Chapter 6 Protein Structure and Folding

107
Chapter 6 Protein Structure and Folding 1.Secondary Structure 2.Tertiary Structure 3.Quaternary Structure and Symmetry 4.Protein Stability 5.Protein Folding Myoglobin

Transcript of Chapter 6 Protein Structure and Folding

Page 1: Chapter 6 Protein Structure and Folding

Chapter 6 Protein Structure and Folding

1. Secondary Structure 2. Tertiary Structure 3. Quaternary Structure

and Symmetry 4. Protein Stability 5. Protein Folding

Myoglobin

Page 2: Chapter 6 Protein Structure and Folding

Introduction 1.  Proteins were long thought to be colloids of

random structure 2.  1934, crystal of pepsin in X-ray beam produces

discrete diffraction pattern -> atoms are ordered 3.  1958 first X-ray structure solved, sperm whale

myoglobin, no structural regularity observed 4.  Today, approx 50’000 structures solved

=> remarkable degree of structural regularity observed

Page 3: Chapter 6 Protein Structure and Folding

Hierarchy of Structural Layers 1.  Primary structure: amino acid sequence 2.  Secondary structure: local arrangement of peptide

backbone 3.  Tertiary structure: three dimensional arrangement

of all atoms, peptide backbone and amino acid side chains

4.  Quaternary structure: spatial arrangement of subunits

Page 4: Chapter 6 Protein Structure and Folding

Hierarchie der Proteinstruktur

Page 5: Chapter 6 Protein Structure and Folding

A) Sekundärstruktur

Lernziele:

1) Verstehen, dass der planare Charakter der Peptidbindung die konformationelle Flexibilität einer Polypeptidkette limitiert

2) Familiarisieren mit der α Helix und dem β Faltblatt

3) Verständnis der Struktur von fibrillären Proteinen: α Keratin und Kollagen

Page 6: Chapter 6 Protein Structure and Folding

Die Peptidbindung Lineare Verknüpfung / Kondensation von Aminosäuren

N -> C Amino -> Carboxyl

Page 7: Chapter 6 Protein Structure and Folding

Die Peptidbindung ist planar und limitiert damit die Konformation

Die Peptidbindung, welche zwei Aminosäuren miteinander verknüpft, ist resonanzstabilisiert und bildet daher eine starre planare Struktur

Page 8: Chapter 6 Protein Structure and Folding

Die Trans-Peptidbindung ist stabiler

Trans- ist ca. 8 kJ stabiler als cis-Konformation da keine sterische Hinderung Ausnahme: Prolin

Trans !!!

Page 9: Chapter 6 Protein Structure and Folding

Die Polypeptidkette in gestreckter Konformation

Kette von planaren Peptidbindungen mit R jeweils in trans

Page 10: Chapter 6 Protein Structure and Folding

Die Konformation des Peptidrückgrades kann durch 2 Torsionswinkel definiert werden: Φ (Phi), Cα-Ν

Ψ (Psi), Cα-C=O Als 180° definiert wenn wie gezeigt ausgedehnt + = Uhrzeigersinn when von Cα aus betrachtet

Page 11: Chapter 6 Protein Structure and Folding

Not all combinations of torsion angles are possible, some result in collision of N-H with O=C or R

Page 12: Chapter 6 Protein Structure and Folding

Sterische Behinderungen erlauben nur definierte Kombinationen der Torsionswinkel

β-Faltblatt

Ramachandran Diagram

α-Helices

C, Kollagen, Trippelhelix

Page 13: Chapter 6 Protein Structure and Folding

B) The most common regular secondary structures are the α Helix and the β Sheet

•  Two structures are widespread: α Helix and β Sheet = regular secondary structures

Page 14: Chapter 6 Protein Structure and Folding

• Rechtshändige Spule • Steigung 3.6 AS/ Windung = 5.4 Å • Stabilisiert durch Wasserstoffbrücken, C=O mit N-H at n+4 • Seitenketten gegen aussen, nach unten • Durschnittliche Länge ist 12 Aa = 3 turns ~18 Å

Die α-Helix

animation

Page 15: Chapter 6 Protein Structure and Folding

β-Faltblätter •  Durch H-Brücken zwischen benachbarten Ketten stabilisiert, nicht innerhalb der Kette wie bei der α-Helix •  Parallel oder antiparallel, welches ist stabiler ?

