Chapter 8: 파손(Mechanical Failure)elearning.kocw.net/.../lec/2013/Chosun/Choibyungsang/8.pdf ·...

34
Chapter 8 - 1 ISSUES TO ADDRESS... How do cracks that lead to failure form? How is fracture resistance quantified? How do the fracture resistances of the different material classes compare? How do we estimate the stress to fracture? How do loading rate, loading history, and temperature affect the failure behavior of materials? Ship - cyclic loading from waves. Computer chip - cyclic thermal loading. Hip implant - cyclic loading from walking. Adapted from Fig. 22.30(b), Callister 7e. (Fig. 22.30(b) is courtesy of National Semiconductor Corporation.) Adapted from Fig. 22.26(b), Callister 7e. Chapter 8: 파손(Mechanical Failure) Adapted from chapter-opening photograph, Chapter 8, Callister & Rethwisch 8e. (by Neil Boenzi, The New York Times.)

Transcript of Chapter 8: 파손(Mechanical Failure)elearning.kocw.net/.../lec/2013/Chosun/Choibyungsang/8.pdf ·...

Page 1: Chapter 8: 파손(Mechanical Failure)elearning.kocw.net/.../lec/2013/Chosun/Choibyungsang/8.pdf · 2013-06-27 · Wulpi, Understanding How Components Fail, American Society for Metals,

Chapter 8 - 1

ISSUES TO ADDRESS...

• How do cracks that lead to failure form?

• How is fracture resistance quantified? How do the fracture

resistances of the different material classes compare?

• How do we estimate the stress to fracture?

• How do loading rate, loading history, and temperature

affect the failure behavior of materials?

Ship - cyclic loading

from waves.

Computer chip - cyclic

thermal loading.

Hip implant - cyclic

loading from walking. Adapted from Fig. 22.30(b), Callister 7e.

(Fig. 22.30(b) is courtesy of National

Semiconductor Corporation.)

Adapted from Fig. 22.26(b),

Callister 7e.

Chapter 8: 파손(Mechanical Failure)

Adapted from chapter-opening photograph,

Chapter 8, Callister & Rethwisch 8e. (by

Neil Boenzi, The New York Times.)

Page 2: Chapter 8: 파손(Mechanical Failure)elearning.kocw.net/.../lec/2013/Chosun/Choibyungsang/8.pdf · 2013-06-27 · Wulpi, Understanding How Components Fail, American Society for Metals,

Chapter 8 - 2

파괴 기구(Fracture mechanisms)

• 연성 파괴(Ductile fracture)

– 상당한 소성 변형 후 발생

• 취성 파괴(Brittle fracture)

– 소성 변형이 작거나 거의 일어나지 않은

상태에서 발생

– 매우 빠르게 진행(Catastrophic)

Page 3: Chapter 8: 파손(Mechanical Failure)elearning.kocw.net/.../lec/2013/Chosun/Choibyungsang/8.pdf · 2013-06-27 · Wulpi, Understanding How Components Fail, American Society for Metals,

Chapter 8 - 3

Ductile vs Brittle Failure

Very

Ductile

Moderately

Ductile Brittle

파손

현상:

Large Moderate %AR or %EL Small

• 연성 파손이 취성

파손보다 선호!

Adapted from Fig. 8.1,

Callister & Rethwisch 8e.

• 정의:

Ductile:

상당한 소성 변형 후

파괴(warning before

fracture)

Brittle: 어떠한 징후 없이

급작스런 파손(no

warning)

Page 4: Chapter 8: 파손(Mechanical Failure)elearning.kocw.net/.../lec/2013/Chosun/Choibyungsang/8.pdf · 2013-06-27 · Wulpi, Understanding How Components Fail, American Society for Metals,

Chapter 8 - 4

• 연성 파손(ductile

failure): -- 한 조각(one piece)

-- 많은 변형(large deformation)

Figures from V.J. Colangelo and F.A.

Heiser, Analysis of Metallurgical Failures

(2nd ed.), Fig. 4.1(a) and (b), p. 66 John

Wiley and Sons, Inc., 1987. Used with

permission.

