Chapter- 4(2)

40
Dr. Millerjothi, BITS Pilani, Dubai Campus Transient vibration of single dof systems, Laplace and finite difference methods Chapter 4

Transcript of Chapter- 4(2)

Page 1: Chapter- 4(2)

Dr. Millerjothi, BITS Pilani, Dubai Campus

Transient vibration of single dof systems, Laplace and finite difference methods

Chapter 4

Page 2: Chapter- 4(2)

Dr. Millerjothi, BITS Pilani, Dubai Campus

Transient Vibration Excited by a suddenly applied non-periodic excitation F(t) ⇒ transient response Steady-state oscillations are generally not produced.IMPULSE EXCITATION

A force of very large magnitude that acts for a very short time but with a time integral that is finite. 

Transient Vibration & IMPULSE EXCITATION

Page 3: Chapter- 4(2)

Dr. Millerjothi, BITS Pilani, Dubai Campus

Figure shows an impulsive force of magnitude  with a time  duration of εAs  ε approaches zero, such forces tend to become infinite; however, the impulse is considered to be finiteWhen  is unity, such a force in the limiting case ε 0 is called the unit impulse, or the delta function

Page 4: Chapter- 4(2)

Dr. Millerjothi, BITS Pilani, Dubai Campus

A delta function at t = is (t - ) and has the following properties:

If  (t - ) is multiplied by any time function f(t), the product will be zero everywhere except at t = and  its time integral will be

Page 5: Chapter- 4(2)

Dr. Millerjothi, BITS Pilani, Dubai Campus

Because Fdt = mdv, the impulse  acting on the mass will  result in its velocity equal to without an  appreciable change in its  displacement. For free vibration, Hence, the response of a spring-mass system initially at  rest and

excited by an impulse is

Where is the response to a unit impulse. 

Page 6: Chapter- 4(2)

Dr. Millerjothi, BITS Pilani, Dubai Campus

When damping is present, with

Or

In either the damped or undamped case, the equation for the impulsive response can be expressed in the form

Page 7: Chapter- 4(2)

Dr. Millerjothi, BITS Pilani, Dubai Campus

Equation for the response of the system excited by an arbitrary force f(t)The arbitrary force to be a series of impulses as shown in Figure

ARBITRARY EXCITATION

Page 8: Chapter- 4(2)

Dr. Millerjothi, BITS Pilani, Dubai Campus

One of the impulses at time t = its strength isand its contribution to the response at time t, is  dependent upon  the elapsed time t - , or where where , where h(t – ) is the   response to a unit impulse started at t = .Because the system is linear, the principle of  superposition holds.  Thus the response to the arbitrary excitation f(t), is

This integral is called the convolution integral and is  sometimes referred to as the superposition integral. 

Page 9: Chapter- 4(2)

Dr. Millerjothi, BITS Pilani, Dubai Campus

In terms of the relative displacement z = x – y,

For an undamped system initially at rest, the solution for the relative displacement becomes 

Base excitation: 

Page 10: Chapter- 4(2)

Dr. Millerjothi, BITS Pilani, Dubai Campus

Complete solution: both transient and forced vibration  Ex 4.3.1 Formulate the Laplace transform solution of a viscously damped spring-mass system with initial Conditions x(0) and 

LAPLACE TRANSFORM

)0(x

Page 11: Chapter- 4(2)

Dr. Millerjothi, BITS Pilani, Dubai Campus

The response x(t) is found from the inverse of the following equations, the first term represents the forced vibration and the second term represents the transient solution due to the initial conditions.

For the more general case,

where A(s) and B(s) are polynomials

Page 12: Chapter- 4(2)

Dr. Millerjothi, BITS Pilani, Dubai Campus

Its reciprocal

Page 13: Chapter- 4(2)

Dr. Millerjothi, BITS Pilani, Dubai Campus

The question of how far a body can be dropped without incurring damage is of frequent interest.  Such considerations are of paramount importance in the landing of airplanes or the cushioning of packaged articles.  In this example, we discuss some of the elementary aspects of this problem by idealizing the mecha

nical system in terms of linear spring-mass components.

- initial conditions   

[Example 4.3.2] (Drop Test) 

Page 14: Chapter- 4(2)

Dr. Millerjothi, BITS Pilani, Dubai Campus

Page 15: Chapter- 4(2)

Dr. Millerjothi, BITS Pilani, Dubai Campus

Consider the time response of the undamped spring-mass system to three different excitations.  The time response must be

 considered in two parts, t < t1 and t > t1.Rise time

- The sum of two ramp functions

PULSE EXCITATION AND RISE TIME 13 4.4 PULSE EXCITATION AND RISE TI

ME    Consider the time response of the undamped spring-mass system to three different excitations.  The time response must be considered in two parts, 1tt and 1tt.  Rise time    

Page 16: Chapter- 4(2)

Dr. Millerjothi, BITS Pilani, Dubai Campus

For the first ramp function, the terms of the convolution integral are

and the response becomes

Page 17: Chapter- 4(2)

Dr. Millerjothi, BITS Pilani, Dubai Campus

For the second ramp function starting at t1, the solution can be  written as

By superposition, the response for t1 > t, becomes 

Page 18: Chapter- 4(2)

Dr. Millerjothi, BITS Pilani, Dubai Campus

Sum of two step functions The response of the step function

The peak response is equal to 2.0 at t = τ/2The response to the second step function started at t = t1 is

The response in the second interval t > t1,  becomes

Rectangular pulse

Page 19: Chapter- 4(2)

Dr. Millerjothi, BITS Pilani, Dubai Campus

The excitation is

and the differential equation of motion is

The general solution isWhere p = π/ t1

With the initial conditions   

Half-sine pulse

Page 20: Chapter- 4(2)

Dr. Millerjothi, BITS Pilani, Dubai Campus

The previous solution reduces to

To determine the solution for t > t1, we can use the previous equation but with t replaced by t - t1.