See animation

Page 16: Chapter 6 Protein Structure and Folding

Gefaltene Struktur von β-Blätter

•  From 2 to 22 strands •  Average 6 strands in protein •  Exhibit right-handed twist •  R ist oben-unten-oben

7-stranded

- 1 - 2 - 3

- 4 - 5 - 6

- 7

Page 17: Chapter 6 Protein Structure and Folding

Bovine carboxypeptidase A

Helices β-sheet with right-handed twist Coils

Page 18: Chapter 6 Protein Structure and Folding

Turns connect some units of secondary structure

•  topology = connectivity of β sheets can be complex or made by a simple turn/loop •  reverse turns or β bends, occur at the protein surface, connect antipar.-β sheets

reverse turns or β bends

Page 19: Chapter 6 Protein Structure and Folding

Reverse turns in polypeptide chains

•  Require 4 Aa •  180° flip of Aa 2

Page 20: Chapter 6 Protein Structure and Folding

C) Faserproteine Historisch wurden zwei Klassen von Proteinen unterschieden: Globuläre (löslich) und Fibriläre (unlöslich) Faserproteine spielen wichtige strukturelle Funktionen (schützend, verbindend, tragend). Keratin: epidermale Hornschicht, in Haar, Nägeln, Federn, Horn Kollagen: Bindegewebe (Knochen, Sehnen, Bänder)

Page 21: Chapter 6 Protein Structure and Folding

α-Keratin hat eine “coiled coil” Struktur

2 Helices die sich umeinander winden - Parallel N->C, ca. 310 AS lang -  Quervernetzung: Cys-Cys

=> Hard or soft keratin -  Humans, over 50 α genes -  tissue specific expression -  helix pitch 5.1 Å (rather than

5.4 Å as in α-helix) -  left-handed coil

-  β-Keratin in Federn

Page 22: Chapter 6 Protein Structure and Folding

Coiled coil has a pseudo-repeating structure: a-b-c-d-e-f-g-(a-b-c-d-) in which residues a and d are predominately nonpolar (3.6 AS/turn).

Helical wheel representation

Page 23: Chapter 6 Protein Structure and Folding

Übergeordnete Struktur von α-Keratin

Coiled-coil dimere Assemblieren zu Protifilamenten, welche weiter zu Microfibrilien und schliesslich zu Makrofibrilen zusammenlagern Haar Dauerwellen: Ausbildung neuer Disulfidbrücken

03.05.2010

13

C. Faserproteine!- lange Moleküle deren Sekundärstruktur Strukturmotive dominiert!- dienen als Strukturmatrix in Organismen und haben eine schützende, verbindende oder! tragende Funktion (Haut, Sehnen, Knochen)!- können auch bewegende Funktionen haben wie im Muskel oder in Cilien.!

Struktur-Funktionsbeziehungen werden an folgenden Beispielen erläutert:!

Keratin!Seidenfibroin!Kollagen!Elastin!

Faserproteine kristallisieren selten, assoziieren zu!Fasern (weniger geordnet als Kristalle)!Röntgenstruktur nur wenige verschwommene ge-!schwärtzte Stellen, wenig strukturelle Information!

Röntgenstruktur einer!Seidenfaser!

U.Albrecht BC1!

!-Keratin - Eine Helix aus Helices!Keratin = - mechanisch beständiges,!

! reaktionsträges Protein! - Hauptbestandteil der epidermalen!

! Hornschicht und Anhangsgebilde!! (Haar, Horn, Nägel, Federn)!

Säuger !-Keratin!Vögel "-Keratin!

Hierarchisch gegliederter Aufbau:!

Beispiel Haar (!-Keratin) aus abgestorbenen!Zellen gefüllt mit Makrofibrillen (200 nm !Durchmesser)!Makrofibrillen sind wiederum aus Mikrofibrillen!(8 nm Durchmesser) aufgebaut.!

20 µm!

U.Albrecht BC1!Fibriläre Proteine sind charakterisiert dadurch dass sie nur einen Typ von Sekundärstrukur aufweisen

Page 24: Chapter 6 Protein Structure and Folding

Collagen Collagen occurs in all multicellular organism, - Is the most abundant vertebrate protein - Strong insoluble fibers - Stress bearing component of connective tissues (bone, teeth, cartilage, tendon, Sehnen, Bänder) One collagen molecule consists of three polypeptide chains -  Mammals have at least 33 genetically distinct chains - Assembled in 20 different collagen varieties - One of the most common is Type I collagen:

-  two α1(I) chains and one α2(I) chain,

Page 25: Chapter 6 Protein Structure and Folding

Kollagen ein tripelhelikales Kabel Sequenz besteht aus repetitivem Triplet: Gly-X-Y -  Länger als 1000 AS, ~0.3µm !! -  X oft Pro, Y often Hyp -  Pro verhindert Bildung einer α-Helix -  Linksgängige Helix mit ~3 AS per Windung -  3 Parallele Ketten bilden ein rechtshändiges tripelhelikales Kabel - Jede 3. AS ist innerhalb der Struktur, nur Gly hat Platz, staggered

Page 26: Chapter 6 Protein Structure and Folding

Structure of collagen model peptide

Interchain hydrogen bonding from Gly N- to Pro O-atoms of adjacent chain

Extrem hohe Zugbelastung, da die Kette nicht Aufgewunden oder gedehnt werden kann….. Linksgängige Helix -> rechtshändiges tripelhelikales Kabel