Example: 관의 파손(Pipe Failures)

• 취성 파손(brittle

failure): -- 많은 조각(many pieces)

-- 작은 변형(small

deformations)

Page 5: Chapter 8: 파손(Mechanical Failure)elearning.kocw.net/.../lec/2013/Chosun/Choibyungsang/8.pdf · 2013-06-27 · Wulpi, Understanding How Components Fail, American Society for Metals,

Chapter 8 - 5

• 파손의

결과를

보여주는

파단면 (steel)

50 mm

particles

serve as void

nucleation

sites.

50 mm

From V.J. Colangelo and F.A. Heiser,

Analysis of Metallurgical Failures (2nd

ed.), Fig. 11.28, p. 294, John Wiley and

Sons, Inc., 1987. (Orig. source: P.

Thornton, J. Mater. Sci., Vol. 6, 1971, pp.

347-56.)

100 mm

Fracture surface of tire cord wire

loaded in tension. Courtesy of F.

Roehrig, CC Technologies, Dublin,

OH. Used with permission.

일반적인 연성 파손 (Moderately Ductile Failure)

• 파손의 단계: necking

s

void nucleation

void growth and coalescence

shearing at surface

fracture

Page 6: Chapter 8: 파손(Mechanical Failure)elearning.kocw.net/.../lec/2013/Chosun/Choibyungsang/8.pdf · 2013-06-27 · Wulpi, Understanding How Components Fail, American Society for Metals,

Chapter 8 - 6

일반적인 연성 및 취성 파손 (Moderately Ductile vs. Brittle Failure)

Adapted from Fig. 8.3, Callister & Rethwisch 8e.

컵-원뿔 파괴

(cup-and-cone fracture)

취성 파괴

(brittle fracture)

Page 7: Chapter 8: 파손(Mechanical Failure)elearning.kocw.net/.../lec/2013/Chosun/Choibyungsang/8.pdf · 2013-06-27 · Wulpi, Understanding How Components Fail, American Society for Metals,

Chapter 8 - 7

취성 파괴(Brittle Failure)

균열 생성 위치

Adapted from Fig. 8.5(a), Callister & Rethwisch 8e.

Page 8: Chapter 8: 파손(Mechanical Failure)elearning.kocw.net/.../lec/2013/Chosun/Choibyungsang/8.pdf · 2013-06-27 · Wulpi, Understanding How Components Fail, American Society for Metals,

Chapter 8 - 8

• 입계[Intergranular (between grains)] 304 S. Steel

(metal) Reprinted w/permission

from "Metals Handbook",

9th ed, Fig. 633, p. 650.

Copyright 1985, ASM

International, Materials

Park, OH. (Micrograph by

J.R. Keiser and A.R.

Olsen, Oak Ridge

National Lab.)

Polypropylene

(polymer) Reprinted w/ permission

from R.W. Hertzberg,

"Defor-mation and

Fracture Mechanics of

Engineering Materials",

(4th ed.) Fig. 7.35(d), p.

303, John Wiley and

Sons, Inc., 1996.

4 mm

• 입내[Transgranular (through grains)]

Al Oxide

(ceramic) Reprinted w/ permission

from "Failure Analysis of

Brittle Materials", p. 78.

Copyright 1990, The

American Ceramic

Society, Westerville, OH.

(Micrograph by R.M.

Gruver and H. Kirchner.)

316 S. Steel

(metal) Reprinted w/ permission

from "Metals Handbook",

9th ed, Fig. 650, p. 357.

Copyright 1985, ASM

International, Materials

Park, OH. (Micrograph by

D.R. Diercks, Argonne

National Lab.)

3 mm

160 mm

1 mm (Orig. source: K. Friedrick, Fracture 1977, Vol.

3, ICF4, Waterloo, CA, 1977, p. 1119.)

취성 파면(Brittle Fracture Surfaces)

Page 9: Chapter 8: 파손(Mechanical Failure)elearning.kocw.net/.../lec/2013/Chosun/Choibyungsang/8.pdf · 2013-06-27 · Wulpi, Understanding How Components Fail, American Society for Metals,

Chapter 8 - 9

• 입계[Intergranular (between grains)]

• 입내[Transgranular (through grains)]

Page 10: Chapter 8: 파손(Mechanical Failure)elearning.kocw.net/.../lec/2013/Chosun/Choibyungsang/8.pdf · 2013-06-27 · Wulpi, Understanding How Components Fail, American Society for Metals,

Chapter 8 - 10

• 응력-변형 거동 (Room T):

이상 대비 실제 소재 (Ideal vs Real Materials)

TS << TS engineering

materials

perfect

materials

s

e

E/10

E/100

0.1

perfect mat’l-no flaws

carefully produced glass fiber

typical ceramic typical strengthened metal typical polymer

• DaVinci (500 년 전!)의 관찰... -- wire가 길면 길수록, 파괴 하중은

작아진다.

