Chapter 5 GENERAL VECTOR SPACE - I'm Dafiqurrohman · Real Vector Spaces P 2 adalah himpunan semua...

29
Chapter 5 GENERAL VECTOR SPACE 5.1. REAL VECTOR SPACES 5.2. SUB SPACES

Transcript of Chapter 5 GENERAL VECTOR SPACE - I'm Dafiqurrohman · Real Vector Spaces P 2 adalah himpunan semua...

Page 1: Chapter 5 GENERAL VECTOR SPACE - I'm Dafiqurrohman · Real Vector Spaces P 2 adalah himpunan semua polinomial berderajat 2 ... • Jumlah dua matriks simetris ... o Vektor penyelesaian

Chapter 5GENERAL VECTOR SPACE

5.1. REAL VECTOR SPACES5.2. SUB SPACES

Page 2: Chapter 5 GENERAL VECTOR SPACE - I'm Dafiqurrohman · Real Vector Spaces P 2 adalah himpunan semua polinomial berderajat 2 ... • Jumlah dua matriks simetris ... o Vektor penyelesaian

• Jika V adalah ruang vektor dimana u,v,w merupakan objekdalam V sebagai vektor, dan terdapat skalar k dan l, makaperhatikan 10 aksioma berikut;

Definisi : VECTOR SPACE

1. If u and v are objects in V, then u + v is in V.2. u + v = v + u3. u + (v + w) = (u + v) + w4. There is an object 0 in V, called a zero vector for V, such that 0 + u = u

+ 0 = u for all u in V. 5. For each u in V, there is an object -u in V, called a negative of u, such

that u + (-u) = (-u) + u = 0.6. If k is any scalar and u is any object in V, then ku is in V. 7. k (u + v) = ku + kv8. (k + l) u = ku + lu9. k (lu) = (kl) (u)10. 1u = u

Page 3: Chapter 5 GENERAL VECTOR SPACE - I'm Dafiqurrohman · Real Vector Spaces P 2 adalah himpunan semua polinomial berderajat 2 ... • Jumlah dua matriks simetris ... o Vektor penyelesaian

• Skalar k, l dapat berupa bilangan real atau bilangan complex.

• Ruang vektor dengan skalar bilangan real : ruang vektor real

• Ruang vektor dengan skalar bilangan kompleks : ruang vektor kompleks.

• Setiap jenis objek bisa menjadi suatu vektor, namun ke-10 aksioma harus dipenuhi.

Definisi : VECTOR SPACE

Page 4: Chapter 5 GENERAL VECTOR SPACE - I'm Dafiqurrohman · Real Vector Spaces P 2 adalah himpunan semua polinomial berderajat 2 ... • Jumlah dua matriks simetris ... o Vektor penyelesaian

Real Vector Spaces

Page 5: Chapter 5 GENERAL VECTOR SPACE - I'm Dafiqurrohman · Real Vector Spaces P 2 adalah himpunan semua polinomial berderajat 2 ... • Jumlah dua matriks simetris ... o Vektor penyelesaian

Real Vector Spaces

Example Vector Spaces of 2x2 Matrices

• The set V of all 2 2 matrices with real entries is a vector space if vector addition is defined to be matrix addition and vector scalar multiplication is defined to be matrix scalar multiplication.

• Let and

• If u and v is an object in V; then u + v is a 2 2 matrix in V.

2221

1211

uu

uuu

2221

1211

vv

vvv

Axiom 1

Axiom 10

:::

Page 6: Chapter 5 GENERAL VECTOR SPACE - I'm Dafiqurrohman · Real Vector Spaces P 2 adalah himpunan semua polinomial berderajat 2 ... • Jumlah dua matriks simetris ... o Vektor penyelesaian

Real Vector Spaces

+

Jika V merupakan sebarang bidang yang melalui titik asal dalam R3, maka; Titik-titik dalam V membentuk suatu ruang vektor yang memenuhi ke-10 aksioma ruang vektor untuk operasi penjumlahan dan perkalian skalar vektor –vektor dalam R3.

Suatu vektor V yang melalui titik asal memiliki persamaan :ax + by + cz = 0

Bukti :Jika u = (u1, u2, u3) dan v = (v1, v2, v3) adalah titik-titik dalam V, maka:

au1 + bu2 + cu3 = 0av1 + av2 + av3 = 0

a(u1+v1) + b(u2+v2) + c(u3+v3) = 0

Koordinat titik u + v = (u1+v1, u2+v2, u3+v3)Memenuhi aksioma (1), jadi u+ v terletak pada bidang V.