Page 27: Chapter 6 Protein Structure and Folding

Collagen has a distinctive amino acid composition: - 1/3 of its residues is Gly -  15 to 30% are Pro and 4-hydroxyprolyl (Hyp)

These non-standard amino acids are formed after collagen is synthesized - Pro - > Hyp conversion by prolyl hydroxylase, Vitamin C-dependent (ascorbic acid)

Page 28: Chapter 6 Protein Structure and Folding

Skorbut ist eine Vitamin C-Mangelerscheinung, - Keine Neusynthese von funktionellem Kollagen - Hautläsionen, fragile Blutgefässe, schlechte Wundheilung -  Seeleute auf langen Fahrten, hatten keine frische Nahrung -  Captain James Cook “limely” führte Zitrusfüchte ein -  Vit C abhängige Prolyl-Hydroxylase

Collagen Defekte

Page 29: Chapter 6 Protein Structure and Folding

Collagens well-packed, rigid, triple-helical structure is responsible for its characteristic tensile strength Collagens assemble to form loose networks or thick fibrils arranged in bundles or sheets, depending on the tissue Collagen is internally covalently cross linked which makes it insoluble, not by Cys but by Lys and His reactions Lysyl oxidase reaction: => Nimmt mit Alter zu. Weshalb Fleisch von älteren Tieren zäher ist als das von jungen

Collagen Crosslinking

Page 30: Chapter 6 Protein Structure and Folding
Page 31: Chapter 6 Protein Structure and Folding
Page 32: Chapter 6 Protein Structure and Folding
Page 33: Chapter 6 Protein Structure and Folding
Page 34: Chapter 6 Protein Structure and Folding

D) Most proteins include nonrepetitive structures

Majority of proteins are globular and may contain several types of regular secondary structures, including α helices and β sheets and coils (≠ random coils, which are completely unstructured) The sequence affects the secondary structure: -  Pro is helix breaking, induces kink in α helix and β sheet -  Large amino acids such as Tyr and Ile induce steric clashes -  Peter Chou and Gerald Fasman revealed the propensity of amino acids to form helical or sheet structures -> Chou-Fasman prediction

Page 35: Chapter 6 Protein Structure and Folding
Page 36: Chapter 6 Protein Structure and Folding

2) Die Tertiärstruktur Lernziele:

1) Verstehen, dass die Tertiärstruktur die Raumkoordinaten jedes Atoms beschreibt

2)  Verstehen, dass die Tertiärstruktur eines Proteins aus Sekundärstrukturelementen aufgebaut wird, welche kombiniert werden können und dann Motive und Domänen bilden

3) Verstehen, dass die Raumstruktur eines Proteins stärker konserviert ist als seine Sequenz

Page 37: Chapter 6 Protein Structure and Folding

Die Tertiärstruktur von Proteinen

Die Tertiärstruktur beschreibt die Faltung der Sekundärstrukturelemente (α-Helix, β-Faltblatt und Turns) und spezifiziert die Raumkoordinaten eines jeden Atoms im Protein = 3D Struktur Diese Information wird in speziellen Struktur Datenbanken deponiert (protein structure database, pdb) Experimentell kann die Tertiärstruktur durch zwei Techniken bestimmt werden: Röntgenstrukturanalyse von Protein Kristallen oder NMR von Proteinen in Lösung

Page 38: Chapter 6 Protein Structure and Folding

Protein Kristalle

X-ray Diffraktionsmuster

Page 39: Chapter 6 Protein Structure and Folding

A) Most proteins structures are determined by X-ray crystallography or nuclear magnetic resonance

X-Ray crystallography: technique that directly images molecules

-  X-ray wave length is short, ~1.5 Å, equivalent to distance of atoms (visible light 4000 Å) (Synchrotron)

-  Crystal: repetitive arrangement of the same structure => diffraction pattern (darkness of spot is function of crystals electron density)

- X-ray interact with electrons (not with nuclei) -> X-ray structure is thus an electron density map of a given protein -> represents contours of atoms

Page 40: Chapter 6 Protein Structure and Folding

A thin section through a 1.5 Å resolution electron density map of a protein that is contoured in three

dimensions

Page 41: Chapter 6 Protein Structure and Folding

Most protein crystal structures exhibit less than atomic resolution

Crystal is build up by repeating units, containing protein in native conformation,

-  highly hydrated (40-60% water)

-  soft, jellylike consistency, unlike NaCl crystals

-  molecules are slightly disordered and display Brownian motion -> this determines the resolution limit of a given protein crystal (typical 1.5 – 3 Å)

-  inability to crystallize a protein to form crystals of sufficiently high resolution is a major limiting factor in structure determination

Page 42: Chapter 6 Protein Structure and Folding

Electron density maps of diketopiperazine at different resolution levels

- Electron density map alone is not sufficient to determine the structure if the protein, - Amino acid sequence is also required - Computerized fitting algorithm of atoms into the experimentally determined electron density map results in protein structure determination of up to 0.1 Å resolution

