Chemical production of hydrogen with in- situ separation · 2015. 9. 21. · A. Murugan, A....

31
Chemical production of hydrogen with in- situ separation Ian S. Metcalfe Professor of Chemical Engineering Newcastle University [email protected] 21 May 2013

Transcript of Chemical production of hydrogen with in- situ separation · 2015. 9. 21. · A. Murugan, A....

Page 1: Chemical production of hydrogen with in- situ separation · 2015. 9. 21. · A. Murugan, A. Thursfield and I. S. Metcalfe, ‘A chemical looping process for hydrogen production using

Chemical production of hydrogen with in-

situ separation

Ian S. Metcalfe

Professor of Chemical Engineering

Newcastle University

[email protected]

21 May 2013

Page 2: Chemical production of hydrogen with in- situ separation · 2015. 9. 21. · A. Murugan, A. Thursfield and I. S. Metcalfe, ‘A chemical looping process for hydrogen production using

Introduction

Uses of hydrogen

How is hydrogen made

Process intensification

Gas solid reactions, simultaneous reaction and separation

and ‘breaking’ equilibrium

Membranes

Chemical looping

Page 3: Chemical production of hydrogen with in- situ separation · 2015. 9. 21. · A. Murugan, A. Thursfield and I. S. Metcalfe, ‘A chemical looping process for hydrogen production using

Ammonia production

Fuel upgrading (HDS, HDN and

hydrocracking)

Hydrogenation of fats in the food industry

Hydrogen as a fuel is not a significant use

If you produce and sell hydrogen it will not

be used as a fuel

Uses of hydrogen

Page 4: Chemical production of hydrogen with in- situ separation · 2015. 9. 21. · A. Murugan, A. Thursfield and I. S. Metcalfe, ‘A chemical looping process for hydrogen production using

Uses

Hot air balloons

Light Fuel

Agriculture

Hydrogenation

Fuel cell

Conventional Method (steam methane reforming)

CH4 + H2O 3 H2 + CO

CO + H2O H2 + CO2

Steam reforming

700 – 1100oC, Ni catalyst

Water gas shift

350oC, Fe catalyst 200oC, Cu catalyst

H2 + CO2 PSA H2

CO2 Energy intensive, very expensive, PSA separation. Cost increases with required purity.

2

Introduction | Steam-Iron Process | Thermodynamics | Materials | Results | Future Work

Page 5: Chemical production of hydrogen with in- situ separation · 2015. 9. 21. · A. Murugan, A. Thursfield and I. S. Metcalfe, ‘A chemical looping process for hydrogen production using

Hydrogen production

Page 6: Chemical production of hydrogen with in- situ separation · 2015. 9. 21. · A. Murugan, A. Thursfield and I. S. Metcalfe, ‘A chemical looping process for hydrogen production using

5× (CH4 + 2H2O = CO2 + 4H2) ΔHR0 = ~+850 kJ/mol

CH4 + 2O2 = CO2 + 2H2O ΔHR0 = ~-890 kJ/mol

6CH4 + 2O2 + 8H2O = 6CO2 + 20H2 Autothermal

Not far off

CH4 + 0.5O2 + H2O = CO2 + 3H2

Energy balance

Page 7: Chemical production of hydrogen with in- situ separation · 2015. 9. 21. · A. Murugan, A. Thursfield and I. S. Metcalfe, ‘A chemical looping process for hydrogen production using

Improved selectivity of reforming (avoid carbon deposition

and loss of catalyst activity). Modifying Ni catalysts.

Partial oxidation instead of reforming – remove need for

heat transfer (capital cost of plant depends on heat transfer

load and reformers are heat transfer limited NOT kinetically

limited). Involves air separation.

New processes involving reaction and separation –

dynamic or membrane processes.

Processes to ‘break’ equilibrium for WGS (also allows

higher temperatures to be used). LT WGS catalysts are not

suitable for distributed processes due to slow kinetics.

