Chapter 7 Quantifying Greenhouse Gas Sources and … · Chapter 7: Quantifying Greenhouse Gas...

16
Author: Stephen M. Ogle, Colorado State University Contents: 7 Quantifying Greenhouse Gas Sources and Sinks from LandUse Change ............................. 73 7.1 Overview ........................................................................................................................................................... 7‐3 7.2 Definitions of Land Use ............................................................................................................................... 7‐4 7.3 Caveats ............................................................................................................................................................... 7‐6 7.4 Estimating GHG Flux from Land‐Use Change..................................................................................... 7‐6 7.4.1 Carbon Pools in Live Biomass, Dead Biomass, and Soil Organic Carbon .. 7‐8 7.4.2 Changes in Soil Carbon .................................................................................................. 7‐8 7.4.3 Changes in other GHG emissions .............................................................................7‐13 Chapter 7 References .............................................................................................................................................7‐14 Suggested Chapter Citation: Ogle, S.M., 2014. Chapter 7: Quantifying Greenhouse Gas Sources and Sinks from Land Use Change. In Quantifying Greenhouse Gas Fluxes in Agriculture and Forestry: Methods for EntityScale Inventory. Technical Bulletin Number 1939. Office of the Chief Economist, U.S. Department of Agriculture, Washington, DC. 606 pages. July 2014. Eve, M., D. Pape, M. Flugge, R. Steele, D. Man, M. Riley‐Gilbert, and S. Biggar, Eds. USDA is an equal opportunity provider and employer. Chapter 7 Quantifying Greenhouse Gas Sources and Sinks from Land-Use Change

Transcript of Chapter 7 Quantifying Greenhouse Gas Sources and … · Chapter 7: Quantifying Greenhouse Gas...

Page 1: Chapter 7 Quantifying Greenhouse Gas Sources and … · Chapter 7: Quantifying Greenhouse Gas Sources and Sinks from Land-Use Change 7-4 Table 7‐2: Overview of Cropland and Grazing

Author:StephenM.Ogle,ColoradoStateUniversity

Contents:

7 QuantifyingGreenhouseGasSourcesandSinksfromLand‐UseChange.............................7‐37.1 Overview...........................................................................................................................................................7‐37.2 DefinitionsofLandUse...............................................................................................................................7‐47.3 Caveats...............................................................................................................................................................7‐67.4 EstimatingGHGFluxfromLand‐UseChange.....................................................................................7‐6

7.4.1 CarbonPoolsinLiveBiomass,DeadBiomass,andSoilOrganicCarbon..7‐87.4.2 ChangesinSoilCarbon..................................................................................................7‐87.4.3 ChangesinotherGHGemissions.............................................................................7‐13

Chapter7References.............................................................................................................................................7‐14

SuggestedChapterCitation:Ogle,S.M.,2014.Chapter7:QuantifyingGreenhouseGasSourcesandSinksfromLandUseChange.InQuantifyingGreenhouseGasFluxesinAgricultureandForestry:MethodsforEntity‐ScaleInventory.TechnicalBulletinNumber1939.OfficeoftheChiefEconomist,U.S.DepartmentofAgriculture,Washington,DC.606pages.July2014.Eve,M.,D.Pape,M.Flugge,R.Steele,D.Man,M.Riley‐Gilbert,andS.Biggar,Eds.

USDAisanequalopportunityproviderandemployer.

Chapter 7

Quantifying Greenhouse Gas Sources and Sinks from Land-Use Change

Page 2: Chapter 7 Quantifying Greenhouse Gas Sources and … · Chapter 7: Quantifying Greenhouse Gas Sources and Sinks from Land-Use Change 7-4 Table 7‐2: Overview of Cropland and Grazing

Chapter 7: Quantifying Greenhouse Gas Sources and Sinks from Land-Use Change

7-2

Acronyms,ChemicalFormulae,andUnits

C CarbonCH4 MethaneCO2 CarbondioxideCO2‐eq CarbondioxideequivalentsDOM DeadorganicmatterEPA EnvironmentalProtectionAgencyFIA ForestInventoryandAnalysisGHG Greenhousegasha HectareIPCC IntergovernmentalPanelonClimateChangeN2O NitrousOxideNRI NaturalResourcesInventoryPRISM Parameter‐ElevationRegressionsonIndependentSlopesModelSOC SoilorganiccarbonSSURGO SoilSurveyGeographicDatabaseUSDA U.S.DepartmentofAgriculture

Page 3: Chapter 7 Quantifying Greenhouse Gas Sources and … · Chapter 7: Quantifying Greenhouse Gas Sources and Sinks from Land-Use Change 7-4 Table 7‐2: Overview of Cropland and Grazing

Chapter 7: Quantifying Greenhouse Gas Sources and Sinks from Land-Use Change

7-3

7 QuantifyingGreenhouseGasSourcesandSinksfromLand‐UseChange

Thischapterprovidesguidanceonestimatingthenetgreenhousegas(GHG)fluxresultingfromchangesbetweenlandusetypes—i.e.,conversionsintoandoutofcropland,wetland,grazingland,orforestland—attheentityscale.Insomecases,itissufficienttoestimatethenetGHGfluxassociatedwiththenewlanduse.Ifchangingfromonelandusetoanotherhasasignificanteffectoncarbonstocks(e.g.,changesinforestcarbonstocks,changesinsoilcarbon),itwillbenecessarytorepresentthatinfluenceassociatedwithaspecificland‐usechange(e.g.,wetlandtocropland,grazinglandtocropland,forestlandtocropland).Table7‐1providesasummaryanddescriptionofthesourcescoveredinthischapter.

Table7‐1:OverviewofLand‐UseChangeSourcesandAssociatedGHGs

SourceMethodforGHGEstimation Description

CO2 N2O CH4Annualchangeincarbonstocksindeadwoodandlitterduetolandconversion

Liveanddeadbiomasscarbonstocksandsoilorganiccarbonconstitutesasignificantcarbonsinkinmanyforestandagriculturallands.Followingland‐useconversion,theestimationofdeadbiomasscarbonstockchangesduringtransitionperiodsrequiresthattheareasubjecttoland‐usechangeontheentity’soperationbetrackedforthedurationofthe20‐yeartransitionperiod.