Page 43: Chapter 6 Protein Structure and Folding

Most crystallized proteins maintain their native conformations

Key question: does the structure of protein in a crystal accurately reflect the structure of the protein in solution, where it normally functions ? 1.  The protein in the crystal is hydrated like it is in solution 2.  X-ray structure is similar to NMR structure, which is determined from proteins that are in solution 3.  Many enzymes remain catalytically active in the crystal

Page 44: Chapter 6 Protein Structure and Folding

Protein structures can be determined by NMR

Nuclear magnetic resonance, NMR, an atom nucleus resonates if a magnetic field is applied. This resonance is sensitive to the electronic environment of the nucleus and its interaction with nearby nuclei - Developed since 1980, Kurt Wüthrich (ETH-Z), to determine protein structures in solution -  Because there are many nuclei in a protein that would crowd in a conventional one-dimensional NMR -> two-dimensional (2D) NMR was developed to measure atomic distances of chemically linked atoms (COSY) or of spatially close atoms (NOESY) -  Size limit of about 40 kD, may reach 100 kD soon -  Dynamic, can follow protein motion or folding

Page 45: Chapter 6 Protein Structure and Folding
Page 46: Chapter 6 Protein Structure and Folding
Page 47: Chapter 6 Protein Structure and Folding

B) Side chain location varies with polarity Since Kendrew solved the first protein structure, nearly 50’000 protein structures have been reported No two are the same, but they exhibit some remarkable consistency: globular structures lack the repeating sequences that support the conformation of fibrous proteins Amino acid side chains in globular proteins are distributed according to their polarity: 1. Nonpolar residues Val, Leu, Ile, Met and Phe occur mostly in the interior of a protein, excluded from the contact with water, hydrophobic core, compact packing (no empty room)

2. Charged amino acids Arg, His, Lys, Asp, Glu are located on the surface, never in hydrophobic core

3. Uncharged polar groups Ser, Thr, Asn, Gln, Tyr are usually on the surface but are also found inside but then are hydrogen bonded

Page 48: Chapter 6 Protein Structure and Folding

nonpolar polar

Side chain locations in an α helix and a β sheet

Surface of protein

α helix β sheet

Page 49: Chapter 6 Protein Structure and Folding

Side chain distribution in horse heart cytochrome c

Hydrophilic amino acids Hydrophobic amino acids

Page 50: Chapter 6 Protein Structure and Folding

C) Die Tertiärstruktur wird durch Kombinationen von Sekundärstrukturelementen aufgebaut

Kombinationen von Sekundärstrukturlementen werden auch als Protein Motive bezeichnet = supersecondary structures βαβ Motiv

β hairpin αα Motiv

Page 51: Chapter 6 Protein Structure and Folding

Most proteins can be classified as α, β, or α/β

Secondary structural elements occur in globular proteins in varying proportions - E. coli cytochrome b562 for example consists only of α helices => α protein -  Immunoglobulins contain the immunoglobulin fold => β proteins, contain large proportion of β sheets -  Most proteins, including lactate dehydrogenase and carboxypeptidase A are α/β proteins (average ~31% α helix, 28% β sheet) -  Further subdivision of proteins by their topology: that is connection of secondary structural elements

Page 52: Chapter 6 Protein Structure and Folding

Selection of protein structures Cytochrome b562

with heme Immunoglobulin fragment

Lactate dehydrogenase

Page 53: Chapter 6 Protein Structure and Folding

Structures of β barrels Human retinol binding protein

Peptide amidase F

Triose phosphate isomerase

Page 54: Chapter 6 Protein Structure and Folding

Grosse Proteine haben unterschiedeliche Domänen

Proteine mit mehr als 200 AS falten sich oft in mehrere Domänen (von 40-200 AS) in Eukaryoten. Prokaryonten können nur Proteine mit einer Domäne herstellen Domänen sind strukturell unabhängige Faltungseinheiten und haben die Charakteristika von globulären Proteinen Mit oftmals spezifischen Funktionen zB. Nukleotid Bindestelle zum Binden von NAD+

Page 55: Chapter 6 Protein Structure and Folding

D) Die Struktur ist stärker konserviert als die Sequenz

-  Strukturen können in Familien zusammengefasst werden - 50’000 Strukturen definieren 1‘400 Familien von Protein- Domänen, davon sind 200 sehr häufig - Vergleich von Cytochrom-C

Page 56: Chapter 6 Protein Structure and Folding

E) Structural bioinformatics provides tools for storing, visualizing, and comparing protein

structural information

Structural data obtained by X-ray or NMR describing the room coordinates of atoms is deposited into database, similar to sequence information of DNA or proteins Bioinformatics, structural bioinformatics takes advantage of this information to address biological questions Major structural database: Protein Data Bank (PDB), each structure is assigned a unique identifier (PDBid), i.e., sperm whale myoglobin is 1MBO

Page 57: Chapter 6 Protein Structure and Folding
Page 58: Chapter 6 Protein Structure and Folding