Example Plane Through The Origin

Page 7: Chapter 5 GENERAL VECTOR SPACE - I'm Dafiqurrohman · Real Vector Spaces P 2 adalah himpunan semua polinomial berderajat 2 ... • Jumlah dua matriks simetris ... o Vektor penyelesaian

Real Vector Spaces

P2 adalah himpunan semua polinomial berderajat 2 atau kurang dengan koefisien bilangan real. Didefinisikan penjumlahan dan perkalian skalar sebagai berikut:

p(x) = a0 + a1x + a2x2 dan q(x) = b0 + b1x + b2x2 maka,

p(x) + q(x) = (a0+ b0) + (a1+ b1) x + (a2+ b2) x2

Dan bila c suatu skalar, maka:

cp(x) =c a0 + ca1x +ca2x2

P2 merupakan ruang vektor dan dapat diperluas untuk Pn dengan n ≠0

Example Polynomial Pn

Page 8: Chapter 5 GENERAL VECTOR SPACE - I'm Dafiqurrohman · Real Vector Spaces P 2 adalah himpunan semua polinomial berderajat 2 ... • Jumlah dua matriks simetris ... o Vektor penyelesaian

Real Vector Spaces ; Zero Vector Space

• Jika V terdiri dari suatu objek tunggal 0, maka :

0 + 0 = 0 dan k 0 = 0 untuk semua skalar k.

• Seluruh aksioma terpenuhi dan disebut zero vector space.

• Jika V adalah ruang vektor, u suatu vektor dalam V, and ksuatu skalar; maka:

o 0 u = 0

o k 0 = 0

o (-1) u = -u

o Jika k u = 0 , maka k = 0 or u = 0.

Page 9: Chapter 5 GENERAL VECTOR SPACE - I'm Dafiqurrohman · Real Vector Spaces P 2 adalah himpunan semua polinomial berderajat 2 ... • Jumlah dua matriks simetris ... o Vektor penyelesaian

5.2. SubSpaces

Page 10: Chapter 5 GENERAL VECTOR SPACE - I'm Dafiqurrohman · Real Vector Spaces P 2 adalah himpunan semua polinomial berderajat 2 ... • Jumlah dua matriks simetris ... o Vektor penyelesaian

SubSpaces

Definisi:

Suatu himpunan bagian W dari suatu ruang vektor V disebut subruang dari V jika W merupakan suatu ruang vektor yangpenjumlahan dan perkalian skalarnya didefinisikan pada V.

V adalah ruang vektor

W adalah sub ruang vektor jika 10

aksioma yang ada dipenuhi oleh W

Page 11: Chapter 5 GENERAL VECTOR SPACE - I'm Dafiqurrohman · Real Vector Spaces P 2 adalah himpunan semua polinomial berderajat 2 ... • Jumlah dua matriks simetris ... o Vektor penyelesaian

SubSpaces

Contoh 1. Titik-titik pada suatu bidang melalui titik asal R3

membentuk sub ruang R3.

Vektor u +v dan kuterletak pada bidang yang

sama dengan u dan v.

• W merupakan bidang yang melalui titik asal dan anggap u dan vsebarang vektor dalam W.

o u + v pasti terletak dalam W (diagonal jajaran genjang).

o ku pasti terletak di W

• W tertutup terhadap penjumlahan dan perkalian skalar, sehingga W merupakan sub ruang dari R3.

Page 12: Chapter 5 GENERAL VECTOR SPACE - I'm Dafiqurrohman · Real Vector Spaces P 2 adalah himpunan semua polinomial berderajat 2 ... • Jumlah dua matriks simetris ... o Vektor penyelesaian

SubSpacesContoh 2:Garis yang Melalui Titik Asal R3 merupakan sub ruang R3

• W garis yang melalui titik asal R3 dengan 2 vektor u dan v.

• Maka u+v dan ku terletak pada garis tersebut di R3

• Jadi W tertutup terhadap penjumlahan dan perkalian skalar

• Terbukti bahwa W adalah sub ruang R3.

