CHEMISTRY OF IONS IN THE GAS PHASE: FULLERENES AND ATOMIC CLUSTERS Olivera Nešković Vinča...

39
CHEMISTRY OF IONS IN THE GAS PHASE: FULLERENES AND ATOMIC CLUSTERS Olivera Nešković Vinča Institute of Nuclear Sciences

Transcript of CHEMISTRY OF IONS IN THE GAS PHASE: FULLERENES AND ATOMIC CLUSTERS Olivera Nešković Vinča...

CHEMISTRY OF IONS IN THE GAS PHASE: FULLERENES AND

ATOMIC CLUSTERS

Olivera Nešković

Vinča Institute of Nuclear Sciences

A simple definition of a Mass A simple definition of a Mass SpectrometerSpectrometer

• A Mass Spectrometer is an analytical instrument A Mass Spectrometer is an analytical instrument that can separate charged molecules according that can separate charged molecules according to theirto their mass–to–charge ratio.mass–to–charge ratio.

• Mass spectrometer can answer the questions Mass spectrometer can answer the questions “what is in the sample” (qualitative structural “what is in the sample” (qualitative structural information) and “how much is present” information) and “how much is present” (quantitative determination) for a very wide (quantitative determination) for a very wide range of samples at high sensitivityrange of samples at high sensitivity

Investigator(s) Contribution Nobel Prize

Thomson 1897 discovery of the electron, first mass spectrometer

1906 in Physics

Dempster 1918 Electron ionization and magnetic focusing

Aston 1919 atomic weights using MS and isotopes study

1922 in Chemistry

Stephens 1946 Time-of-flight mass analysis

Hipple, Sommer, and Thomas

1949 Ion cyclotron resonance

Johnson and Nier 1953 Double-focusing instruments

Paul and Steinwedel

1953 Quadrupole analyzers 1989 in Physics

Beynon 1956 High-resolution MS

Mass

Spectrometry

Mass

Spectrometry

Mass S

pectrometry

Mass S

pectrometry

VINCAAdvanced

MassSpectrometry

FacilityPictureGallery

Mass

Spectrometry

Mass

Spectrometry

Mass S

pectrometry

Mass S

pectrometry

Mass

Spectrometry

Mass S

pectrometry

Mass S

pectrometry

Maldi TOF Mass Spectromerer

Mass

Spectrometry

Mass S

pectrometry

Mass S

pectrometry

Magnetic Mass Spectrometer MS-1-MT

Mass

Spectrometry

Mass S

pectrometry

Mass S

pectrometry

Quadrupole Mass Spectrometer

Mass

Spectrometry

Mass S

pectrometry

Mass S

pectrometry

Mass Spectrometry Group

FULLERENES

DERIVATIZED (FUNCTIONALIZED) FULLERENES

CARBON NANOTUBES

FUNCTIONALIZED NANOTUBES

• Li@C60, Li@C70, Li2@C70 and Li3@C70 • Fullerenol C60(OH)16, C60(OH)22• Fullerene bisadduct derivative C60C15H29N3O4 • Carbon nanotubes as Maldi matrix• Decorated carbon nanotubes by silver clusters• Endo and exo fullerenes by 99mTc• Carbon nanotubes derocated by DNA• Sequencing DNA by carbon nanotubes

The personal review (the limiting range of topics):

• Prof. Dr. T.D. Märk, Institut für Ionenphysik, Innsbruck, Austria

• Prof. Dr. Chava Lifshictz, The Hebrew University of Jerusalem, Israel

• Prof. Dr. Lev Sidorov, Moscow State University, Russia

• Prof. Dr. Thomas Drewello, University of Warwick, UK

• Prof. Dr. Maurizio Prato, University of Trieste, Italy

Camera

Pumping Pumping

Timed ion selector

Reflector

Lineardetector

Extractiongrids

Reflectordetector

Laser

Sample plate

Components of a Mass Spectrometer

INLET ION SOURCE MASS FILTER DETECTOR

Sample plate

HPLCGCSolids probe

MALDI

API/ElectrosprayIonSprayEI, CI

TOF

QuadrupoleIon TrapMagnetic SectorFTMS

“Hybrid”

Microchannel PlateElectron Multiplier

Laser flash produces matrix (M) neutrals, positive, negative ions and sample neutrals.