• 이유:

-- 결함은 정상보다 이른 파괴를 야기

-- 큰 시편은 긴 결함을 갖는다!

Reprinted w/

permission from R.W.

Hertzberg,

"Deformation and

Fracture Mechanics

of Engineering

Materials", (4th ed.)

Fig. 7.4. John Wiley

and Sons, Inc., 1996.

Page 11: Chapter 8: 파손(Mechanical Failure)elearning.kocw.net/.../lec/2013/Chosun/Choibyungsang/8.pdf · 2013-06-27 · Wulpi, Understanding How Components Fail, American Society for Metals,

Chapter 8 - 11

결함은 응력의 집중원!

• Griffith Crack

where

t = 균열 첨단 부분의 곡율

반경(radius of curvature)

so = 공칭 작용 인장

응력(applied stress)

sm = 균열 첨단에서의 최대

응력(stress at crack tip)

t

Adapted from Fig. 8.8(a), Callister & Rethwisch 8e.

ott

om K s

ss

2/1

2a

Page 12: Chapter 8: 파손(Mechanical Failure)elearning.kocw.net/.../lec/2013/Chosun/Choibyungsang/8.pdf · 2013-06-27 · Wulpi, Understanding How Components Fail, American Society for Metals,

Chapter 8 - 12

균열 첨단에서의 응력 집중

Adapted from Fig. 8.8(b),

Callister & Rethwisch 8e.

Page 13: Chapter 8: 파손(Mechanical Failure)elearning.kocw.net/.../lec/2013/Chosun/Choibyungsang/8.pdf · 2013-06-27 · Wulpi, Understanding How Components Fail, American Society for Metals,

Chapter 8 - 13

파괴역학을 이용한 설계

r/h

sharper fillet radius

increasing w/h

0 0.5 1.0 1.0

1.5

2.0

2.5

응력 집중 계수, K t =

• Avoid sharp corners! s

Adapted from Fig.

8.2W(c), Callister 6e.

(Fig. 8.2W(c) is from G.H.

Neugebauer, Prod. Eng.

(NY), Vol. 14, pp. 82-87

1943.)

r , fillet

radius

w

h

s max

smax

s0

Page 14: Chapter 8: 파손(Mechanical Failure)elearning.kocw.net/.../lec/2013/Chosun/Choibyungsang/8.pdf · 2013-06-27 · Wulpi, Understanding How Components Fail, American Society for Metals,

Chapter 8 - 14

균열의 전파

날카로운 첨단은 무딘 끝보다 균열의 전파가 쉽다.

• 균열의 첨단에서 소성 변형하는 재료는 균열을 둔화 시킨다.

deformed region

brittle

균열에서의 에너지 평형

• 탄성 변형 에너지- • 탄성 변형에 따른 소재 내 에너지 저장

• 균열의 전파 시 에너지는 방출

• 새로운 표면의 생성을 위해서는 에너지가 필요

ductile

Page 15: Chapter 8: 파손(Mechanical Failure)elearning.kocw.net/.../lec/2013/Chosun/Choibyungsang/8.pdf · 2013-06-27 · Wulpi, Understanding How Components Fail, American Society for Metals,

Chapter 8 - 15

균열의 전파 기준

균열 첨단에서의 최대 응력(sm)이 균열 전파에 필요한 임계 응력(sc)을 초과 시 균열 전파

– E = 탄성 계수(modulus of elasticity)

– s = 비표면 에너지(specific surface energy)

– a = 내부 균열 길이의 ½ (one half length of internal crack)

연성 재료의 경우 => s 는 s + p 로 대체

p : 소성 변형 에너지

2/12

s

as

cE

i.e., sm > sc

Page 16: Chapter 8: 파손(Mechanical Failure)elearning.kocw.net/.../lec/2013/Chosun/Choibyungsang/8.pdf · 2013-06-27 · Wulpi, Understanding How Components Fail, American Society for Metals,

Chapter 8 - 16

파괴 인성

Based on data in Table B.5,

Callister & Rethwisch 8e. Composite reinforcement geometry is: f

= fibers; sf = short fibers; w = whiskers;

p = particles. Addition data as noted

(vol. fraction of reinforcement): 1. (55vol%) ASM Handbook, Vol. 21, ASM Int.,

Materials Park, OH (2001) p. 606.