Page 13: Chapter 5 GENERAL VECTOR SPACE - I'm Dafiqurrohman · Real Vector Spaces P 2 adalah himpunan semua polinomial berderajat 2 ... • Jumlah dua matriks simetris ... o Vektor penyelesaian

Subset of R2 That Is Not a Subspace

• Jika W adalah himpunan semua titik (x, y) dalam R2

dimana x 0 dan y 0 : titik-titik dalam Q1.

• Himpunan W bukan Sub Ruang R2 karena tidak tertutup terhadap perkalian skalar.

• v = (1, 1) terletak pada W, tetapi (-1)v = -v = (-1, -1) tidak terletak pada W.

Contoh 3:W bukan Ruang Vektor

Page 14: Chapter 5 GENERAL VECTOR SPACE - I'm Dafiqurrohman · Real Vector Spaces P 2 adalah himpunan semua polinomial berderajat 2 ... • Jumlah dua matriks simetris ... o Vektor penyelesaian

SubSpaces

PERHATIKAN !!

Setiap ruang vektor tak nol V setidaknya memiliki:1. V sendiri sebagai suatu sub ruang dan;2. Himpunan {0} yang terdiri dari vektor nol dalam V

dan disebut sub ruang nol.

Sub-ruang dari R2:• {0}• Garis-garis yang melalui titik asal• R2

Sub-ruang dari R3:• {0}• Garis-garis yang melalui titik asal• Bidang yang melalui titik asal• R3

Page 15: Chapter 5 GENERAL VECTOR SPACE - I'm Dafiqurrohman · Real Vector Spaces P 2 adalah himpunan semua polinomial berderajat 2 ... • Jumlah dua matriks simetris ... o Vektor penyelesaian

Subspaces of Mnn

• Jumlah dua matriks simetris adalah simetris.

• Perkalian skalar matriks simetris adalah simetris

• Himpunan matriks simetris n x n merupakan sub ruangdari ruang vektor Mnn dari semua matriks-matriks nxn.

• Setiap himpunan matriks (matriks segitiga atas, matriks segitiga bawah dan matriks diagonal) nxntertutup terhadap penjumlahan dan perkalian skalar.

Contoh 4:Matriks Simetris n x n sub Ruang dari ruang vektor Mnn

Page 16: Chapter 5 GENERAL VECTOR SPACE - I'm Dafiqurrohman · Real Vector Spaces P 2 adalah himpunan semua polinomial berderajat 2 ... • Jumlah dua matriks simetris ... o Vektor penyelesaian

A Subspace of Polynomials

Anggap n adalah suatu bilangan bulat positif dan anggap W terdiri dari semua fungsi yang dinyatakan dalam bentuk :

p(x) = a0 + a1x + … + anxn

dimana : a0,…, an adalah bilangan-bilangan real ;n bilangan bulat positif

Jika p dan q terletak pada W, maka:

p(x) = a0 + a1x + … + anxn

q(x) = b0 + b1x + … + bnxn

(p+q)(x) = p(x) + q(x)

(p+q)(x) = (a0+ b0) + (a1+ b1)x + … + (an+bn)xn

dan (kp)(x) = kp (x)= (ka0) + (ka1)x + … + (kan)xn

Contoh 5:Polinom real berderajat n

Page 17: Chapter 5 GENERAL VECTOR SPACE - I'm Dafiqurrohman · Real Vector Spaces P 2 adalah himpunan semua polinomial berderajat 2 ... • Jumlah dua matriks simetris ... o Vektor penyelesaian

Ruang Penyelesaian untuk Sistem Homogen

o Jika Ax = b adalah suatu sistem persamaan linear, maka setiapvektor x yang memenuhi persamaan ini disebut vektor penyelesaiandari sistem tersebut.

o Vektor penyelesaian dari suatu sistem linear homogen Ax = 0 membentuk suatu ruang vektor atau ruang penyelesaian dari sistem homogen tersebut.

• Theorema

Jika Ax = 0 adalah suatu sistem linear homogen dari mpersamaan dalam n peubah, maka himpunan vektorpenyelesaiannya adalah subruang dari Rn.

[A] [x] = [0]

vektor penyelesaian Ruang vektor/ruang penyelesaian

Page 18: Chapter 5 GENERAL VECTOR SPACE - I'm Dafiqurrohman · Real Vector Spaces P 2 adalah himpunan semua polinomial berderajat 2 ... • Jumlah dua matriks simetris ... o Vektor penyelesaian

SubSpaces

Example 1.

• Find the solution spaces of the linear systems.

mempunyai tiga peubah, sehingga penyelesaiannya membentuk sub-ruang dari R3.