M M*, MH+, (M-H)-

Sample molecules (A) are ionised by gas phase proton transfer

MH++A AH++M(M-H)-+A AH-+M

Ion Source: MALDI (Matrix Assisted Laser Desorption Ionisation)

+

+

+

+

+Ions of same mass, different velocities

++

Delayed Extraction (DE)

1: Laser fired. Formed ions detach from plate in the absence of an electric field.

0 kV

0 nsec

4: Slow ions catch up with faster ones at the detector.

+20 kV+

+++

3: Field applied. Gradient accelerates slow ions more than fast ones.

+20 kV ++

+

2: Expansion of the ion cloud in the absence of an electric field.

0 kV

150 nsec

++ +

Detector

The electrical field applied within the reflector produces an ion mirror effect directing the ions towards a second detector

Mass Filter: Reflector TOF

Improvement in resolution by • Increasing the effective flight length of the tube• Re-focusing of analogous ions having slight different energy due to initial spread in the ion source

2,4,6-trihydroxy acetophenone (THAP)

-cyano-4-hydroxycinnamic acid2,5-dihydroxybenzoic acid (2,5-DHB)

Dithranol trans-3-indoleacrylic acid

Sinapinic acid (3,5-Dimethoxy-4-hydroxy cinnamic acid)

2-(4-hydroxyphenylazo)-benzoic acid (HABA)

3-hydroxypicolinic acid (3-HPA)

COOH

OH

N N

OH O OH

HO

CH3O

CH3O

CH CHCOOH

COOH

OHN

OH

OHHO

COCH3

HO

CH C(CN)COOH

C C

COOH

N

H

H

OH

HO

COOH

Carbon ClustersPeptide (0.1-10 pmol/l)

Protein (0.1-10 pmol/ l)

Oligonucleotide (10-100 pmol/ l)

Polymer (10-4M)

MALDI-TOF Matrices

CHCA and DCTB matrices

Isotopic Resolution

• What benefit is high resolution• Improved identification of peptides• Indication of potential modification• Greater degree of mass accuracy

• Resolution is defined as :

Mass / (peak width at half peak height)

High Resolution - Too much data?Monoisotopic resolution of Insulin

C12 : 5730.61

C13

2 x C13

In compounds with more than 100 carbon atoms the height of the 13C isotope peak exceeds the height of the 12C peak

MALDI TOF mass spectrum of the fullerenol C60(OH)16 containing sample using DCTB as a

matrix and the corresponding negative-ion results

Novel fullerene bisadduct derivative

MALDI TOF mass spectrum of the novel fullerene bisadduct derivative C60C15H29N3O4. M+ and [M-H]+ positive ions , m/z=

1035.56 and 1036.48, were detected using CHCA and DCTB matrices

MALDI spectra of unpurified MWCN and SEM image

The positive MALDI spectra of fullerenes C60 with carbon nanotubes

Exo and endohedral compleves of C60 and C70 and C60(OH)(22) [99mTc(CO)3(H2O)3]@C60(OH)(22)

Silver clusters on carbon nanotubes

Figure 1. TEM images of Ag/polymer MWCNT, (a) in the atmosphere of Ar, (b) in the

Figure 4: (a) STM image of MWCNT, (b) STM image of Ag/MWCNT

Figure 5. STM image of Ag cluster

500 520 540 560 580 600

Mass (m /z)

8.6E +4

0102030405060708090

100

% In

tens

ity

<<A5_20090401_O3>> 4700 Reflector Spec #1=>SM3[BP = 502.9, 85908]

502.

8875

504.

8934

575.