Molecular graphics program interactively show macromolecules in three dimensions

-  Jmol is a Web browser-based application that allows you to directly visualized structures in PDB on your PC

-  Example potassium channel (KCSA) http://www.pdb.org/pdb/explore/jmol.do?structureId=1F6G

-  Swiss PDB viewer = Deep View allows protein modeling and superimposition of two structures

Page 59: Chapter 6 Protein Structure and Folding

Structure comparisons reveal evolutionary relationships

-  Since evolution tends to conserve structure rather than sequence, programs have been developed to search for structurally related protein

-  CATH, classifies proteins in a four level hierarchy: 1. Class: mainly α / β structure 2. Architecture: gross arrangement of secondary structure 3. Topology: shape of protein domains and interconnectivity 4. Homologous superfamily, group of common ancsestor -  CE (combinatorial extension of the optimal path) finds all proteins in PDB that can be structurally aligned with the query structure -  FSSP (Family of Structurally Similar Proteins) -  SCOP (Structural Classification of Proteins) -  VAST (Vector Alignment Search Tool)

Page 60: Chapter 6 Protein Structure and Folding

3) Quaternär Struktur und Symmetrie von Proteinen

Lernziele:

1) Verstehen, dass einige Proteine aus mehreren Untereinheiten aufgebaut werden, welche meist symmetrisch angeordnet sind

Page 61: Chapter 6 Protein Structure and Folding

-  Viele Proteine, vor allem solche die gross sind ( > 100 kD), bestehen aus mehr als nur einer Peptidkette. -  Diese Untereinheiten assoziieren zusammen in eine definierte Struktur = Quaternäre Struktur

-  Multi-subunit Proteine können aus identischen oder nicht-identischen Untereinheiten aufgebaut werden (homo-, hetero-oligomerisch) -  Bsp: Hämoglobin ist ein Dimer aus je 2x αβ Protomeren

-  Enzyme, welche aus verschiedenen Untereinheiten aufgebaut sind, haben mehrere katalytisch aktive Stellen, welche co-reguliert werden können (Allosterische Regulation)

Page 62: Chapter 6 Protein Structure and Folding

Quaternary structure of hemoglobin

heme

Page 63: Chapter 6 Protein Structure and Folding

Subunits are symmetrically arranged -  In the majority of oligomeric proteins, the subunits are symmetrically arranged -  That is: protomers occupy geometrically equivalent positions

-  No inversion or mirror symmetry because this would require D-amino acids

-  Thus proteins can have only rotational symmetry

-  Simples case, cyclic symmetry, single axis of rotation (2-,3-,4-,n-fold). C2 is most common

-  Dihedral symmetry (Dn): n-fold rotational axis intersects with a twofold rotational axis. D2 most common -  Tetrahedron, cube, and icosahedron, for example spherical viruses

Page 64: Chapter 6 Protein Structure and Folding

Symmetrie von oligomeren Proteinen

Bsp. Viruspartikel

Protomere sind symmetrisch angeordnet Nur Rotations- symmetrie, keine Spiegelsymmetrie Kontaktregionen im Inneren

Page 65: Chapter 6 Protein Structure and Folding

4) Stabilität von Proteinen

Lernziele:

1) Verstehen, dass die Stabilität eines Proteins hauptsächlich von hydrophoben Kräften abhängt

2)  Verstehen, dass ein Protein, welches denaturiert worden ist, sich unter bestimmten Bedingungen wieder rückfalten (renaturieren) kann

Page 66: Chapter 6 Protein Structure and Folding

Stabilität von Proteinen -  Native Proteine sind marginal stabil unter physiologischen Bedingungen -> werden andauernd abgebaut und neu synthetisiert

-  Ein Protein von ca. 100 AS Protein ist nur ca ~40 kJ/mol stabiler als die ungefaltete Form. Dies entspricht der Energie von lediglich 2 Wasserstoffbrücken

=> Die native Struktur resultiert aus einem delikaten Gleichgewicht von entgegengesetzten Kräften:

Page 67: Chapter 6 Protein Structure and Folding

Proteine werden von unterschiedlichen Kräften stabilisiert

-  Die Proteinstruktur wird hauptsächlich durch hydrophobe Kräfte im inneren des Proteins gewährleistet und weniger durch Interaktionen von polaren oder ionischen Seitenketten (auf der Oberfläche des Proteins)

-  Der hydrophobe Effekt zwingt nicht polare Substanzen ihre Interaktion mit Wasser zu minimieren (Benzin auf Wasser)

-  Relative Hydrophatie der einzelnen AS: Die Energie, welche benötigt wird, um die AS in Wasser zu lösen

Page 68: Chapter 6 Protein Structure and Folding
Page 69: Chapter 6 Protein Structure and Folding