Mis al y = s, z = t, maka x = 2s - 3t, x = 2y - 3z or x – 2y + 3z = 0

This is the equation of the plane through the origin withn = (1, -2, 3) as a normal vector.

Page 19: Chapter 5 GENERAL VECTOR SPACE - I'm Dafiqurrohman · Real Vector Spaces P 2 adalah himpunan semua polinomial berderajat 2 ... • Jumlah dua matriks simetris ... o Vektor penyelesaian

SubSpaces

Example 2.

• Find the solution spaces of the linear systems.

mempunyai tiga peubah, sehingga penyelesaiannya membentuk sub-ruang dari R3.

Page 20: Chapter 5 GENERAL VECTOR SPACE - I'm Dafiqurrohman · Real Vector Spaces P 2 adalah himpunan semua polinomial berderajat 2 ... • Jumlah dua matriks simetris ... o Vektor penyelesaian

SubSpaces

Example 3.

• Find the solution spaces of the linear systems.

mempunyai tiga peubah, sehingga penyelesaiannya membentuk sub-ruang dari R3.

Solution

Page 21: Chapter 5 GENERAL VECTOR SPACE - I'm Dafiqurrohman · Real Vector Spaces P 2 adalah himpunan semua polinomial berderajat 2 ... • Jumlah dua matriks simetris ... o Vektor penyelesaian

Kombinasi Linear

Definisi

o Suatu vektor w adalah Kombinasi Linear dari vektor v1, v2,…, vr jika vektor w tersebut bisa dinyatakan dalambentuk

w = k1v1 + k2v2 + · · · + kr vr

dimana k1, k2, …, kr adalah skalar.

Page 22: Chapter 5 GENERAL VECTOR SPACE - I'm Dafiqurrohman · Real Vector Spaces P 2 adalah himpunan semua polinomial berderajat 2 ... • Jumlah dua matriks simetris ... o Vektor penyelesaian

Setiap vektor v = (a, b, c) dalam R3 bisa dinyatakan sebagaisuatu Kombinasi Linear dari vektor – vektor basis standar

i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1)

karena

v = a(1, 0, 0) + b(0, 1, 0) + c(0, 0, 1) = a i + b j + c k

Vektor in R3 are Linear Combination of i, j, and k

Page 23: Chapter 5 GENERAL VECTOR SPACE - I'm Dafiqurrohman · Real Vector Spaces P 2 adalah himpunan semua polinomial berderajat 2 ... • Jumlah dua matriks simetris ... o Vektor penyelesaian

Example : Checking a Linier Combination

Diketahui vektor u = (1, 2, -1) dan v = (6, 4, 2) in R3. Tunjukkan

bahwa w = (9, 2, 7) adalah sebuah Kombinasi Linear dari u dan v

Syarat w merupakan Kombinasi Linear dari u dan v, hrs terdpt skalar k1 dan k2 sedemikian hingga w = k1u + k2v;

(9, 2, 7) = k1 (1,2,-1) +k2 (6,4,2) (9, 2, 7) = (k1 + 6k2, 2k1 + 4k2, -k1 + 2k2)

Atau : k1 + 6k2 = 92k1+ 4k2 = 2-k1 + 2k2 = 7

Didapat k1 = -3, k2 = 2, sehingga w = -3u + 2v

Page 24: Chapter 5 GENERAL VECTOR SPACE - I'm Dafiqurrohman · Real Vector Spaces P 2 adalah himpunan semua polinomial berderajat 2 ... • Jumlah dua matriks simetris ... o Vektor penyelesaian

Kombinasi Linear

Agar w‘ merupakan Kombinasi Linear of u dan v, harus ada k1 dan k2 sehingga w'= k1u + k2v;

(4, -1, 8) = k1(1, 2, -1) + k2(6, 4, 2)(4, -1, 8) = (k1 + 6k2, 2k1 + 4k2, -k1 + 2k2)

Atauk1 + 6k2 = 42 k1+ 4k2 = -1- k1 + 2k2 = 8

Sistem persamaan ini tidak konsisten sehingga tidak ada k1 dan k2. Maka w' bukan Kombinasi Linear u dan v.

Diketahui vektor u = (1, 2, -1) dan v = (6, 4, 2) in R3. Tunjukkan

bahwa w = (4, -1, 8) bukan suatu Kombinasi Linear dari u dan v.