2. (55 vol%) Courtesy J. Cornie, MMC, Inc.,

Waltham, MA.

3. (30 vol%) P.F. Becher et al., Fracture

Mechanics of Ceramics, Vol. 7, Plenum Press

(1986). pp. 61-73.

4. Courtesy CoorsTek, Golden, CO.

5. (30 vol%) S.T. Buljan et al., "Development of

Ceramic Matrix Composites for Application in

Technology for Advanced Engines Program",

ORNL/Sub/85-22011/2, ORNL, 1992.

6. (20vol%) F.D. Gace et al., Ceram. Eng. Sci.

Proc., Vol. 7 (1986) pp. 978-82.

Graphite/ Ceramics/ Semicond

Metals/ Alloys

Composites/ fibers

Polymers

5

K Ic

(MP

a ·

m 0.

5 )

1

Mg alloys

Al alloys

Ti alloys

Steels

Si crystal

Glass - soda

Concrete

Si carbide

PC

Glass 6

0.5

0.7

2

4

3

10

2 0

3 0

<100>

<111>

Diamond

PVC

PP

Polyester

PS

PET

C-C (|| fibers) 1

0.6

6 7

4 0

5 0 6 0 7 0

100

Al oxide Si nitride

C/C ( fibers) 1

Al/Al oxide(sf) 2

Al oxid/SiC(w) 3

Al oxid/ZrO 2 (p) 4

Si nitr/SiC(w) 5

Glass/SiC(w) 6

Y 2 O 3 /ZrO 2 (p) 4

Page 17: Chapter 8: 파손(Mechanical Failure)elearning.kocw.net/.../lec/2013/Chosun/Choibyungsang/8.pdf · 2013-06-27 · Wulpi, Understanding How Components Fail, American Society for Metals,

Chapter 8 - 17

• 균열 성장 조건:

• 크고(a), 가장 큰 응력 하의 균열이 가장 먼저 성장!

균열 성장에 대한 설계

K ≥ Kc = asY

--Scenario 1: 최대 결함의

크기가 응력의 설계를 결정

maxas

Y

Kcdesign

s

amax no fracture

fracture

--Scenario 2: 응력의 설계가

최대 결함의 크기를 결정 2

max

1

s

design

c

Y

Ka

amax

s no fracture

fracture

Page 18: Chapter 8: 파손(Mechanical Failure)elearning.kocw.net/.../lec/2013/Chosun/Choibyungsang/8.pdf · 2013-06-27 · Wulpi, Understanding How Components Fail, American Society for Metals,

Chapter 8 - 18

Design Example: 항공기 날개

정답: MPa 168)( B sc

• 2가지 설계 방안...

Design A --가장 큰 결함의 크기 = 9 mm

--파괴 응력 = 112 MPa

Design B --동일 소재 사용

--가장 큰 결함 = 4 mm

--파괴 응력 = ?

• 주의: 두 설계에서 Y와 KIc 의 값은 동일

• 평면 변형률 파괴 인성 KIc = 26 MPa-m0.5 를 갖는 소재 사용

• 식 8.5... maxa

sY

KIcc

B max Amax aa cc ss

9 mm 112 MPa 4 mm --결과:

= a = sY

KIc constant

Page 19: Chapter 8: 파손(Mechanical Failure)elearning.kocw.net/.../lec/2013/Chosun/Choibyungsang/8.pdf · 2013-06-27 · Wulpi, Understanding How Components Fail, American Society for Metals,

Chapter 8 - 19

충격 시험(Impact Testing)

final height initial height

• 충격 하중: -- 실험 조건이 어려움

-- 취성(brittle)의 증가

-- 인성(toughness)의 감소

Adapted from Fig. 8.12(b),

Callister & Rethwisch 8e. (Fig.