Catalytic reaction engineering challenges

Page 8: Chemical production of hydrogen with in- situ separation · 2015. 9. 21. · A. Murugan, A. Thursfield and I. S. Metcalfe, ‘A chemical looping process for hydrogen production using

Produce hydrogen from dissociation of water

H2 O

Use of a reduced solid surface for the dissociation

of water and production of hydrogen:

Page 9: Chemical production of hydrogen with in- situ separation · 2015. 9. 21. · A. Murugan, A. Thursfield and I. S. Metcalfe, ‘A chemical looping process for hydrogen production using

Produce hydrogen from dissociation of water

CO

O

CO2

Use of a reduced solid surface for the dissociation

of water and production of hydrogen:

Page 10: Chemical production of hydrogen with in- situ separation · 2015. 9. 21. · A. Murugan, A. Thursfield and I. S. Metcalfe, ‘A chemical looping process for hydrogen production using

Produce hydrogen from dissociation of water

H2 O

CO CO2

Use of a reduced solid surface for the dissociation

of water and production of hydrogen:

Page 11: Chemical production of hydrogen with in- situ separation · 2015. 9. 21. · A. Murugan, A. Thursfield and I. S. Metcalfe, ‘A chemical looping process for hydrogen production using

Water-gas shift reaction thermodynamics

CO + H2O = CO2 + H2

ΔHR0 (25C) = -41 kJ/mol

ΔGR0 (810C) = 0 kJ/mol

OHCO

HCO

PP

PPK

RT

GK

2

22

0

ln

Page 12: Chemical production of hydrogen with in- situ separation · 2015. 9. 21. · A. Murugan, A. Thursfield and I. S. Metcalfe, ‘A chemical looping process for hydrogen production using

Virtual

oxygen

chemical

potential

Equilibrium

Batch operation

Time

2

2

H

OH

P

P

2CO

CO

P

P

CO + H2O = CO2 + H2

H2O

CO CO2, CO

H2, H2O

WGS thermodynamics – batch operation

Page 13: Chemical production of hydrogen with in- situ separation · 2015. 9. 21. · A. Murugan, A. Thursfield and I. S. Metcalfe, ‘A chemical looping process for hydrogen production using

Membrane-based WGS

Virtual

oxygen

chemical

potential

Equilibrium

Co-current operation

Length

2

2

H

OH

P

P

2CO

CO

P

P

CO + H2O = CO2 + H2

H2O

CO CO2, CO

H2, H2O

Page 14: Chemical production of hydrogen with in- situ separation · 2015. 9. 21. · A. Murugan, A. Thursfield and I. S. Metcalfe, ‘A chemical looping process for hydrogen production using

Membrane-based WGS

Virtual

oxygen

chemical

potential

Counter-current operation

Length

2

2

H

OH

P

P

2CO

CO

P

P

CO + H2O = CO2 + H2

H2, H2O

CO CO2, CO

H2O

No equilibrium limitation

Smaller driving forces for

permeation

Page 15: Chemical production of hydrogen with in- situ separation · 2015. 9. 21. · A. Murugan, A. Thursfield and I. S. Metcalfe, ‘A chemical looping process for hydrogen production using

Chemical looping WGS

CO + H2O = CO2 + H2

CO2 CO

H2O H2

Page 16: Chemical production of hydrogen with in- situ separation · 2015. 9. 21. · A. Murugan, A. Thursfield and I. S. Metcalfe, ‘A chemical looping process for hydrogen production using

Materials

ceramic of choice : perovskite (mineral CaTiO3)

general formula ABO3 (A+2B+4O3 or A+3B+3O3)

Ca2+ / large cation e.g., La, Sr

lattice O2- anion

Ti4+ / small cation e.g., Co, Fe

lattice O2- anion vacancy

A

B

Page 17: Chemical production of hydrogen with in- situ separation · 2015. 9. 21. · A. Murugan, A. Thursfield and I. S. Metcalfe, ‘A chemical looping process for hydrogen production using