For t - t1, the excitation force is zero and we can obtain the solution as a free vibration with t’ = t - t1.

Page 21: Chapter- 4(2)

Dr. Millerjothi, BITS Pilani, Dubai Campus

The initial values can be obtained from previous  equation which becomes

Page 22: Chapter- 4(2)

Dr. Millerjothi, BITS Pilani, Dubai Campus

• When the time duration t1  for a pulse excitation is smallcompared to the natural period τ of the spring-mass oscillator, theexcitation is called a shock.• Shock vibration tests for certification of satisfactory design• The maximum peak response is a measure of the severity of 

the shock. 

SHOCK RESPONSE SPECTRUM 

Page 23: Chapter- 4(2)

Dr. Millerjothi, BITS Pilani, Dubai Campus

Plot of the maximum peak response of the single DOF oscillator as a function of the natural period of the oscillator.

The maximum of the peaks, often labeled maximax, represents only a single point on the time response curve. 

It does not uniquely define the shock input because it is possible for two different shock pulses to have the same maximum  peak response.

The peak response for the response spectrum plot is

Shock response spectrum (SRS):

Page 24: Chapter- 4(2)

Dr. Millerjothi, BITS Pilani, Dubai Campus

In the case where the shock is due to the sudden motion of the  support point, f(t), is replaced by the acceleration of thesupport point,

The maximum value of x(t) or z(t) is plotted as a function of t1/τwhere  τ is the natural period of the oscillation and t1 is the pulseduration time. 

Page 25: Chapter- 4(2)

Dr. Millerjothi, BITS Pilani, Dubai Campus

SRS for a time response to the rectangular pulse:For t1/τ = 1/8, the peak response is at tm =

0.32τ.Thus, we have one point, 0.8 on the SRS plot.

Page 26: Chapter- 4(2)

Dr. Millerjothi, BITS Pilani, Dubai Campus

If we change the pulse duration time to t1/τ = 0.4, the peak response is   at time  tm = 0.45τ.This then gives us a second point on the SRS plot, etc.  

Page 27: Chapter- 4(2)

Dr. Millerjothi, BITS Pilani, Dubai Campus

The dashed line curves are called the residual spectrum, and theupper curve, which is equal to 2.0 for t1/τ > 0.5, represents the

envelope of all peaks.

Page 28: Chapter- 4(2)

Dr. Millerjothi, BITS Pilani, Dubai Campus

The following figures show the SRS for the half-sine  and the triangle pulse.

Page 29: Chapter- 4(2)

Dr. Millerjothi, BITS Pilani, Dubai Campus

Page 30: Chapter- 4(2)

Dr. Millerjothi, BITS Pilani, Dubai Campus

For shock isolation, the maximum peak response or the transmissibility must be less than unity.For the rectangular pulse,

and

Vibration isolation is then possible for  

and

and the natural period of the isolated system must be greater than six times the pulse time.

SHOCK ISOLATION

Page 31: Chapter- 4(2)

Dr. Millerjothi, BITS Pilani, Dubai Campus

Consider a more general pulse bounded by a rectangular pulse,such as shown in Fig. 4.6.1.The impulse of these force pulses is clearly less than that of the 

rectangular pulse. It is reasonable to assume that the maximum peak response of

the rectangular pulse must be the upper bound to that of the  pulse of general shape.

Page 32: Chapter- 4(2)

Dr. Millerjothi, BITS Pilani, Dubai Campus

In Runge-Kutta method, the second order differential equation is first reduced to two first order equation.

Consider the differential equation for the single DOF system

Page 33: Chapter- 4(2)

Dr. Millerjothi, BITS Pilani, Dubai Campus

x and y can be expressed in terms of Taylors series. Let the time increment h = Δt.

Replacing the first order derivative by average slope and ignoring higher orders,

Page 34: Chapter- 4(2)

Dr. Millerjothi, BITS Pilani, Dubai Campus

Using Simpson rule, the average slope in the interval h becomes

In 4th order Runge-Kutta method, the center term is split into 2 terms and 4 values of are computed for each point i as follows

Page 35: Chapter- 4(2)

Dr. Millerjothi, BITS Pilani, Dubai Campus

Page 36: Chapter- 4(2)

Dr. Millerjothi, BITS Pilani, Dubai Campus

Solve numerically the differential equation

With initial conditions and forcing function shown in Fig. 4.7.2.

Example 4.7.1

Page 37: Chapter- 4(2)

Dr. Millerjothi, BITS Pilani, Dubai Campus

Solution

Page 38: Chapter- 4(2)

Dr. Millerjothi, BITS Pilani, Dubai Campus

Page 39: Chapter- 4(2)

Dr. Millerjothi, BITS Pilani, Dubai Campus

Page 40: Chapter- 4(2)

Dr. Millerjothi, BITS Pilani, Dubai Campus

Although the Runge-Kutta method does not require the evaluation of derivatives beyond the first, its higher accuracy is achieved by four evaluations of the first derivatives to obtain agreement with the Taylor series solution through terms of order h4.

Thus this method is more versatile and can be used for a single or more variables.

For 2 variables, we can let and write 2 first-order equations as

or