8.12(b) is adapted from H.W.

Hayden, W.G. Moffatt, and J.

Wulff, The Structure and

Properties of Materials, Vol. III,

Mechanical Behavior, John Wiley

and Sons, Inc. (1965) p. 13.)

(Charpy)

Page 20: Chapter 8: 파손(Mechanical Failure)elearning.kocw.net/.../lec/2013/Chosun/Choibyungsang/8.pdf · 2013-06-27 · Wulpi, Understanding How Components Fail, American Society for Metals,

Chapter 8 - 20

충격 에너지에 대한 온도의 영향

Adapted from Fig. 8.15,

Callister & Rethwisch 8e.

• 연성-취성 전이 온도(Ductile-to-Brittle Transition Temperature)

(DBTT)...

저강도 BCC metals (e.g., iron at T < 914ºC)

Imp

act E

ne

rgy

Temperature

고강도 High strength materials ( s y > E/150)

polymers

More Ductile Brittle

Ductile-to-brittle transition temperature

저강도 FCC metals (e.g., Cu, Ni)

Page 21: Chapter 8: 파손(Mechanical Failure)elearning.kocw.net/.../lec/2013/Chosun/Choibyungsang/8.pdf · 2013-06-27 · Wulpi, Understanding How Components Fail, American Society for Metals,

Chapter 8 - 21

• 2차 세계대전 전: The Titanic • 2차 세계대전 전 : Liberty ships

• 문제: DBTT가 상온 직하(약 4℃)의 강을 사용

Reprinted w/ permission from R.W. Hertzberg,

"Deformation and Fracture Mechanics of Engineering

Materials", (4th ed.) Fig. 7.1(a), p. 262, John Wiley and

Sons, Inc., 1996. (Orig. source: Dr. Robert D. Ballard,

The Discovery of the Titanic.)

Reprinted w/ permission from R.W. Hertzberg,

"Deformation and Fracture Mechanics of Engineering

Materials", (4th ed.) Fig. 7.1(b), p. 262, John Wiley and

Sons, Inc., 1996. (Orig. source: Earl R. Parker,

"Behavior of Engineering Structures", Nat. Acad. Sci.,

Nat. Res. Council, John Wiley and Sons, Inc., NY,

1957.)

전략적 설계:

DBTT 이상의 온도 유지!

Page 22: Chapter 8: 파손(Mechanical Failure)elearning.kocw.net/.../lec/2013/Chosun/Choibyungsang/8.pdf · 2013-06-27 · Wulpi, Understanding How Components Fail, American Society for Metals,

Chapter 8 - 22

피로(Fatigue)

Adapted from Fig. 8.18,

Callister & Rethwisch 8e.

(Fig. 8.18 is from Materials

Science in Engineering, 4/E

by Carl. A. Keyser, Pearson

Education, Inc., Upper

Saddle River, NJ.)

• 피로(Fatigue) = 오랜 시간 동안 응력 및 변형률 사이클이

반복된 후에 파손

• 반복 응력 -- 중요 변수: S, sm, 반복 주기

s max

s min

s

time

s m S

• 중요: 피로...

--smax < sy의 상태에서도 부품의 파괴

--모든 금속 부품 파손의 약 90%를 차지

tension on bottom

compression on top

counter motor

flex coupling

specimen

bearing bearing

Page 23: Chapter 8: 파손(Mechanical Failure)elearning.kocw.net/.../lec/2013/Chosun/Choibyungsang/8.pdf · 2013-06-27 · Wulpi, Understanding How Components Fail, American Society for Metals,

Chapter 8 - 23

Adapted from Fig.

8.19(a), Callister &

Rethwisch 8e.

피로 파괴 거동 형태

• 피로 한계, Sfat: --S < Sfat 피로 파손 무

Sfat

case for steel (typ.)

N = Cycles to failure 10

3 10

5 10

7 10

9

unsafe

safe

S =

str

ess a

mplit

ude

• 몇몇 재료는 피로

한계가 없다!

Adapted from Fig.

8.19(b), Callister &

Rethwisch 8e.

case for Al (typ.)