6540

538.

0265

540.

0317

573.

6571

577.

6596

511.

7487

513.

7502

500.

8856

548.

8847

546.

8802

539.

0295

506.

9008

536.

0130

503.

8916

541.

0361

571.

6611

509.

7503

515.

7507

579.

6620

592.

8669

550.

8857

576.

6692

544.

8741

501.

8875

574.

6693

528.

8879

530.

8863

590.

8674

547.

8834

584.

0289

517.

2814

542.

5086

526.

8900

594.

8686

519.

2823

512.

7545

582.

0224

537.

7695

524.

9095

533.

7408

558.

8225

507.

9090

586.

0416

535.

2653

556.

8302

522.

0139

578.

2431

500.

0455

597.

1603

572.

6711

560.

8234

554.

0315

570.

8796

566.

0222

568.

0260

500 520 540 560 580 600

Mass (m /z)

5.9E +4

0102030405060708090

100

% In

tens

ity

<<A4_20090401_O2>> 4700 Reflector Spec #1[BP = 610.8, 83871]50

4.88

17

502.

8788

575.

6449

538.

0115

540.

0176

548.

8660

573.

6461

546.

8654

577.

6464

592.

8387

511.

7328

500.

8739

513.

7347

506.

8859

550.

8667

539.

0154

503.

8807

541.

0216

590.

8397

594.

8358

535.

9985

571.

6459

509.

7336

579.

6465

515.

7372

501.

8754

544.

8619

576.

6519

547.

8666

584.

0125

530.

8639

517.

2804

582.

0063

574.

6469

519.

2761

507.

8861

528.

8698

543.

0383

532.

8652

586.

0269

526.

8759

512.

7377

558.

8168

560.

8096

522.

0126

500 520 540 560 580 600

Mass (m /z)

9.1E +4

0102030405060708090

100

% In

tens

ity

<<A2_20090401_O1>> 4700 Reflector Spec #1[BP = 610.8, 98238]

504.

8709

502.

8666

537.

9944

540.

0009

548.

8569

575.

6302

546.

8552

506.

8752

573.

6307

511.

7164

500.

8580

513.

7162

577.

6312

538.

9969

592.

8418

550.

8581

541.

0039

503.

8677

535.

9811

505.

8734

583.

9943

590.

8431

594.

8422

530.

8552

509.

7170

547.

8573

581.

9841

544.

8486

515.

7169

501.

8599

528.

8582

571.

6323

586.

0027

579.

6296

507.

8778

532.

8577

576.

6354

543.

0150

526.

8577

551.

8629

534.

7233

574.

6387

512.

7198

524.

8610

540.

1561

517.

2502

538.

1509

519.

2477

536.

7193

597.

1165

573.

1227

521.

9890

567.

9949

565.

9926

553.

9944

Mass spectrum of silver clusters

Using carbon nanotubes to inducemicronuclei and double strand breaks of

the DNA in human cellsJelena Cveticanin, Gordana Joksic, Andreja Leskovac,

Sandra Petrovic, Ana Valenta Sobot and Olivera Neskovic1Vinca Institute of Nuclear Sciences, PO Box 522, Belgrade, Serbia

Figure 1 Figure 2

Figure 1: Implication of functionalized CNTS in the human lymphocyte cell

Figure 2: STM picture of functionalized CNTS by sequence of DNA

Hipervalent molecules

LinI, n=2-6Knudsen efusion mass spectromety

LiI with C70Experimental and theoretical investigation of

new hypervalent molecules LinF (n = 2–4)

Mass Spectrometry GroupVinča Institute of Nuclear Sciences

• Thermal Ionization Mass Spectrometry (TIMS)• Maldi-Tof Mass Spectrometry (Maldi-Tof MS)

Olivera NeškovićMiomir Veljković

Suzana VeličkovićVesna Đorđević

Jelena CvetićaninJasmina ĐustebekAleksandra Đerić

Đorđe Trpkov