Changeinsoilorganiccarbonstocksformineralsoils

Soilorganiccarbonstocksareinfluencedbyland‐usechange(Aaldeetal.,2006)duetochangesinproductivitythatinfluencecarboninputs,andtochangesinsoilmanagementthatinfluencecarbonoutputs(DavidsonandAckerman,1993;Ogleetal.,2005;PostandKwon,2000).Themostsignificantchangesinsoilorganiccarbonoccurwithland‐usechange,particularlyconversionstocroplands,duetochangesinthedisturbanceregimesandassociatedeffectsonsoilaggregatedynamics(Sixetal.,2000).

7.1 Overview

Inmanycases,themethodsproposedtoestimatecontributionstotheGHGfluxresultingfromland‐usechangearethesameasthoseusedtoestimatecarbonstockchangesintheindividualchaptersonCroplandandGrazingLand,Forestry,andWetlands;although,inspecificcasesguidanceisalsoprovidedonreconcilingcarbon‐stockestimatesbetweendiscretedatasetsandestimationmethods(e.g.,reconcilingforestsoilcarbonestimatesandcroplandsoilcarbonestimatesforland‐usechangefromforestlandtocropland).Table7‐2presentsthemethodologiesforeachsourceandindicatestheirsection.

Page 4: Chapter 7 Quantifying Greenhouse Gas Sources and … · Chapter 7: Quantifying Greenhouse Gas Sources and Sinks from Land-Use Change 7-4 Table 7‐2: Overview of Cropland and Grazing

Chapter 7: Quantifying Greenhouse Gas Sources and Sinks from Land-Use Change

7-4

Table7‐2:OverviewofCroplandandGrazingLandSystemsSources,MethodandSection

Section Source ProposedMethod

7.4.1 Annualchangeincarbonstocksindeadwoodandlitterduetolandconversion

Thechangeincarbonstocksindeadwoodandlitterduetolandconversionisestimatedasthedifferenceincarbonstocksintheoldandnewland‐usecategoriesappliedintheyearoftheconversion(carbonlosses),ordistributeduniformlyoverthelengthofthetransitionperiod(carbongains)(Aaldeetal.,2006).

7.4.2 Changeinsoilorganiccarbonstocksformineralsoils

ThemethodologiestoestimatesoilcarbonstockchangesfororganicsoilsandmineralsoilsareadoptedfromIPCC(Aaldeetal.,2006).

Theremainderofthischapterisorganizedasfollows:

Definitions

Caveats

StepsforestimatingGHGfluxfromland‐usechange

Overlaps,issues,andassemblyinstructionsforGHGfluxestimationfromland‐usechange

7.2 DefinitionsofLandUse

Aland‐usecategorizationsystemthatisconsistentandcomplete(bothtemporallyandspatially)isneededtoassesslanduseandland‐usechangestatuswithinanentity’sboundaries.Eachentityshouldensurethatitcharacterizesallofthelandwithinitsboundaryaccordingtothefollowingland‐usetypes:cropland,grazingland,forestland,wetland,settlements(e.g.,residential,farm,andcommercialbuildings),andotherland(e.g.,baresoil,rock).Theland‐usedefinitionsprovidedbelowareexpectedtobeadoptedbyentitiesusingthisreport.Itiscriticalthatindividualparcelareasareestimatedaccuratelyandwhencombinedadduptothetotallandareareportedbytheentitybeforeandaftertheland‐usechange.

CurrentdefinitionsforlandusethatareconsistentwithotherpolicyprogramsrelatedtoGHGestimation(e.g.,IntergovernmentalPanelonClimateChange(IPCC),NaturalResourcesInventory(NRI))areprovidedbelow.ThesedefinitionsarespecifictotheUnitedStatesandarebasedpredominantlyoncriteriausedintheland‐usesurveysfortheUnitedStates.Specifically,thedefinitionofforestlandisbasedontheForestInventoryandAnalysis(FIA)definitionofforest,1whiledefinitionsofcropland,grazingland,andsettlementsarebasedontheNRI.2ThedefinitionsforotherlandandwetlandsarebasedontheIPCC(2006)definitionsforthesecategories.

ForestLand:Aland‐usecategorythatincludesareasatleast36.6meterswideand0.4hectaresinsizewithatleast10percentcover(orequivalentstocking)bylivetreesofanysize,includinglandthatformerlyhadsuchtreecoverandthatwillbenaturallyorartificiallyregenerated.Forestlandincludestransitionzones,suchasareasbetweenforestandnon‐forestlandsthathaveatleast10percentcover(orequivalentstocking)withlivetreesandforestareasadjacenttourbanandbuilt‐uplands.Roadside,streamside,andshelterbeltstripsoftreesmusthaveacrownwidthofatleast36.6metersandcontinuouslengthofatleast110.6meterstoqualifyasforestland.Unimprovedroadsandtrails,

1SeeFIAGlossaryhttp://socrates.lv‐hrc.nevada.edu/fia/ab/issues/pending/glossary/Glossary_5_30_06.pdf2SeeNationalResourceInventoryGlossaryofSelectedTerms(p.9)http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb1041379.pdf

Page 5: Chapter 7 Quantifying Greenhouse Gas Sources and … · Chapter 7: Quantifying Greenhouse Gas Sources and Sinks from Land-Use Change 7-4 Table 7‐2: Overview of Cropland and Grazing

Chapter 7: Quantifying Greenhouse Gas Sources and Sinks from Land-Use Change

7-5

streams,andclearingsinforestareasareclassifiedasforestsiftheyarelessthan36.6meterswideor0.4hectaresinsize;otherwisetheyareexcludedfromforestlandandclassifiedassettlements.Tree‐coveredareasinagriculturalproductionsettings,suchasfruitorchards,ortree‐coveredareasinurbansettings,suchascityparks,arenotconsideredforestland(Smithetal.,2009).