N = Cycles to failure 10

3 10

5 10

7 10

9

unsafe

safe

S =

str

ess a

mplit

ude

Page 24: Chapter 8: 파손(Mechanical Failure)elearning.kocw.net/.../lec/2013/Chosun/Choibyungsang/8.pdf · 2013-06-27 · Wulpi, Understanding How Components Fail, American Society for Metals,

Chapter 8 - 24

응력 S1에서의 피로 수명

N1사이클에서의 피로 강도

Page 25: Chapter 8: 파손(Mechanical Failure)elearning.kocw.net/.../lec/2013/Chosun/Choibyungsang/8.pdf · 2013-06-27 · Wulpi, Understanding How Components Fail, American Society for Metals,

Chapter 8 - 25

• 점진적인 균열의 성장

typ. 1 to 6

as~

하중의 사이클에 따른 균열 길이의 증가

• 피로 파손 회전 샤프트 -- Kmax < Kc 하에서도

균열의 성장

-- 빠른 균열 성장 • s 증가

• 균열이 길어질 때

• 하중의 주기가 증가 할 때

crack origin

Adapted from

Fig. 8.21, Callister &

Rethwisch 8e. (Fig.

8.21 is from D.J.

Wulpi, Understanding

How Components Fail,

American Society for

Metals, Materials Park,

OH, 1985.)

피로 균열 성장 률

mKdN

d

a

Page 26: Chapter 8: 파손(Mechanical Failure)elearning.kocw.net/.../lec/2013/Chosun/Choibyungsang/8.pdf · 2013-06-27 · Wulpi, Understanding How Components Fail, American Society for Metals,

Chapter 8 - 26

피로 수명의 증가

2. 응력 집중 원의 제거

Adapted from

Fig. 8.25, Callister &

Rethwisch 8e.

bad

bad

better

better

Adapted from

Fig. 8.24, Callister &

Rethwisch 8e.

1. 표면을 압축 응력에 노출

(표면 균열의 성장을 억제하기

위하여)

N = Cycles to failure

moderate tensile s m Larger tensile s m

S =

str

ess a

mp

litu

de

near zero or compressive s m

--Method 1: shot peening

put surface

into compression

shot

평균응력의 크기 증가 피로 수명은 감소

--Method 2: 침탄 처리(carburizing)

C-rich gas

Page 27: Chapter 8: 파손(Mechanical Failure)elearning.kocw.net/.../lec/2013/Chosun/Choibyungsang/8.pdf · 2013-06-27 · Wulpi, Understanding How Components Fail, American Society for Metals,

Chapter 8 - 27

크리프(Creep) 일정 하중이나 응력 (s)과 온도 하에서 재료의 시간에 따른

영구 변형

Adapted from

Fig. 8.28, Callister &

Rethwisch 8e.

1차 크리프(Primary Creep): 기울기(creep rate)는

시간에 따라 감소

2차 크리프(Secondary Creep): 정상 상태 i.e.,

일정한 기울기 e/t).

3차 크리프(Tertiary Creep): 기울기(creep rate)는

시간에 따라 증가, i.e. 크리프 속도의 가속

s s,e

0 t

Page 28: Chapter 8: 파손(Mechanical Failure)elearning.kocw.net/.../lec/2013/Chosun/Choibyungsang/8.pdf · 2013-06-27 · Wulpi, Understanding How Components Fail, American Society for Metals,

Chapter 8 - 28

• 일정 온도 이상에서 발생, T > 0.4 Tm (in K)

Adapted from Fig. 8.29,

Callister & Rethwisch 8e.

Creep: 온도 의존성

elastic

primary secondary

tertiary

Page 29: Chapter 8: 파손(Mechanical Failure)elearning.kocw.net/.../lec/2013/Chosun/Choibyungsang/8.pdf · 2013-06-27 · Wulpi, Understanding How Components Fail, American Society for Metals,

Chapter 8 - 29

Secondary Creep

• 주어진 온도(T)와 응력(s) 하에서 변형률은 일정

-- 재료의 변형 경화와 회복이 평형

stress exponent (material parameter)

strain rate

activation energy for creep

(material parameter)

applied stress material const.