Hyrdopathic index plot for bovine chymotrypsinogen

Sum of hydropathie of 9 consecutive residues is plotted

interior

exterior

Page 70: Chapter 6 Protein Structure and Folding

Electrostatic interactions contribute to protein stability

-  Relatively week van der Waals forces are nevertheless important to stabilize the protein in its native state

-  But hydrogen bonds, which are a central feature of protein structures, particularly secondary structures, make only a minor contribution to the overall stability of a protein

-  Because of extensive hydrogen bonding of surface residues to water, difference between native and unfolded energy of hydrogen bonding is ~-2 to 8 kJ/mol

-  Ion pairing / salt bridges, i.e. between Lys+ and Asp- 75% of ionized residues are paired, mostly on surface, but they have only a small stabilizing effect (paid by loss of entropy and loss of solvation free energy) => poorly conserved

Page 71: Chapter 6 Protein Structure and Folding

Examples of ion pairs in myoglobin -  Oppositely charged side chains from groups that are far apart in sequence closely approach each other through the formation of ion pairs -  Note that they are far apart in the primary structure but close in space, i.e., tertiary structure

Page 72: Chapter 6 Protein Structure and Folding

Disulfide bonds cross-link extracellular proteins

-  Intrachain or inter-chain disulfide bonds form during folding of the protein

-  While they are not necessary for the structure/function of most proteins, they “lock in” a particular backbone fold

-  Disulfide bonds are rarely in cytoplasmatic protein because the cytosol is a reducing environment that would cleave the disulfide bridges. (i.e., they are formed in the lumen of the endoplasmic reticulum) -  Most disulfide bridges occur in secreted proteins, i.e. they are stable in the more oxidizing extracellular environment

Page 73: Chapter 6 Protein Structure and Folding

Metal ions stabilize some small domains

-  Metal ions, bound within a protein, can also serve to stabilize the protein structure, through internal cross-linking

-  For example zing fingers are motifs that frequently occur in DNA binding proteins

-  Zn2+ is tetrahedrally coordinated by side chain Cys, His and occasionally Aps and Glu

-  Zn2+ allows short stretches of polypeptides, 25-60 residues, to fold into stable units

-  Zinc fingers are not stable in the absence of Zn2+

-  Zn2+ is stable and not oxidized/reduced (unlike Cu, or Fe)

Page 74: Chapter 6 Protein Structure and Folding

A zinc finger motif

Zn2+ is Coordinated by Cys and His Stabilization of α-helix and antiparallel β-sheet

Page 75: Chapter 6 Protein Structure and Folding

Proteins are dynamic structures

-  Plethora of forces that act to stabilize a protein leave room for mobility/movement of structural elements

-  Proteins are flexible and rapidly fluctuating molecules

-  Mobility is important for protein function

-  Conformational flexibility = breathing

Page 76: Chapter 6 Protein Structure and Folding

Molecular dynamics of myoglobulin

Snapshots at intervals of 5 x 10-12 sec Hem

Page 77: Chapter 6 Protein Structure and Folding

B) Proteine können denaturiert und renaturiert werden

-  Aufgrund der geringen konformationellen Stabilität der Proteine können diese leicht denaturiert werden

-  Denaturierung durch:

-  Temperatur, kooperatives schmelzen der Struktur

-  pH Änderung, betrifft Ionisierung der Seitenketten

-  Detergentien, bricht die hydrophobe Interaktion der AS

-  Chaotrope Agentien, Guanidium Ion, Harnstoff (5-10 M). Kleine organische Verbindungen, welche die Löslichkeit von nichtpolaren Substanzen in Wasser erhöhen, brechen Hydrophobe Interaktionen

Page 78: Chapter 6 Protein Structure and Folding
Page 79: Chapter 6 Protein Structure and Folding

Viele denaturierte Proteine können renaturiert werden

-  1957, Christian Anfinson, konnte Ribonuclease A (RNase A), 124 AS, Einzelketten-Protein, denaturieren und wieder renaturieren

-  Denaturierung in 8 M Harnstoff

-  Renaturierung durch Dialysis, volle enzymatische Aktivität

⇒  Protein faltet sich spontan und nimmt aktive Konformation ein

⇒  Die Primärstruktur des Proteins bestimmt seine dreidimensionale Struktur und danmit auch seine Funktion

Page 80: Chapter 6 Protein Structure and Folding

Denaturierung und Renaturierung von RNase A

⇒  sogar Re-Formation der 4 Cys-Brücken (1/7 x 1/5 x 1/3 x 1/1 = 1/105, <1% Wahrscheinlichkeit)

Mercaptoethanol reduziert Disulfidbrücken !