Cropland:Aland‐usecategorythatincludesareasusedfortheproductionofadaptedcropsforharvest;thiscategoryincludesbothcultivatedandnon‐cultivatedlands.Cultivatedcropsincluderowcropsorclosegrowncropsandalsohayorpastureinrotationwithcultivatedcrops.Non‐cultivatedcroplandincludescontinuoushay,perennialcrops(e.g.,orchards),andhorticulturalcropland.Croplandalsoincludeslandwithalleycroppingandwindbreaks,aswellaslandsintemporaryfalloworenrolledinconservationreserveprograms(i.e.,set‐asides3).Roadsthroughcropland,includinginterstatehighways,statehighways,otherpavedroads,gravelroads,dirtroads,andrailroadsareexcludedfromcroplandareaestimatesandare,instead,classifiedassettlements.

GrazingLand:4Aland‐usecategoryunderwhichtheplantcoveriscomposedprincipallyofgrasses,grass‐likeplants,forbs,orshrubssuitableforgrazingandbrowsing.Thiscategoryincludesbothpasturesandnativerangelandsandareaswherepracticessuchasclearing,burning,chaining,and/orchemicalsareappliedtomaintainthegrassvegetation.Savannas,somewetlandsanddeserts,andtundraareconsideredgrazingland.Woodyplantcommunitiesoflowforbsandshrubs,suchasmesquite,chaparral,mountainshrub,andpinyon‐juniper,arealsoclassifiedasgrazinglandiftheydonotmeetthecriteriaforforestland.Grazinglandincludeslandmanagedwithagroforestrypracticessuchassilvopastureandwindbreaks,assumingthestandorwoodlotdoesnotmeetthecriteriaforforestland.Roadsthroughgrazingland,includinginterstatehighways,statehighways,otherpavedroads,gravelroads,dirtroads,andrailroadsareexcludedfromgrazinglandareaestimatesandare,instead,classifiedasSettlements.

Wetlands:5Aland‐usecategorythatincludeslandwithhydricsoils,nativeoradaptedhydrophyticvegetation,andahydrologicregimewerethesoilissaturatedduringthegrowingseasoninmostyears.Wetlandvegetationtypesmayincludemarshes,grasslands,orforests.Wetlandsmayhavewaterlevelsthatareartificiallychanged,orwherethevegetationcompositionorproductivityismanipulated.Theselandsincludeundrainedforestedwetlands,grazedwoodlandsandgrasslands,impoundmentsmanagedforwildlife,andlandsthatarebeingrestoredfollowingconversiontoanon‐wetlandcondition(typicallyasaresultofagriculturaldrainage).Provisionsforengineeredwetlandsincluding

3Aset‐asideiscroplandthathasbeentakenoutofactivecroppingandconvertedtosometypeofvegetativecover,including,forexample,nativegrassesortrees.4Notethatthisdefinitionisthe“grassland”definitionfromtheNIRwith“grassland”replacedwith“grazingland.”5Thejurisdictionaldefinitionofawetlandis“thoseareasthatareinundatedorsaturatedbysurfaceorgroundwateratafrequencyanddurationsufficienttosupport,andthatundernormalcircumstancesdosupport,aprevalenceofvegetationtypicallyadaptedforlifeinsaturatedsoilconditions.Wetlandsgenerallyincludeswamps,marshes,bogs,andsimilarareas”(EPA,1980).The1987CorpsofEngineersWetlandDelimitationManual&RegionalSupplements(U.S.ArmyCorpsofEngineers,1987)isusedtoidentifywetlandsinthefield.

Page 6: Chapter 7 Quantifying Greenhouse Gas Sources and … · Chapter 7: Quantifying Greenhouse Gas Sources and Sinks from Land-Use Change 7-4 Table 7‐2: Overview of Cropland and Grazing

Chapter 7: Quantifying Greenhouse Gas Sources and Sinks from Land-Use Change

7-6

stormwaterdetentionponds,constructedwetlandsforwatertreatment,andfarmpondsorreservoirsarenotincluded.Naturallakesandstreamsarealsonotincluded.

Settlements:Aland‐usecategoryrepresentingdevelopedareasconsistingofunitsof0.25acres(0.1ha)ormorethatincludesresidential,industrial,commercial,andinstitutionalland;constructionsites;publicadministrativesites;railroadyards;cemeteries;airports;golfcourses;sanitarylandfills;sewagetreatmentplants;watercontrolstructuresandspillways;parkswithinurbanandbuilt‐upareas;andhighways,railroads,andothertransportationfacilities.Alsoincludedaretractsoflessthan10acres(4.05ha)thatmaymeetthedefinitionsforForestLand,Cropland,Grassland,orOtherLandbutarecompletelysurroundedbyurbanorbuilt‐upland,andsoareincludedinthesettlementcategory.Ruraltransportationcorridorslocatedwithinotherlanduses(e.g.,ForestLand,Cropland,andGrassland)arealsoincludedinSettlements.

OtherLand:Aland‐usecategorythatincludesbaresoil,rock,ice,andalllandareasthatdonotfallintoanyoftheotherfiveland‐usecategories,whichallowsthetotalofidentifiedlandareastomatchthemanagedlandbase.

7.3 Caveats

ThemethodspresentedhereforquantifyingGHGfluxfromland‐usechangeareintendedforuseattheentityscaleonlandsmanagedtoenhancetheproductionoffood,feed,fiber,andrenewableenergy.Methodsarecurrentlynotprovidedforestimatingemissionsfromenergyusedwhenconvertinglandusefromonecategorytoanother.Methodsarealsonotprovidedforland‐usechangefromsettlementsorthe“otherland”categorytoforestland,cropland,grazingland,orwetlands.ThesemethodshavebeendevelopedforU.S.conditionsandareconsideredapplicabletoagriculturalandforestryproductionsystemsintheUnitedStates.