H2O H2

membrane

CH4

CO 2H2

O2-

2h+

O

Hydrogen production from SMR

Page 18: Chemical production of hydrogen with in- situ separation · 2015. 9. 21. · A. Murugan, A. Thursfield and I. S. Metcalfe, ‘A chemical looping process for hydrogen production using

Microtubular membranes

LSCF (La0.6 Sr0.4 Co0.2 Fe0.8 O3-δ)

Supplied by Kang Li of Imperial College

Page 19: Chemical production of hydrogen with in- situ separation · 2015. 9. 21. · A. Murugan, A. Thursfield and I. S. Metcalfe, ‘A chemical looping process for hydrogen production using

Membrane-based steam reforming – LSCF 900°C

CH4 (5%) – 20ml(STP)min-1

H2O (7.2%) – 20ml(STP)min-1 H2O ⇆ O + H2 H2

O2- CO,H2

T = 900°C

0 100 200 3000.0

0.2

0.4

0.6

0.8

1.0

Mo

le fra

ctio

n / %

Time / hours

H2

CH4

CH4 off

R.V. Franca, A. Thursfield and I. S.

Metcalfe, ‘La0.6Sr0.4Co0.2Fe0.8O3

microtubular membranes for hydrogen

production from water splitting’ J.

Membrane Sci. 389 (2012) 173– 181.

Page 20: Chemical production of hydrogen with in- situ separation · 2015. 9. 21. · A. Murugan, A. Thursfield and I. S. Metcalfe, ‘A chemical looping process for hydrogen production using

Introduction | Steam-Iron Process | Thermodynamics | Materials | Results | Future Work

Process invented in 1907 Requires no separation step High Purity H2

Cyclic Process

Steam-Iron Process (using natural gas reducing feed)

Fe

Fe3O4

CO

CO2

H2O

H2

STEAM-

IRON

CYCLE

3

Page 21: Chemical production of hydrogen with in- situ separation · 2015. 9. 21. · A. Murugan, A. Thursfield and I. S. Metcalfe, ‘A chemical looping process for hydrogen production using

Baur-Glaessner phase diagram

M. F. Bleeker, S. R. A. Kersten and H. J. Veringa, Catalysis Today, 2007, 127, 278-290.

Page 22: Chemical production of hydrogen with in- situ separation · 2015. 9. 21. · A. Murugan, A. Thursfield and I. S. Metcalfe, ‘A chemical looping process for hydrogen production using

CO2

O2- 2h+

Chemical looping WGS

H2 O H2O

O2- 2h+

Page 23: Chemical production of hydrogen with in- situ separation · 2015. 9. 21. · A. Murugan, A. Thursfield and I. S. Metcalfe, ‘A chemical looping process for hydrogen production using

CO2

O2- 2h+

O2- 2h+

CO

CO2

Chemical looping WGS

Page 24: Chemical production of hydrogen with in- situ separation · 2015. 9. 21. · A. Murugan, A. Thursfield and I. S. Metcalfe, ‘A chemical looping process for hydrogen production using

La0.7Sr0.3FeO3-δ (LSF731) oxygen deficiency (δ) in relation to pH2O/pH2

850oC

A. Murugan, A. Thursfield and I. S.

Metcalfe, ‘A chemical looping process

for hydrogen production using iron-

containing perovskites’ Energy Environ.

Sci. 4(11) (2011) 4639-4649

Page 25: Chemical production of hydrogen with in- situ separation · 2015. 9. 21. · A. Murugan, A. Thursfield and I. S. Metcalfe, ‘A chemical looping process for hydrogen production using

Fe60 behaviour

1st (solid line) and 150th (dashed line) isothermal chemical looping WGS cycles recorded at 850oC for 50 mg of (c) Fe60, reduction in carbon monoxide (d) Fe60, reoxidation in water. Arrows indicate oxidation state changes of iron in Fe60 according to thermodynamic studies.