Page 25: Chapter 5 GENERAL VECTOR SPACE - I'm Dafiqurrohman · Real Vector Spaces P 2 adalah himpunan semua polinomial berderajat 2 ... • Jumlah dua matriks simetris ... o Vektor penyelesaian

Theorema

Jika v1, v2, …, vr adalah vektor-vektor dalam ruang vektor V, maka:

o Himpunan W sebagai kombinasi linier v1, v2, …, vrmerupakan sub-ruang dari V.

o W adalah sub ruang terkecil dari V berisi v1, v2, …, vr dalamarti bahwa setiap sub ruang lain dari V yang v1, v2, …, vrpasti mengandung W.

Kombinasi Linear

Page 26: Chapter 5 GENERAL VECTOR SPACE - I'm Dafiqurrohman · Real Vector Spaces P 2 adalah himpunan semua polinomial berderajat 2 ... • Jumlah dua matriks simetris ... o Vektor penyelesaian

Kombinasi Linear dan Rentang

Definition

o Jika S = {v1, v2, …, vr} adalah suatu himpunan vektor dalam suaturuang vektor V, maka sub ruang W dari V yang mengandungsemua kombinasi linear dari vektor-vektor dalam S disebutruang terentang oleh v1, v2, …, vr, dan disebut vektor-vektor v1,v2, …, vr adalah terentang W.

o W ruang terentang oleh vektor-vektor dalam himpunan

S = {v1, v2, …, vr}, ditulis;

W = rent(S) or W = span{v1, v2, …, vr}.

Page 27: Chapter 5 GENERAL VECTOR SPACE - I'm Dafiqurrohman · Real Vector Spaces P 2 adalah himpunan semua polinomial berderajat 2 ... • Jumlah dua matriks simetris ... o Vektor penyelesaian

Kombinasi Linear dan Rentang

• Jika v1 and v2 adalah vektor-vektor tak kolinear dalam R3 dengan

titik pangkal di titik asal, maka span{v1, v2} berisi semua kombinasi

linear k1v1 + k2v2 adalah bidang yang ditentukan oleh v1 and v2 (a).

• Jika v vektor tidak nol dalam R2 atau R3, maka span{v} merupakan

himpunan perkalian skalar kv, adalah garis yang dibentuk oleh v (b).

Rent (v1, v2) adalah bidang yang melalui titik asal yang dibentuk oleh v1 dan v2

Rent (v) adalah garis yang melalui titik asal yang dibentuk oleh v

Page 28: Chapter 5 GENERAL VECTOR SPACE - I'm Dafiqurrohman · Real Vector Spaces P 2 adalah himpunan semua polinomial berderajat 2 ... • Jumlah dua matriks simetris ... o Vektor penyelesaian

Kombinasi Linear dan Rentang

Theorema

• J ika S = {v1, v2, …, vr} dan S = {w1, w2, …, wr} adalah duahimpunan vektor dalam suatu ruang vektor V, maka

span{v1, v2, …, vr} = span{w1, w2, …, wr}

jika dan hanya jika setiap vektor dalam S adalah KombinasiLinear dari S dan tiap vector dalam S adalah sebuahKombinasi Linear dari vektor-vektor dalam S.

Page 29: Chapter 5 GENERAL VECTOR SPACE - I'm Dafiqurrohman · Real Vector Spaces P 2 adalah himpunan semua polinomial berderajat 2 ... • Jumlah dua matriks simetris ... o Vektor penyelesaian

Three Vectors that Do Not Span R3

Tentukan apakah v1 = (1, 1, 2), v2 = (1, 0, 1), and v3 = (2, 1, 3) merentang dalam ruang vektor R3.

• Misal kan vektor b = (b1, b2, b3) in R3 diekspresikan sebagai Kombinasi Linear

b = k1v1 + k2v2 + k3v3

b = (b1, b2, b3) = k1(1, 1, 2) + k2(1, 0, 1) + k3(2, 1, 3) = (k1+k2+2k3, k1+k3, 2k1+k2+3k3)

k1 + k2 + 2k3 = b1

k1 + k3 = b2

2k1 + k2 + 3 k3 = b3

• Sistem ini konsisten untuk semua b1, b2, b3 jika dan hanya jika matriks koefisien memiliki invers atau determinan matriks koefisien ≠ 0.

• Buktikan bahwa det (A) = 0, sehingga v1, v2, and v3, tidak terentang pada R3.