Page 81: Chapter 6 Protein Structure and Folding

Thermostabile Proteine -  Thermophile Bakterien können bei bis zu 100°C leben -  In heissen Quellen oder submarinen hydrothermalen Strömungen -  Deren Proteine sind wie die unseren… (PCR, Taq Polymerase) -   Struktur wird durch ~100 kJ/mol stabilisiert = wenige nichtkovalente Interaktionen -  Netzwerk von Salzbrücken an der Oberfläche -  Erhöhter Anteil der hydrophoben Kräfte (nehmen mit steigender Temperatur zu) => Die geringe Stabilität ist daher für die Proteinfunktion wichtig. Das Protein muss beweglich sein, die Struktur muss atmen können

Page 82: Chapter 6 Protein Structure and Folding

5) Protein Faltung

Lernziele:

1) Verstehen, dass die Faltung eines Proteins entlang eines vorgegebenen Weges geschieht und das Protein dabei von einem Zustand hoher Energie und Entropie zu einem mit tiefer Energie und Entropie übergeht

2) Verstehen, dass Amyloidosen auf Missfaltung von Proteinen zurückzuführen sind

Page 83: Chapter 6 Protein Structure and Folding

Protein Folding

-  Protein folding is directed largely by residues that occupy the interior of the folded protein -  How does a protein fold into its three dimensional structure -  Does not occur through sampling of all possible conformations ! This would take longer than the universe exists (n residues -> 2n torsion angles, each has 3 stable conformations ->32n = ~10n possible conformations, 10-13 sec for each conformation -> t = 10n/1013 => for n=100 residues t = 1087 sec, 20 Mia years = 6 1017 sec)

Page 84: Chapter 6 Protein Structure and Folding

A) Protein Faltung ist geordnet

-  Faltung geschieht in wenigen Sekunden -  Faltung ist nicht zufällig, sondern folgt einem vorgegebenen Weg -  Lokale Ausbildung der Sekundärstruktur-elemente -  gefolgt von einem hydrophoben Kollaps (molten globule) -  Faltungsprozess is kooperativ (dh. alles oder nichts)

Page 85: Chapter 6 Protein Structure and Folding

Energy-Entropy Diagramm der Protein Faltung

Faltungs-Trichter

Temporäre Faltungs- Fallen

Lokale Energie- Minima

Page 86: Chapter 6 Protein Structure and Folding

Protein structure prediction and protein design

-  Sequence of 1 Mio proteins is know, but structure has been determined for only 50’000 -  How is the structure encoded in the primary sequence ? -> ab initio prediction of structure -  Homology modeling of new sequence against existing structure -  Structural genomics, determine X-ray structure for all the representative protein domains in a genome -  Chou & Fasman predictions does not take into account the influence of the neighboring residues

Page 87: Chapter 6 Protein Structure and Folding

Protein structure prediction and protein design

-  Protein design, inverse of structural prediction -  Design an amino acid sequence that will form the target structure or even target function -  28 residue peptide that forms ββα structure

Page 88: Chapter 6 Protein Structure and Folding

Protein disulfide isomerase acts during protein folding

-  Proteins fold more slowly in vitro (im Reagenzglas)than they fold in vivo (in der Zelle) -  This is frequently due to the formation of non-native disulfide bridges which are then slowly exchanged to the native ones -  In vivo, disulfide bond formation is catalyzed by and enzyme: protein disulfide isomerase (PDI) -  PDI binds a variety of unfolded proteins via a hydrophobic patch to form a mixed disulfide

Page 89: Chapter 6 Protein Structure and Folding

Mechanism of protein disulfide isomerase

Findet im Lumen des Endoplasmatischen Retikulums statt !!! (und nicht im Zytosol)

Page 90: Chapter 6 Protein Structure and Folding

Mechanism of protein disulfide isomerase

Page 91: Chapter 6 Protein Structure and Folding

B) Molecular chaperones assist protein folding

-  Proteins begin to fold as they are synthesized and grow on the ribosome -  In vivo, a peptide chain folds in the presence of a very high concentration of other proteins -  Molecular chaperones are essential proteins that help to fold newly synthesized or partially unfolded proteins to re-fold correctly -  Many molecular chaperones were first described as heat shock proteins (Hsp), their expression is strongly induced upon heat treatment of cells

Page 92: Chapter 6 Protein Structure and Folding

Chaperone activity requires ATP Classes of molecular chaperones in prokaryotes and eukaryotes

1. Hsp70 family, function as monomers with the cochaperone Hsp40, folds newly made proteins 2. Chaperonins, large multisubunit proteins (see below) 3. Hsp90 proteins, folding of proteins in signal transduction such as steroid receptors 4. Trigger factor, associate with ribosome and prevent improper folding of newly made proteins All of them operate by binding to solvent-exposed hydrophobic surfaces and subsequent release All are ATPases

Page 93: Chapter 6 Protein Structure and Folding

The GroEL/ES chaperonin forms closed chambers in which proteins fold

The chaperonins in E. coli consist of two types of subunits, GroEL and GroES Structure: 14 identical 549-residue GroEL subunits arranged in two stacked rings of seven subunits each Complex is capped at one end by domelike heptameric ring of 97 Aa GroES subunits Bullet-shaped complex with C7 symmetry Central chamber of ~45 Å in which peptides fold