Fixed bed microreactor

Page 26: Chemical production of hydrogen with in- situ separation · 2015. 9. 21. · A. Murugan, A. Thursfield and I. S. Metcalfe, ‘A chemical looping process for hydrogen production using

LSF731 behaviour

1st (solid line) and 150th (dashed line) isothermal chemical looping WGS cycles recorded at 850oC for 50 mg of (a) LSF731, reduction in carbon monoxide (b) LSF731, reoxidation in water. Arrows indicate oxidation state changes of iron in Fe60 according to thermodynamic studies.

Fixed bed microreactor

Page 27: Chemical production of hydrogen with in- situ separation · 2015. 9. 21. · A. Murugan, A. Thursfield and I. S. Metcalfe, ‘A chemical looping process for hydrogen production using

Cycling of LSF731 and iron oxide

Molar production (with error bars) during isothermal cycling at 850oC for 50 mg of (a) LSF731, reduction in carbon monoxide (b) LSF731, reoxidation in water, (c) and (d) are for iron oxide.

A. Murugan, A. Thursfield and I. S.

Metcalfe, ‘A chemical looping

process for hydrogen production

using iron-containing perovskites’

Energy Environ. Sci. 4(11) (2011)

4639-4649

Page 28: Chemical production of hydrogen with in- situ separation · 2015. 9. 21. · A. Murugan, A. Thursfield and I. S. Metcalfe, ‘A chemical looping process for hydrogen production using

Uses of hydrogen

How is hydrogen made

Process intensification

Gas solid reactions, simultaneous reaction and separation

and ‘breaking’ equilibrium

Membranes

Chemical looping

Conclusion

Page 29: Chemical production of hydrogen with in- situ separation · 2015. 9. 21. · A. Murugan, A. Thursfield and I. S. Metcalfe, ‘A chemical looping process for hydrogen production using

Dr Alan Thursfield, Dr Arul Murugan, Dr Danai Poulidi,

Dr Cristina Dueso, Dr Anne Huber, Dr Rafael Vilar

Franca, Ms Claire Thompson, Dr Walairat Suksamai,

Hang Qi

EPSRC for funding under the SUPERGEN

programme and PLATFORM grant, ERC Advanced

Grant

Professor Kang Li, Imperial College

http://research.ncl.ac.uk/appcat/

Acknowledgements

Page 30: Chemical production of hydrogen with in- situ separation · 2015. 9. 21. · A. Murugan, A. Thursfield and I. S. Metcalfe, ‘A chemical looping process for hydrogen production using

References

Tan, X., Li, K., Thursfield, A., Metcalfe. I. S., ‘Oxyfuel combustion using a catalytic ceramic

membrane reactor’, Catalysis Today 131 (2008) 292–304.

R.V. Franca, A. Thursfield and I. S. Metcalfe, ‘La0.6Sr0.4Co0.2Fe0.8O3 microtubular membranes

for hydrogen production from water splitting’ J. Membrane Sci. 389 (2012) 173– 181.

A. M. Kierzkowska, C. D. Bohn, S. A. Scott, J. P. Cleeton, J. S. Dennis and C. R. Muller, Ind.

Eng. Chem. Res., 2010, 49, 5383–5391.

A. Murugan, A. Thursfield and I. S. Metcalfe, ‘A chemical looping process for hydrogen

production using iron-containing perovskites’ Energy Environ. Sci. 4(11) (2011) 4639-4649

Alan Thursfield, Arul Murugan, Rafael Franca and Ian S. Metcalfe, ‘'Chemical looping and

oxygen permeable ceramic membranes for hydrogen production – A review'’, Energy

Environ. Sci. 5(6) (2012) 7421-7459

http://research.ncl.ac.uk/appcat/

Page 31: Chemical production of hydrogen with in- situ separation · 2015. 9. 21. · A. Murugan, A. Thursfield and I. S. Metcalfe, ‘A chemical looping process for hydrogen production using

END