7.4 EstimatingGHGFluxfromLand‐UseChange

RationaleforSelectedMethodThismethodisbasedontheIPCC2006Guidelines(IPCC,2006)andrepresentsthemostconsistentmethodforestimatingemissionsfromland‐usechange.Othermethodsareprovidedforlandparcelsthatarenotundergoinglandusechange,andarguablythosemethodsaremorecomprehensiveforestimatingemissionsforthespecificlanduse.However,itiscriticalthatanindividuallandparcelhasaconsistent,seamlessmethodforestimatingcarbonstockchangesthroughoutthetimeseries.Otherwiseartificialchangesinstockscanbeestimatedduetoachange

MethodforEstimatingGHGFluxfromLand‐UseChange

TheGHGfluxassociatedwithland‐usechangeisestimatedbasedonthebalanceofcarbonlossesfromthepreviouslandusefollowingconversionandthecarbongainswiththecurrentlanduse.

Thissectiononlycoversmethodologiesfordeadorganicmattercarbonandsoilorganicmattercarbon.Guidanceonbiomasscarbonmethodsareprovidedintheland‐use‐specificsections(Cropland,Grazingland,ForestLand,andWetlands).

Thechangeincarbonstocksindeadwoodandlitterduetolandconversionisestimatedasthedifferenceincarbonstocksintheoldandnewland‐usecategoriesappliedintheyearoftheconversion(carbonlosses),ordistributeduniformlyoverthelengthofthetransitionperiod(carbongains).

ThemethodologiestoestimatesoilcarbonstockchangesfororganicsoilsandmineralsoilsareadoptedfromIPCC(Aaldeetal.,2006).

Page 7: Chapter 7 Quantifying Greenhouse Gas Sources and … · Chapter 7: Quantifying Greenhouse Gas Sources and Sinks from Land-Use Change 7-4 Table 7‐2: Overview of Cropland and Grazing

Chapter 7: Quantifying Greenhouse Gas Sources and Sinks from Land-Use Change

7-7

inthemethod.ThemethodsbasedontheIPCC2006Guidelines(IPCC,2006)providethisconsistencyandseamlessintegration.Furthertestinganddevelopmentwillbeneededbeforethemorecomprehensivemethodsprovidedineachlandusesectioncanbeintegratedintoaseamlessapproachforestimatingthecarbonstockchanges.

DescriptionofMethodForinventorypurposes,changesincarbonstockinbiomassshouldbeestimatedfor:(1)landremaininginthesameland‐usecategory;and(2)landconvertedtoanewland‐usecategory.Themethodsprovidedinthissectionarestrictlyforportionsofanentity’soperationthathaveundergonealandusechange.Thesoilcarbonchangesmustbeaddressedovera20‐yearperiod.Abovegroundandbelowgroundbiomassareestimatedonanannualbasis.Notethatthissectiononlyaddressesdeadorganicmattercarbonandsoilorganicmattercarbon.Biomasscarbonmethodsshouldfollowtheguidanceprovidedintheland‐use‐specificsections(Cropland,Grazingland,ForestLand,andWetlands).

Thereportingconventionisthatallcarbonstockchangesandnon‐CO2GHGemissionsassociatedwithaland‐usechangearereportedinthenewland‐usecategory.Forexample,inthecaseofconversionofforestlandtocropland,boththecarbonstockchangesassociatedwiththeclearingoftheforestaswellasanysubsequentcarbonstockchangesthatresultfromtheconversion,arereportedundercropland(IPCC,2006).

TheGHGfluxassociatedwithland‐usechangeisessentiallythesumoftheGHGfluxesassociatedwithprevious(i.e.,old)land‐usecategoriesplusthesumoftheGHGfluxesassociatedwiththecurrent(i.e.,new)land‐usecategoriesforaspecifiedareaundergoingconversionfromtheoldtonewland‐usecategory.GHGemissionsandstockchangesnotresultingfromaland‐usechangeareestimatedwithmethodsintheland‐use‐specificsections.

Foreachland‐usecategoryundergoingaland‐usechange,itisimportanttoestimatetheannualcarbonstockchangeoccurringwithineachstratumorsubdivision(e.g.,carbonpool,managementregime)forthatland‐usecategory.

Equation7‐1:AnnualCarbonStockChangesforaLand‐UseChangeEstimatedastheSumofChangesinAllLand‐UseCategories

ΔCLUC=ΔCLUCo+ΔCLUCn

and

ΔCLUC=ΔCLUCFL+ΔCLUCCL+ΔCLUCGL+ΔCLUCWL

Where:

ΔC=carbonstockchange(metrictonsCO2‐eqha‐1year‐1)

Indicesdenotethefollowingland‐usecategories:

LUC =land‐usechangeo =oldland‐usecategoryn =newland‐usecategoryFL =forestlandCL =croplandGL =grazinglandWL =wetlands

Page 8: Chapter 7 Quantifying Greenhouse Gas Sources and … · Chapter 7: Quantifying Greenhouse Gas Sources and Sinks from Land-Use Change 7-4 Table 7‐2: Overview of Cropland and Grazing

Chapter 7: Quantifying Greenhouse Gas Sources and Sinks from Land-Use Change

7-8

Forexample,inthecaseofconversionofforestlandtocropland,thecarbonstockchangesassociatedwitheachoftheforestcarbonpoolsplusharvestedwoodproductsshouldbeassessed,aswellasanysubsequentcarbonstockchangesthatresultfromtheconversion(specificannualizedchangesindeadorganicmatter,soilcarbon,etc.).

7.4.1 CarbonPoolsinLiveBiomass,DeadBiomass,andSoilOrganicCarbonLiveanddeadbiomasscarbonstocksandsoilorganiccarbonconstituteasignificantcarbonsinkinmanyforestandagriculturallands.Sector‐specificmethodsforestimatingchangesinbiomasscarbonstocksaredetailedintheindividualsectorchaptersandshouldbeusedwhenestimatingtheeffectofland‐usechange.Inadditiontoestimatingthechangesinbiomasscarbonstocksbeforeandaftertheland‐usechangeusingthesector‐specificmethods,itisalsoimportanttoestimateanyincreaseintheharvestedwoodpoolresultingfromclearing/harvestoftheforestfollowingthemethodsoutlinedinChapter6,Forestry.Anybiomassthatisretainedonthelandduringtheland‐useconversionwillneedtobeincludedintheestimation,suchasconversionofforesttograsslands,wheresometreesarelefttoprovideshadeforgrazinglivestock.

Followingland‐useconversion,theestimationofdeadbiomasscarbonstockchangesduringtransitionperiodsrequiresthattheareasubjecttoland‐usechangeontheentity’soperationbetrackedforthedurationofthe20‐yeartransitionperiod.Forexample,deadorganicmatter(DOM)stocksareassumedtoincreasefor20yearsafterconversiontoforestland.After20years,theareaconvertedbecomesforestandremainingforestland,andnofurtherDOMchangesareassumed.Theconceptualapproachtoestimatingchangesincarbonstocksindeadwoodandlitterpoolsistoestimatethedifferenceincarbonstocksintheoldandnewland‐usecategoriesandtoapplythischangeintheyearoftheconversion(carbonlosses),ortodistributeituniformlyoverthelengthofthetransitionperiod(carbongains).

7.4.2 ChangesinSoilCarbonSoilorganiccarbonstocksareinfluencedbyland‐usechange(Aaldeetal.,2006)duetochangesinproductivitythatinfluencecarboninputs,andtochangesinsoilmanagementthatinfluencecarbonoutputs(DavidsonandAckerman,1993;Ogleetal.,2005;PostandKwon,2000).Themostsignificantchangesinsoilorganiccarbonoccurwithland‐usechange,particularlyconversionstocroplands,duetochangesinthedisturbanceregimesandassociatedeffectsonsoilaggregatedynamics(Sixetal.,2000).Whilethereisconsiderableevidenceandmechanisticunderstandingabouttheinfluenceofland‐usechangeonsoilorganiccarbon,thereislessknownabouttheeffectonsoilinorganiccarbon.Consequently,currentmethodsdonotincludeimpactsoninorganiccarbonuncertaintyassociatedwithestimatesoflanduseandmanagementimpactsonsoilcarbonstocks.

Equation7‐2:AnnualCarbonStockChangesforaLand‐UseChangeasaSumofChangesinEachStratumWithinaLand‐UseChange

ΔCLUC=∑i∆CLUCI

Where:

ΔCLUC =carbonstockchangesforaland‐usechangeasdefinedinEquation7.1(metrictonsCO2‐eqha‐1year‐1)

i =denotesaspecificstratumorsubdivisionwithinthelandusesundergoingland‐useconversion(byanycombinationofspecies,climaticzone,ecotype,managementregime,etc.),i=1ton

Page 9: Chapter 7 Quantifying Greenhouse Gas Sources and … · Chapter 7: Quantifying Greenhouse Gas Sources and Sinks from Land-Use Change 7-4 Table 7‐2: Overview of Cropland and Grazing

Chapter 7: Quantifying Greenhouse Gas Sources and Sinks from Land-Use Change

7-9

EstimatingchangesinGHGemissions,includingcarbonstocks,requireconsistencyinthemethodsthatareappliedacrossatimeseries.Applyingdifferentmethodstoaccountforchangesincarbonstocksasthelandshiftsfromonelandusetoanotherwillleadtoartificialchangesinthestocksbeyondtheactualchangeoccurringontheland.Thus,inordertoensureconsistency,changesinsoilorganiccarbonstockswillbeestimatedfortheentiretimeseriesbeingreported,usingthemethoddescribedinthissection.Asnotedearlier,estimatesshouldbemadeseparatelyforeachparceloflandthatundergoesachangeinlanduse.However,thestockchangeswillonlybereportedasaland‐usechangeeffectfora20‐yeartransitionperiod.Applyingthesamemethodacrosstheentiretimeserieswilllimiterrorsintheestimationofmineralsoilorganiccarbonstockchangesthatwouldresultfromchangingmethodsafterthe20‐yeartransitionperiod.

7.4.2.1 DescriptionofMethodModelshavebeenadoptedfromtheIPCCmethodstoestimatesoilorganiccarbonstockchange(Aaldeetal.,2006).Formineralsoils,themethodwillrequireestimatesofcarbonstocksatthebeginningandendoftheyearinordertoestimatetheannualchangeusingtheequationbelow.Emissionsoccurinorganicsoilsfollowingdrainageduetotheconversionofananaerobicenvironmentwithahighwatertabletoaerobicconditions(ArmentanoandMenges,1986),resultinginasignificantlossofcarbontotheatmosphere(Ogleetal.,2003).Emissionestimationmethodsfromorganicsoilsshouldbeconsistentwiththeirappropriatesectormethodologies(i.e.,forestry,croplands,grazinglands,orwetlands).

MineralSoils:ThemodeltoestimatechangesinsoilorganiccarbonstocksformineralsoilshasbeenadoptedfromthemethoddevelopedbyIPCC(Aaldeetal.,2006).Thechangewouldneedtobeestimatedseparatelyforeachareaintheentity’soperationthatisconvertedfromonelandusetoanother.Thechangeinstocksforeachareaisestimatedoverfiveyearintervalsfortheentirereportingtimeseries,usingthefollowingequation:

Equation7‐3:AnnualChangeinCarbonStocksinDeadWoodandLitterDuetoLandConversion

ΔCDOM=(Cn‐Co)×Aon÷Ton

Where:

ΔCDOM =annualchangeincarbonstocksindeadwoodorlitter(metrictonsCyear‐1)

Co =deadwood/litterstock,undertheoldland‐usecategory(metrictonsCha‐1)

Cn =deadwood/litterstock,underthenewland‐usecategorymetrictonsCha‐1)

Aon =areaundergoingconversionfromoldtonewland‐usecategory(ha)

Ton =timeperiodofthetransitionfromoldtonewland‐usecategory(year)(Thedefaultis20yearsforcarbonstockincreasesand1yearforcarbonlosses.)

Page 10: Chapter 7 Quantifying Greenhouse Gas Sources and … · Chapter 7: Quantifying Greenhouse Gas Sources and Sinks from Land-Use Change 7-4 Table 7‐2: Overview of Cropland and Grazing

Chapter 7: Quantifying Greenhouse Gas Sources and Sinks from Land-Use Change

7-10

CarbonstocksareestimatedusingthefollowingequationadaptedfromtheIPCC(Aaldeetal.,2006):

Thestockchangefactors(FLU,FMG,FI)andreferencecarbonstocks(SOCREF)arecountry‐specificvaluesdevelopedfortheUnitedStates(EPA,2011;Ogleetal.,2003;Ogleetal.,2006).ThereferencestocksarebasedontheSOCstocksincroplands(Table7‐3),whiletheland‐usefactorsrepresenttherelativechangeinSOCbetweencroplandandgrazinglands,forestland,andset‐asidecropland(Table7‐4).Themanagementfactorsrepresenttheinfluenceoftillageincroplandsandgrasslandconditioningrazinglands.Theinputfactorsrepresentinfluencesofchangingplantproductivityoncarboninputtosoils.Managementandinputfactorsarenotneededforforestlands(Factorsaresettoavalueof1).

OrganicSoils:ThemethodologyforestimatingsoilcarbonstockchangesinorganicsoilshasbeenadoptedfromIPCC(Aaldeetal.,2006),andisdescribedaccordinglyinChapter4,Wetlands,andChapter3,Croplands,andGrazingLands.Chapter6,Forestry,recommendssoilsamplingincaseswheretherehavebeensignificantchangesinsoilcarbon(e.g.,landconversion).

Equation7‐4:ChangeinSoilOrganicCarbon StocksforMineralSoils

ΔCMineral=[(SOCf−SOCi)×CO2MW]÷D

Where:

ΔCMineral =annualchangeinmineralsoilorganiccarbonstock(metrictonsCO2‐eqyear‐1)

SOCf =soilorganiccarbonstockattheendofyear5(metrictonsC)

SOCi =soilorganiccarbonstockatthebeginningofyear1(metrictonsC)

CO2MW =ratioofmolecularweightofCO2toC=44/12(dimensionless)

D =timedependenceofstockchangefactors(20years)

Equation7‐5:SoilOrganicCarbon StockforMineralSoils

SOC=SOCREF×FLU×FMG×FI×A

Where:

SOC =soilorganiccarbonstockatthebeginning(SOCi)andendofthefiveyears(SOCf)(metrictonsC)

SOCREF =referencesoilorganiccarbonstock(metrictonsCha‐1)

FLU =stockchangefactorforlanduse(dimensionless)

FMG =stockchangefactorformanagement(dimensionless)

FI =stockchangefactorforinput(dimensionless)

A =areaofland‐usechange(ha)

Page 11: Chapter 7 Quantifying Greenhouse Gas Sources and … · Chapter 7: Quantifying Greenhouse Gas Sources and Sinks from Land-Use Change 7-4 Table 7‐2: Overview of Cropland and Grazing

Chapter 7: Quantifying Greenhouse Gas Sources and Sinks from Land-Use Change

7-11

Table7‐3:ReferenceCarbonStocks(MgCha‐1)(±1SE)ToEstimateSoilOrganicCarbonStockChangesforMineralSoils

SoilTypeUSDA

Taxonomy

CoolTemperate

Dry

CoolTemperateMoist

WarmTemperate

Dry

WarmTemperateMoist

Sub‐TropicalDry

Sub‐TropicalMoist

Highactivityclaysoils

Vertisols,Mollisols,Inceptisols,Aridisols,andhighbasestatusAlfisols

42±1.4 65±1.1 37±1.1 51±1.0 42±2.6 57±13.0

Lowactivityclaysoils

Ultisols,Oxisols,acidicAlfisols,andmanyentisols

45±3.0 52±2.3 25±1.4 40±1.2 39±4.8 47±13.9

Sandysoils

Anysoilswithgreaterthan70%sandandlessthan8%clay(oftenEntisols)

24±4.8 40±3.7 16±2.4 30±2.0 33±1.9 50±7.9

Volcanicsoils

Andisols 124±11.4 114±16.7 124±11.4 124±11.4 124±11.4 128±15.0

Spodicsoils

Spodosols 86±6.5 74±6.8 86±6.5 107±8.3 86±6.5 86±6.5

Wetlandsoils

SoilswithAquicsuborder

86± 89± 48± 51± 63± 48±

Source:EPA(2011)andOgleetal.(2003)Ogleetal.(2006).

Table7‐4:CarbonStockChangeFactors(±1SE)toEstimateSoilOrganicCarbonStockChangesforMineralSoils

FactorWarmTemperateMoist/Subtropical

Moist

WarmTemperate

Dry/SubtropicalDry

CoolTemperateMoist

CoolTemperateDry

Land‐UseFactorLong‐termcultivated 1 1 1 1Forest/grassland 1.42±0.06 1.37±0.05 1.24±0.06 1.20±0.06Set‐aside 1.31±0.06 1.26±0.04 1.14±0.06 1.10±0.05CroplandManagementFulltill 1 1 1 1Reducedtill 1.08±0.03 1.01±0.03 1.08±0.03 1.01±0.03No‐till 1.13±0.02 1.05±0.03 1.13±0.02 1.05±0.03GrasslandManagementa

Page 12: Chapter 7 Quantifying Greenhouse Gas Sources and … · Chapter 7: Quantifying Greenhouse Gas Sources and Sinks from Land-Use Change 7-4 Table 7‐2: Overview of Cropland and Grazing

Chapter 7: Quantifying Greenhouse Gas Sources and Sinks from Land-Use Change

7-12

FactorWarmTemperateMoist/Subtropical

Moist

WarmTemperate

Dry/SubtropicalDry

CoolTemperateMoist

CoolTemperateDry

Non‐degraded 1 1 1 1Moderatelydegraded 0.95±0.06 0.95±0.06 0.95±0.06 0.95±0.06Severelydegraded 0.7±0.14 0.7±0.14 0.7±0.14 0.7±0.14Improved 1.14±0.06 1.14±0.06 1.14±0.06 1.14±0.06CroplandinputLow 0.94±0.01 0.94±0.01 0.94±0.01 0.94±0.01Medium 1 1 1 1High 1.07±0.02 1.07±0.02 1.07±0.02 1.07±0.02Highwithamendmenta 1.38±0.06 1.34±0.08 1.38±0.06 1.34±0.08GrasslandinputaMedium 1 1 1 1High 1.11±0.04 1.11±0.04 1.11±0.04 1.11±0.04aGrasslandmanagementandinputfactorsarefromthe2006IPCCGuidelines(Verchotetal.,2006)aswellasthehighinputsystemswithmanureincroplands(Lascoetal.,2006).

7.4.2.2 ActivityDataMineralsoilsrequirethefollowingactivityforcroplands:

Cropselectionandrotationsequence;

Residuemanagement,includingharvested,burned,grazed,orleftinthefield;

Irrigation,yesorno;

Mineralfertilization,yesorno;

Limeamendments,yesorno;

Organicamendments,yesorno;

Tillageimplements,whichcanbeusedtodeterminetillageclassification(i.e.,fulltillage,reducedtillage,andno‐till);and

Covercrops,yesorno.Themethodforgrazinglandrequiresthefollowingmanagementactivitydata:

Degradationstatus,non‐degraded,moderatelydegraded,severelydegraded;

Irrigation,yesorno;

Mineralfertilization,yesorno;

Seedinglegumes,yesorno;

Limeamendments,yesorno;and

Organicamendments,yesorno.Themethodforforestlanddoesnotrequireanymanagementactivitydatabecausethemethodprovidedhereassumeslimitedinfluenceonsoilorganiccarbonstockchangesassociatedwithforestmanagementafteraland‐usechange(i.e.,theland‐usechangehasthelargestimpact).

Theactivitydataareusedtoclassifyland‐use,management,andinputclasses.TheclassificationscanbefoundinLascoetal.(2006)forcropland(Figure5.1),andVerchotetal.(2006)forgrassland(Figure6.1).

Page 13: Chapter 7 Quantifying Greenhouse Gas Sources and … · Chapter 7: Quantifying Greenhouse Gas Sources and Sinks from Land-Use Change 7-4 Table 7‐2: Overview of Cropland and Grazing

Chapter 7: Quantifying Greenhouse Gas Sources and Sinks from Land-Use Change

7-13

7.4.2.3 AncillaryDataAncillarydataincludeclimateregionsandsoiltypes,consistentwiththemethoddevelopedbytheIPCC(Bickeletal.,2006).WeatherdatamaybebasedonnationaldatasetssuchastheParameter‐ElevationRegressionsonIndependentSlopesModel(PRISM)data(Dalyetal.,2008)andareclassifiedaccordingtotheIPCCclassificationasrefinedfortheUnitedStates(Table7‐5).SoilsdatamayalsobebasedonnationaldatasetssuchastheSoilSurveyGeographicDatabase(SSURGO)(SoilSurveyStaff,2011),andareclassifiedaccordingtotheIPCCclassification(Bickeletal.,2006;Figure3A.5.3).However,entitiesmayalsosubstitutefield‐specificsoilsdata,aslongasentitiescharacterizethesoilpedonsnecessaryforuseoftheIPCCclassifications.Thesecharacteristicsincludesandandclaycontent,soilorder,andsuborder(SeeTable7‐3).

Table7‐5:ClimateClassificationfortheSoilOrganicCarbonMethodsAssociatedwithLand‐UseChange

ClimateType MeanAnnualTemperature(°C) MeanAnnualPrecipitation(mm)

Cooltemperatedry <10 <PotentialevapotranspirationCooltemperatemoist <10 ≥PotentialevapotranspirationWarmtemperatedry 10‐20 <PotentialevapotranspirationWarmtemperatemoist 10‐20 ≥PotentialevapotranspirationSubtropicaldry >20 <1000Subtropicalmoist >20 1000‐2000Source:Bickeletal.(2006).

7.4.2.4 ModelOutputModeloutputisgeneratedasanabsolutequantityofemissions.Thechangeinmineralsoilorganiccarbonstocksisestimatedbasedonstockchangesoverfive‐yeartimeperiods(Equation7.4).Inaddition,trendsinsoilorganiccarbonwillbeestimatedfortheentiretimeseriesassociatedwiththeparcelofland,including20previousyearsofhistory,inordertopresentthelongertermtrendsandprovideanadequatebaselineofdataandconsistencyinthetimeseriesforreportingpurposes.

7.4.2.5 LimitationsandUncertaintyThelimitationsofthemineralsoilorganiccarbonmethodincludenoassessmentoftheeffectofland‐usechangeatdeeperdepthsintheprofile(IPCCmethodonlyaddresseschangesintop30cmofsoilprofile;Aaldeetal.,2006),andnoassessmentoferosion,transport,anddepositionofcarbon.Uncertaintiesinthemineralsoilmethodsincludeimprecisionintheemissionfactors,inadditiontouncertaintiesintheactivityandancillarydata.Uncertaintyintheemissionfactorsisprovidedinthisguidance(Ogleetal.,2003;Ogleetal.,2006).Uncertaintyintheactivitydataisbasedontheentityinput,aswellastheancillarydatatotheextentthatthisinformationisprovidedbytheentity.UncertaintiescanbecombinedusingaMonteCarlosimulationapproach.

7.4.3 ChangesinotherGHGemissionsAspreviouslymentioned,changesinotherGHGemissions—i.e.,non‐CO2emissions—associatedwithaland‐usechangeshouldbeincludedinanyestimationoftheGHGfluxstrataassociatedwiththeoutgoingorincomingland‐usechange.WhilechangesinbiomassandsoilcarbonstocksarelikelytodominatetheGHGflux,thereareanumberofactivitiesthatmayoccurduringland‐useconversionthatmightresultinnon‐CO2emission.Forexample,ifforestharvestresidues(andotherdeadorganicmatter)arepiledandburntaspartoftheconversionofforestlandtoanotherlanduse,inadditiontothechangeincarbonstocktheresidueburningwillresultinemissionsofN2OandCH4;andifwetlandsareclearedanddrainedpriortoconversiontoanotherlanduse(e.g.,grazinglands,peatextraction),inadditiontothechangeincarbonstockfromclearing,thedraining

Page 14: Chapter 7 Quantifying Greenhouse Gas Sources and … · Chapter 7: Quantifying Greenhouse Gas Sources and Sinks from Land-Use Change 7-4 Table 7‐2: Overview of Cropland and Grazing

Chapter 7: Quantifying Greenhouse Gas Sources and Sinks from Land-Use Change

7-14

willresultinareductioninemissionsofCH4,andapossibleincreaseinemissionsofN2O,dependingonthenitrogencontentofthewetlandsoil(i.e.,peat).

Sector‐specificmethodsforestimatingchangesinbiomassburningnon‐CO2emissions(e.g.,forcroplandandgrazinglandsystems)andsoilnon‐CO2emissions(e.g.,forwetlandsystems)aredetailedintheindividualsectorchapters.

Chapter7References

Aalde,H.,P.Gonzalez,M.Gytarski,T.Krug,etal.2006.Chapter2:Genericmethodologiesapplicabletomultipleland‐usecategories.In2006IPCCGuidelinesforNationalGreenhouseGasInventories,S.Eggleston,L.Buendia,K.Miwa,T.NgaraandK.Tanabe(eds.).Japan:IGES.

Armentano,T.V.,andE.S.Menges.1986.Patternsofchangeinthecarbonbalanceoforganicsoil.Bickel,K.,G.Richards,M.Kohl,R.L.V.Rodrigues,etal.2006.Chapter3:Consistentrepresentationof

land.In2006IPCCGuidelinesforNationalGreenhouseGasInventories,S.Eggleston,L.Buendia,K.Miwa,T.NgaraandK.Tanabe(eds.).Japan:IGES.

Daly,C.,M.Halbleib,J.I.Smith,W.P.Gibson,etal.2008.PhysiographicallysensitivemappingofclimatologicaltemperatureandprecipitationacrosstheconterminousUnitedStates.InternationalJournalofClimatology,28:2031‐2064.

Davidson,E.,andI.Ackerman.1993.Changesinsoilcarboninventoriesfollowingcultivationofpreviouslyuntilledsoils.Biogeochemistry,20(3):161‐193.

EPA.1980.USEPARegulation40CFR230.3(t):U.S.EnvironmentalProtectionAgency.EPA.2011.InventoryofU.S.greenhousegasemissionsandsinks:1990‐2009.Washington,D.C.:

EnvironmentalProtectionAgency.IPCC.2006.IPCCGuidelinesforNationalGreenhouseGasInventories.TheNationalGreenhouseGas

InventoriesProgramme.Hayama,Kanagawa,Japan:TheIntergovernmentalPanelonClimateChange.

Lasco,R.D.,S.Ogle,J.Raison,L.Verchot,etal.2006.Chapter5:Cropland.In2006IPCCGuidelinesforNationalGreenhouseGasInventories,S.Eggleston,L.Buendia,K.Miwa,T.NgaraandK.Tanabe(eds.).Japan:IGES,IPCCNationalGreenhouseGasInventoriesProgram.

Ogle,S.M.,F.J.Breidt,M.D.Eve,andK.Paustian.2003.UncertaintyinestimatinglanduseandmanagementimpactsonsoilorganiccarbonstorageforUSagriculturallandsbetween1982and1997.GlobalChangeBiology,9(11):1521‐1542.

Ogle,S.M.,F.J.Breidt,andK.Paustian.2005.Agriculturalmanagementimpactsonsoilorganiccarbonstorageundermoistanddryclimaticconditionsoftemperateandtropicalregions.Biogeochemistry,72(1):87–121.

Ogle,S.M.,F.J.Breidt,andK.Paustian.2006.Biasandvarianceinmodelresultsassociatedwithspatialscalingofmeasurementsforparameterizationinregionalassessments.GlobalChangeBiology,12:516‐523.

Post,W.M.,andK.C.Kwon.2000.SoilCarbonSequestrationandLand‐UseChange:ProcessesandPotential.GlobalChangeBiology,6:317‐327.

Six,J.,E.T.Elliot,andK.Paustian.2000.Soilmacroaggregateturnoverandmicroaggregateformation:amechanismforCsequestrationunderno‐tillageagriculture.SoilBiol.Biochem.,32:2099‐2103.

Smith,W.B.,P.D.Miles,C.H.Perry,andS.A.Pugh.2009.ForestResourcesoftheUnitedStates,2007.Washington,DC:U.S.DepartmentofAgricultureForestService.

SoilSurveyStaff.2011.SoilSurveyGeographic(SSURGO)Database:NaturalResourceConservationServiceandUnitedStatesDepartmentofAgriculture.

Page 15: Chapter 7 Quantifying Greenhouse Gas Sources and … · Chapter 7: Quantifying Greenhouse Gas Sources and Sinks from Land-Use Change 7-4 Table 7‐2: Overview of Cropland and Grazing

Chapter 7: Quantifying Greenhouse Gas Sources and Sinks from Land-Use Change

7-15

U.S.ArmyCorpsofEngineers.1987.WetlandDelimitationManual&RegionalSupplementsWetlandsResearchProgramTechnicalReportY‐87‐1:U.S.ArmyCorpsofEngineers,EnvironmentalLaboratory,.http://www.usace.army.mil/Missions/CivilWorks/RegulatoryProgramandPermits/reg_supp.aspx.

Verchot,L.,T.Krug,R.D.Lasco,S.Ogle,etal.2006.Chapter5:Grassland.In2006IPCCGuidelinesforNationalGreenhouseGasInventories,S.Eggleston,L.Buendia,K.Miwa,T.NgaraandD.L.Tanaka(eds.).Japan:IGES.

Page 16: Chapter 7 Quantifying Greenhouse Gas Sources and … · Chapter 7: Quantifying Greenhouse Gas Sources and Sinks from Land-Use Change 7-4 Table 7‐2: Overview of Cropland and Grazing

Chapter 7: Quantifying Greenhouse Gas Sources and Sinks from Land-Use Change

7-16

Thispageisintentionallyleftblank.