Page 94: Chapter 6 Protein Structure and Folding

X-ray structure of the GroEL-GroES-(ADP)7 complex

GroES (cap)

GroEL (cis)

GroEL (trans)

Page 95: Chapter 6 Protein Structure and Folding

Note the larger size of The cavity formed by the cis ring

Page 96: Chapter 6 Protein Structure and Folding

ATP binding and hydrolysis drive the conformational changes in GroEL/ES

Each GroEL subunit can bind and hydrolyze ATP which induces a conformational change -> movement -> work All 7 subunits acts in concert to work on the unfolded substrate protein Exposure (ATP) or hiding (ADP) the hydrophobic patch domain, to allow the protein to refold within an isolated hydrophilic microenvironment Eukaryotic counterpart: TRiC

Page 97: Chapter 6 Protein Structure and Folding

Reaction cycle of the GroEL/ES chaperonin

Page 98: Chapter 6 Protein Structure and Folding

Einige Erkrankungen sind auf Protein-Missfaltung zurückzuführen

Mindestens 20, meist tödliche, humane Erkrankungen sind auf extrazelluläre Depots von normalerweise löslichen Proteinen zurückzuführen. Amyloide = unlösliche fibröse Proteinaggregate Symptome zeigen sich meist erst spät (30-70 Jahren), progressive Verschlechterung während 5-15 Jahren bis zum Tod

Page 99: Chapter 6 Protein Structure and Folding
Page 100: Chapter 6 Protein Structure and Folding

Amyloid-β protein accumulation in Alzheimer’s disease

• Alzheimer’s disease is a neurodegenerative condition, mainly in elderly ~10% of >65; 50% >85

• Amyloid plaque in brain tissue, surrounded by dead and dying neurons

• Plaques consist of fibrils of a 40- to 42-residue protein, amyloid-β protein (Aβ)

• Aβ is a fragment from a 770-residue membrane protein, Aβ precursor protein (βPP) whose normal function is unknown

Page 101: Chapter 6 Protein Structure and Folding

Amyloid-β protein accumulation in Alzheimer’s disease (2)

• Aβ is excised from βPP in a multistep process through the action of two proteolytic enzymes: β- and γ-secretase • The age-dependence suggest that Aβ deposition is an ongoing process • Rare mutations in βPP result in early onset of the disease • Similar to Down’s syndrome patients (trisomy of Chr 21), which invariably develop Alzheimer’s by their 40th

• β- and γ-secretase inhibitors are being developed and tested

Page 102: Chapter 6 Protein Structure and Folding

Brain tissue from an individual with Alzheimer’s disease

Page 103: Chapter 6 Protein Structure and Folding

Prion Erkrankungen sind infektiös • Scrapie, neurologische Erkrankung von Schafen und Geissen, ursprünglich durch einen “langsamen Virus”

• Bovine spongiform encephalopathy (BSE, mad cow disease), und Kuru (degenerative Nervenkrankheit im Menschen, durch Kannibalismus auf Papua Neuguinea), Kreutzfeld-Jakob disease (CJD), sporadisch (spontan auftretend)

• Neuronen entwickeln grosse Vakuolen, gibt dem Gehirngewebe unter dem Mikroskop ein schwamm-ähnliches Aussehen

• All are known as transmissible spongiform encephalopathies (TSEs)

Page 104: Chapter 6 Protein Structure and Folding

Prion diseases are infectious (2) •  TSEs are not caused by virus or microorganism

•  Infectious agent is a protein = prion (proteinaceous infectious particle), TSE = prion diseases

•  The scrapie prion is named PrP (prion protein), 208 Aa, many hydrophobic residues, aggregates to clusters of rodlike particles that resemble amyloid fibrils

•  How are prion diseases transmitted ? Scrapie form of PrP, PrPSc is identical to PrPC in sequence but differs in secondary and tertiary structure

•  PrPSc catalyzes conformational change of PrPC to convert it into PrPSc, which becomes insoluble and forms rodlike particles

Page 105: Chapter 6 Protein Structure and Folding

Electron micrograph of a cluster of partially proteolyzed prion rods

• PrPSc is insoluble and protease resistant

• Transmission of BSE to human, new variant CJD in UK (160 cases)

• BSE due to feeding meat-and-bone meal from scrapie sheep to cows

Page 106: Chapter 6 Protein Structure and Folding

Amyloid Fibrillen haben β-Faltblatt Strukturen

• PrPC hauptsächlich α-helical, PrPSc β-Blatt • Fast jedes Protein kann dazu gebracht werden, fibriläre Strukturen auszubilden

PrPSc (Scrapie Form) PrPC (Prion Protein celluläres)

Page 107: Chapter 6 Protein Structure and Folding

Modell einer Amyloid Fibrille

• Selbstkatalisierte Formation, ausgehend von einem Nukleus/Templat (infektiös, langsam)

• Schnelles Wachstum der Fibrille, Aufbrechen, Selbstreplikation

•  => infektiös !