Circuit Characterization

    41/44

  • 8/3/2019 Circuit Characterization

    42/44

    Resistive attenuators (T

    attenuators)

    and R2 in order to be

    matched

    Then we can obtain

    the attenuation

    R2

    83LEMA-EPFL

    Resistive attenuators

    R1 R1I

    I2

    R2

    port 1 port 2

    ZoZin

    u1 u2

    84LEMA-EPFL

    1

    2 1

    1 1in o

    o

    Z R Z

    R R Z

    = + =+

    +

    12

    12

    oZ RRR

    =

  • 8/3/2019 Circuit Characterization

    43/44

    Resistive attenuatorsR1 R1I

    II2a1 b2

    R2

    port 1 port 2

    ZoZin

    u1 u2

    b1 a2

    85LEMA-EPFL

    12 221

    1 1 1

    o

    o

    Z Rb us

    a u Z R

    = = =

    +

    Other solution

    Impedance matrix of the 2 port

    [ ] 1 2 2

    2 1 2

    R R RZ

    R R R

    + =

    +

    from which we obtain the scatterin arameter matrix

    86LEMA-EPFL

    [ ]( )

    ( )

    ( )

    2 2 21 2 2 2

    2 22 2 21 2 2 2 1 2 2

    21

    2

    o o

    o o o

    R R Z R R Z S

    R R Z R R Z R R Z R

    + = + + +

  • 8/3/2019 Circuit Characterization

    44/44

    Other solution

    = =

    2 21

    212

    oZ RRR

    =

    ,

    and1

    21oZ Rs

    Z R

    =

    +

    87LEMA-EPFL

    so finally, the attenuation level is given by

    ( ) 1 1211 1

    [ ] 20log 20log 20logo o

    o o

    Z R Z R LA dB s

    Z R Z R

    += = =

    +

    Isolators

    non reciprocal

    lossy

    0 0

    88LEMA-EPFL

    =1 0