• 온도(T)와

응력(s)의 증가에

따라 변형률은

증가

10

2 0

4 0

10 0

2 0 0

10 -2 10 -1 1 Steady state creep rate (%/1000hr) e s

Str

ess (

MP

a) 427ºC

538ºC

649ºC

Adapted from

Fig. 8.31, Callister 7e.

(Fig. 8.31 is from Metals

Handbook: Properties

and Selection:

Stainless Steels, Tool

Materials, and Special

Purpose Metals, Vol. 3,

9th ed., D. Benjamin

(Senior Ed.), American

Society for Metals,

1980, p. 131.)

se

RT

QK cn

s exp2

Page 30: Chapter 8: 파손(Mechanical Failure)elearning.kocw.net/.../lec/2013/Chosun/Choibyungsang/8.pdf · 2013-06-27 · Wulpi, Understanding How Components Fail, American Society for Metals,

Chapter 8 -

크리프 파손(Creep Failure)

• 파손(failure): grain boundaries를 따라 진행

applied

stress

g.b. cavities

From V.J. Colangelo and F.A. Heiser, Analysis of

Metallurgical Failures (2nd ed.), Fig. 4.32, p. 87, John

Wiley and Sons, Inc., 1987. (Orig. source: Pergamon

Press, Inc.)

30

Page 31: Chapter 8: 파손(Mechanical Failure)elearning.kocw.net/.../lec/2013/Chosun/Choibyungsang/8.pdf · 2013-06-27 · Wulpi, Understanding How Components Fail, American Society for Metals,

Chapter 8 -

크리프 파열 수명의 예측 • 파열 시간의 계산 S-590 Iron, T = 800ºC, s = 20,000 psi

time to failure (rupture)

function of

applied stress

temperature

LtT r )log20(

파열 수명, tr

310x24)log20)(K 1073( rt

Ans: tr = 233 hr Adapted from Fig. 8.32, Callister & Rethwisch

8e. (Fig. 8.32 is from F.R. Larson and J.

Miller, Trans. ASME, 74, 765 (1952).)

103 L (K-h)

Str

ess (

10

3 p

si)

100

10

1 12 20 24 28 16

data for

S-590 Iron

20

24

31

Page 32: Chapter 8: 파손(Mechanical Failure)elearning.kocw.net/.../lec/2013/Chosun/Choibyungsang/8.pdf · 2013-06-27 · Wulpi, Understanding How Components Fail, American Society for Metals,

Chapter 8 -

파열 수명의 예측

S-590 Iron, T = 750ºC, s = 20,000 psi

• 해답:

32 32

Adapted from Fig. 8.32, Callister & Rethwisch

8e. (Fig. 8.32 is from F.R. Larson and J.

Miller, Trans. ASME, 74, 765 (1952).)

103 L (K-h)

Str

ess (

10

3 p

si)

100

10

1 12 20 24 28 16

data for

S-590 Iron

20

24

310x24)log20)(K 1023( rt

Ans: tr = 2890 hr

time to failure (rupture)

function of

applied stress

temperature

LtT r )log20(

파열 수명, tr

Page 33: Chapter 8: 파손(Mechanical Failure)elearning.kocw.net/.../lec/2013/Chosun/Choibyungsang/8.pdf · 2013-06-27 · Wulpi, Understanding How Components Fail, American Society for Metals,

Chapter 8 - 33

• Sharp corners produce large stress concentrations

and premature failure.

SUMMARY

• Engineering materials not as strong as predicted by theory

• Flaws act as stress concentrators that cause failure at

stresses lower than theoretical values.

• Failure type depends on T and s : -For simple fracture (noncyclic s and T < 0.4Tm), failure stress

decreases with:

- increased maximum flaw size,

- decreased T,

- increased rate of loading.

- For fatigue (cyclic s:

- cycles to fail decreases as s increases.

- For creep (T > 0.4Tm):

- time to rupture decreases as s or T increases.

Page 34: Chapter 8: 파손(Mechanical Failure)elearning.kocw.net/.../lec/2013/Chosun/Choibyungsang/8.pdf · 2013-06-27 · Wulpi, Understanding How Components Fail, American Society for Metals,

Chapter 8 - 34

Core Problems:

Self-help Problems:

ANNOUNCEMENTS

Reading: