Chapter 4 Torsion Beams + SFD and BMD.(SOM-201)

99

Click here to load reader

Transcript of Chapter 4 Torsion Beams + SFD and BMD.(SOM-201)

Page 1: Chapter 4 Torsion Beams + SFD and BMD.(SOM-201)

Vijay Gupta

MEC201Mechanics of Solids

Page 2: Chapter 4 Torsion Beams + SFD and BMD.(SOM-201)

Vijay Gupta

Lecture 18

Page 3: Chapter 4 Torsion Beams + SFD and BMD.(SOM-201)

Vijay Gupta

Recap: Pre-stressing

(a) Tendon being stresses during casting. Tension in tendon, no stress in concrete.

(b) After casting, the force is released and the structure shrinks.

(c) FBD of tendon. The concrete does not let the tendon shrink as much as it would on its own. This results in residual tension in the tendon.

(d) FBD of concrete. The residual force in the tendon is trying to compress the concrete.

Page 4: Chapter 4 Torsion Beams + SFD and BMD.(SOM-201)

Vijay Gupta

Recap: A simple example

A concrete beam of cross-sectional area 5 cm×5 cm and length 2 m be cast with a 10 mm dia mild steel rod under a tension of 20 kN. The external tension in steel released after the concrete is set. What is the residual compressive stress in the concrete?

T = 20 kN →σ = 255 Mpa →ε = 1.21×10- 3 →δ = 2.42 mm

Page 5: Chapter 4 Torsion Beams + SFD and BMD.(SOM-201)

Vijay Gupta

Recap: A simple example

2.42 mm

δc

δs

δs + δc = 2.42 mm

F

Page 6: Chapter 4 Torsion Beams + SFD and BMD.(SOM-201)

Vijay Gupta

Recap: Failure Under Compression

Buckling

Page 7: Chapter 4 Torsion Beams + SFD and BMD.(SOM-201)

Vijay Gupta

Torsion

Page 8: Chapter 4 Torsion Beams + SFD and BMD.(SOM-201)

Vijay Gupta

Shaft carrying torque

Page 9: Chapter 4 Torsion Beams + SFD and BMD.(SOM-201)

Vijay Gupta

Torsion-bar suspension

Load

Torsion bar

Page 10: Chapter 4 Torsion Beams + SFD and BMD.(SOM-201)

Vijay Gupta

Torsion-bar suspension

www.rctankhq.com/Project2.htm

Page 11: Chapter 4 Torsion Beams + SFD and BMD.(SOM-201)

Vijay Gupta

Torsion of a bar

φ zθ r

T

Page 12: Chapter 4 Torsion Beams + SFD and BMD.(SOM-201)

Vijay Gupta

Torsion of a bar

dz

z

• Plane sections remain plane• Diametrical lines within plane

sections remain straight

Page 13: Chapter 4 Torsion Beams + SFD and BMD.(SOM-201)

Vijay Gupta

Torsion: Deformation to Strain

A

A1

B1

C

D

O

r

RE1

F1

G1

E

Bγθz = rdφ/dz

τθz

τzθ

γθzdφ

Page 14: Chapter 4 Torsion Beams + SFD and BMD.(SOM-201)

Vijay Gupta

Torsion: Strain to Stress

γθz = rdφ/dz τθz

τzθγθzA

A1

B1

C

D

O

r

RE1

F1

G1

E

B

Page 15: Chapter 4 Torsion Beams + SFD and BMD.(SOM-201)

Vijay Gupta

Torsion: Stress Distribution

τθz = Gγθz = Grdφ/dz

Page 16: Chapter 4 Torsion Beams + SFD and BMD.(SOM-201)

Vijay Gupta

Torsion: Stress to Load

θ

dr

Polar (second) moment of area Izz

Page 17: Chapter 4 Torsion Beams + SFD and BMD.(SOM-201)

Vijay Gupta

Torsion: Stress to Load

τθz = Gγθz = Grdφ/dz For shaft with constant G, R and T:

GIzz is termed as the Torsional rigidity

Page 18: Chapter 4 Torsion Beams + SFD and BMD.(SOM-201)

Vijay Gupta

Circular Shaft

θ

dr

Page 19: Chapter 4 Torsion Beams + SFD and BMD.(SOM-201)

Vijay Gupta

Circular Shaft

θ

dr

Page 20: Chapter 4 Torsion Beams + SFD and BMD.(SOM-201)

Vijay Gupta

Hollow Shaft

By geometry: γθz= rdΦ/dzTherefore, τθz = GrdΦ/dz

r varies from R1 to R2, and θ varies from 0 to 2π

Page 21: Chapter 4 Torsion Beams + SFD and BMD.(SOM-201)

Vijay Gupta

Power shaft

z●+9 Nm

φ = φ1 + φ2

−4.5 kNm

−4.5 kNm

TMD

φ 0.1 m

φ 0.3 mφ 0.3 m1.5 m 3 m

φ1 φ2

Page 22: Chapter 4 Torsion Beams + SFD and BMD.(SOM-201)

Vijay Gupta

Power shaft

= 9.82×10-6 m4

Page 23: Chapter 4 Torsion Beams + SFD and BMD.(SOM-201)

Vijay Gupta

Power shaft

Let us check on the stresses:

Quite safe

Page 24: Chapter 4 Torsion Beams + SFD and BMD.(SOM-201)

Vijay Gupta

1 m 0.6 m

Φ 10 cm

Φ 6 cm

150 N.m

Φ 5 cm

Φ 2 cm

Another example

F

F

150 N.m

−250 N.m

Page 25: Chapter 4 Torsion Beams + SFD and BMD.(SOM-201)

Vijay Gupta

1 m 0.6 m

Φ 10 cm

Φ 6 cm

150 N.m

Φ 5 cm

Φ 2 cm

Another example

F

F

Page 26: Chapter 4 Torsion Beams + SFD and BMD.(SOM-201)

Vijay Gupta

1 m 0.6 m

Φ 10 cm

Φ 6 cm

150 N.m

Φ 5 cm

Φ 2 cm

Another example

F

F

Angle θ2 which represents the counter-clockwise movement of the smaller gear due to gearing alone is 10/6 of θ1 or 0.0085 rad counter-clockwise

Rotation of the right end of second shaft wrt stationary wall is, therefore, 0.0085 rad + 0.12 rad = 0.1285 rad or 7.36 degree.

Page 27: Chapter 4 Torsion Beams + SFD and BMD.(SOM-201)

Vijay Gupta

A statically indeterminate case

MoM1 M2

Geometric Condition: Φ1 +Φ2 = 0TMD

Equilibrium Condition: - M1 + Mo – M2 = 0

Page 28: Chapter 4 Torsion Beams + SFD and BMD.(SOM-201)

Vijay Gupta

A Composite Shaft

Shear strain

Shear stress

Page 29: Chapter 4 Torsion Beams + SFD and BMD.(SOM-201)

Vijay Gupta

Thin-walled shaft

q1 = q2

Shear flow on horizontal surfaces is same as on the vertical surfaces

Page 30: Chapter 4 Torsion Beams + SFD and BMD.(SOM-201)

Vijay Gupta

Thin-walled shaft

O

h

Relating q to twisting moment T

dT = 2×Grey areaQ = T/2A

Page 31: Chapter 4 Torsion Beams + SFD and BMD.(SOM-201)

Vijay Gupta

An Example

R 20 mm

R 16 mm

T 100 Nm

This gives τ = (49 N/m)/0.004 m = 12.25 MPa

Page 32: Chapter 4 Torsion Beams + SFD and BMD.(SOM-201)

Vijay Gupta

Forces and Moments in Beams

Page 33: Chapter 4 Torsion Beams + SFD and BMD.(SOM-201)

Vijay Gupta

33

Introduction to Beams

• A beam is a horizontal structural member used to support loads

• Beams are used to support the roof and floors in buildings

Page 34: Chapter 4 Torsion Beams + SFD and BMD.(SOM-201)

Vijay Gupta

x

P

L −x

PV

MV

M

Forces in Beams

Page 35: Chapter 4 Torsion Beams + SFD and BMD.(SOM-201)

Vijay Gupta

Forces in Beams

z

x

y

Fy

Mz

Mx

FxFz

My

Page 36: Chapter 4 Torsion Beams + SFD and BMD.(SOM-201)

Vijay Gupta

Forces in Beams

Fx: the axial force that results in elongation (or compression, if it is negative) of the member.

Fy and Fz: shear forces that result in shearing at the section. The shear forces are conventionally assigned the symbol V.

Mz: the axial moment that is the torsion moment that causes twisting of the member. This was the subject matter of the last chapter.

Mx and My:

transverse moments that are termed as the bending moments and cause the member to bend. Moment Mx results in bending the beam in the y-z plane while the moment Mz results in bending the beam in the x-y plane.

Page 37: Chapter 4 Torsion Beams + SFD and BMD.(SOM-201)

Vijay Gupta

Forces in Beams

Shear forces, VBending Moment, M

Page 38: Chapter 4 Torsion Beams + SFD and BMD.(SOM-201)

Vijay Gupta

Sign Conmvention

x

z

y

V

M V

M

Page 39: Chapter 4 Torsion Beams + SFD and BMD.(SOM-201)

Vijay Gupta

Sign Convention

Positive V & M Negative V & M

+_

y

x

+ -

Page 40: Chapter 4 Torsion Beams + SFD and BMD.(SOM-201)

Vijay Gupta

Sign Convention

Sign of the outward normal to the section

Actual direction of the force or moment

Assigned sign to the shear force or bending moment

Along the + ve coordinate direction

Along the +ve coordinate direction

+ ve

Along the − ve coordinate direction

Along the − ve coordinate direction

+ ve

Along the + ve coordinate direction

Along the − ve coordinate direction − ve

Along the − ve coordinate direction

Along the +ve coordinate direction

− ve

Page 41: Chapter 4 Torsion Beams + SFD and BMD.(SOM-201)

Vijay Gupta

Sign Convention

Page 42: Chapter 4 Torsion Beams + SFD and BMD.(SOM-201)

Vijay Gupta

Sign Convention...

Positive Bending MomentNegative Shear force

x

y

Page 43: Chapter 4 Torsion Beams + SFD and BMD.(SOM-201)

Vijay Gupta

Origin of Shear Force

• Shear Stresses

vary along the height

Page 44: Chapter 4 Torsion Beams + SFD and BMD.(SOM-201)

Vijay Gupta

Origin of Resisting Moment

Compression near topExtension near bottom

Page 45: Chapter 4 Torsion Beams + SFD and BMD.(SOM-201)

Vijay Gupta

Origin of Resisting Moment

Net tensile force is zero!

Page 46: Chapter 4 Torsion Beams + SFD and BMD.(SOM-201)

Vijay Gupta

Origin of Resisting Moment...

Extension near topCompression near bottom

Page 47: Chapter 4 Torsion Beams + SFD and BMD.(SOM-201)

Vijay Gupta

Bending Stresses in Beams

Net tensile force is zero!

Page 48: Chapter 4 Torsion Beams + SFD and BMD.(SOM-201)

Vijay Gupta

Beam Supports

Simple Roller Built-in

Page 49: Chapter 4 Torsion Beams + SFD and BMD.(SOM-201)

Vijay Gupta

Idealized supports

Support type Freedom of motion Reactions presentBuilt-in support No degree of freedom A moment as well as

horizontal and vertical reaction forces

Pinned support

Single degree of freedom - rotation.

Horizontal and vertical reaction forces

Roller support

Two degrees of freedom – rotation and horizontal movement

Only vertical reaction force

Page 50: Chapter 4 Torsion Beams + SFD and BMD.(SOM-201)

Vijay Gupta

Loads

w N/mP

Concentrated loads Distributed loads

Page 51: Chapter 4 Torsion Beams + SFD and BMD.(SOM-201)

Vijay Gupta

Loads

Linearly varying distributed load Concentrated moment

Page 52: Chapter 4 Torsion Beams + SFD and BMD.(SOM-201)

Vijay Gupta

Variations in Shear Force & Bending Moment

y

x

x

M – Px/2 = 0, or M = Px/2

Page 53: Chapter 4 Torsion Beams + SFD and BMD.(SOM-201)

Vijay Gupta

Shear Force & Bending Moment Diagrams

P

P/2 P/2

V = - P/2

V = + P/2x

x

y

x

Page 54: Chapter 4 Torsion Beams + SFD and BMD.(SOM-201)

Vijay Gupta

SFD & BMD

SFD- P/2

+ P/2

y

x

Page 55: Chapter 4 Torsion Beams + SFD and BMD.(SOM-201)

Vijay Gupta

SFD & BMD...

P

P/2 P/2

M – x(P/2) = 0

M – x(P/2) + (x – L/2)P = 0

x

x

y

x

Page 56: Chapter 4 Torsion Beams + SFD and BMD.(SOM-201)

Vijay Gupta

SFD & BMD...

SFD- P/2

+ P/2

+PL/4BMD

y

x

Page 57: Chapter 4 Torsion Beams + SFD and BMD.(SOM-201)

Vijay Gupta

SFD & BMD: Another ExampleP P

PP

V = - P

V = 0

P

xP

P

x

y

x

Page 58: Chapter 4 Torsion Beams + SFD and BMD.(SOM-201)

Vijay Gupta

SFD & BMD: Another ExampleP

PP

P

SFD

- P

+ P

y

x

Page 59: Chapter 4 Torsion Beams + SFD and BMD.(SOM-201)

Vijay Gupta

SFD & BMD: Another ExampleP

PP

P

M M – xP = 0

M

M – xP + P(x – L/4)= 0

PP

xP

Px

y

x

Page 60: Chapter 4 Torsion Beams + SFD and BMD.(SOM-201)

Vijay Gupta

SFD & BMD: Another ExampleP

PP

P

SFD

- P

+ P

BMDPL/4

y

x

Page 61: Chapter 4 Torsion Beams + SFD and BMD.(SOM-201)

Vijay Gupta

SFD & BMD: Another Examplew N/m

wL/2 wL/2

V + wL/2 – wx = 0Or, V = - wL/2 + wx

wL/2V

x

y

x

Page 62: Chapter 4 Torsion Beams + SFD and BMD.(SOM-201)

Vijay Gupta

SFD & BMD: Another Examplew N/m

wL/2 wL/2

SFD

- wL/2

+ wL/2x

y

x

Page 63: Chapter 4 Torsion Beams + SFD and BMD.(SOM-201)

Vijay Gupta

SFD & BMD: Another Examplew N/m

wL/2 wL/2

M – (wL/2)x + wx2/2 = 0Or, M = wLx/2 - wx2/2

MwL/2V

xwx

y

x

Page 64: Chapter 4 Torsion Beams + SFD and BMD.(SOM-201)

Vijay Gupta

SFD & BMD: Another Examplew N/m

wL/2 wL/2

SFD

- wL/2

+ wL/2x

BMDwL2/8

y

x

Page 65: Chapter 4 Torsion Beams + SFD and BMD.(SOM-201)

Vijay Gupta

Method of Sections:

• Draw an idealized loading diagram of the beam.• Determine the reactions at all supports. If the

reactions cannot be determined, the beam is statically indeterminate and further progress cannot be made without considering the deflections of the beam.

• Determine the number of segments with distinct loading pattern to cover the entire beam. In practice, this means that we segment the beam such that the end of a segment is at the location of a discontinuity in loading pattern.

Page 66: Chapter 4 Torsion Beams + SFD and BMD.(SOM-201)

Vijay Gupta

• For each of the segments identified above, introduce a cutting plane and draw an FBD of either part of the beam

• Introduce the unknown shear force V and the bending moment M at the cutting plane. These should be shown assuming they are positive according to the sign.

• Determine the expressions for SF and BM by equilibrium considerations, equating the sum of vertical forces and the moment to zero.

Method of Sections:

Page 67: Chapter 4 Torsion Beams + SFD and BMD.(SOM-201)

Vijay Gupta

SFD & BMD: Another ExampleMoMo/L Mo/L

V = - Mo/L

V = - Mo/L

Mo/L

x

MoMo/L

x

y

x

Page 68: Chapter 4 Torsion Beams + SFD and BMD.(SOM-201)

Vijay Gupta

SFD & BMD: Another Example

SFD

- Mo/L

x

MoMo/L Mo/L●y

x

Page 69: Chapter 4 Torsion Beams + SFD and BMD.(SOM-201)

Vijay Gupta

SFD & BMD: Another ExampleMoMo/L Mo/L

M - Mox /L = 0

M + Mo – Mox/L = 0; or M = Mox/L – Mo

M

M

Mo/LMo/L

x

MoMo/L Mo/Lx

y

x

Page 70: Chapter 4 Torsion Beams + SFD and BMD.(SOM-201)

Vijay Gupta

SFD & BMD: Another Example

SFD

- Mo/L

x

MoMo/L Mo/L

BMDx

+Mo/2

-Mo/2

●y

x

Page 71: Chapter 4 Torsion Beams + SFD and BMD.(SOM-201)

Vijay Gupta

SFD & BMD: Another ExamplePP

PL

V = - Px

PPL

y

x

Page 72: Chapter 4 Torsion Beams + SFD and BMD.(SOM-201)

Vijay Gupta

SFD & BMD: Another ExamplePP

PL

xV

- P

y

x

Page 73: Chapter 4 Torsion Beams + SFD and BMD.(SOM-201)

Vijay Gupta

SFD & BMD: Another ExamplePP

PL

x

MP

PL M + PL – Px = 0,M = - P(L – x)

PM + P(L – x) = 0,M = - P(L – x)

y

x

Page 74: Chapter 4 Torsion Beams + SFD and BMD.(SOM-201)

Vijay Gupta

SFD & BMD: Another ExamplePP

PL

xSFD

- Px

BMD

- PL

y

x

Page 75: Chapter 4 Torsion Beams + SFD and BMD.(SOM-201)

Vijay Gupta

SFD & BMD: Another ExamplePP

PL/2

PL/2 V V = 0

V V = - PPL/2P

y

x

Page 76: Chapter 4 Torsion Beams + SFD and BMD.(SOM-201)

Vijay Gupta

SFD & BMD: Another ExamplePP

PL/2

xSFD

- P

y

x

Page 77: Chapter 4 Torsion Beams + SFD and BMD.(SOM-201)

Vijay Gupta

SFD & BMD: Another ExamplePP

PL/2

PL/2M

PM

M + PL/ 2 = 0

PL/2P

xM + PL/ 2 – P(x – L/2) = 0, orM = - PL/ 2 + P(x – L/2)

y

x

Page 78: Chapter 4 Torsion Beams + SFD and BMD.(SOM-201)

Vijay Gupta

SFD & BMD: Another ExamplePP

PL/2

xSFD

- PxBMD

- PL/2

y

x

Page 79: Chapter 4 Torsion Beams + SFD and BMD.(SOM-201)

Vijay Gupta

wLV

x

wL2/2

SFD & BMD: Another Examplew N/m

wL

wx

V + wL – wx = 0, orV = - wL + wx

wL2/2

wL

y

x

Page 80: Chapter 4 Torsion Beams + SFD and BMD.(SOM-201)

Vijay Gupta

SFD & BMD: Another Examplew N/m

wLxSFD

- wL

wL2/2y

x

Page 81: Chapter 4 Torsion Beams + SFD and BMD.(SOM-201)

Vijay Gupta

SFD & BMD: Another Examplew N/m

wLM

M + wL2/2 –wLx + wx2/2 = 0or, M = wLx - w(L2 + x2)/2

wL2/2

wL

wL- wxx

wx

wL2/2

y

x

Page 82: Chapter 4 Torsion Beams + SFD and BMD.(SOM-201)

Vijay Gupta

SFD & BMD: Another Examplew N/m

wLxSFD

- wL

xBMD

- wL2/2

y

xwL2/2

Page 83: Chapter 4 Torsion Beams + SFD and BMD.(SOM-201)

Vijay Gupta

Comparison: Simply Supported vs. Cantilevered

w N/m

- wL/2

- wL2/2

w N/m

- wL/2

+ wL/2

wL2/8

Page 84: Chapter 4 Torsion Beams + SFD and BMD.(SOM-201)

Vijay Gupta

Area Method

R1 R2

M0

P

AB DC

q(x) N/m

E

x

M

Vdx

M+dM

V + dV

SF as well as BM does not change along a beam segments which does not carry any load

Page 85: Chapter 4 Torsion Beams + SFD and BMD.(SOM-201)

Vijay Gupta

Area Method: At the location of concentrated force

R1 R2

M0

P

AB DC

q(x) N/m

E

dx

M

xV

V + dV

M+dM

P

At the location of a concentrated load, the shear force jumps up by a value equal to the load (acting downwards), but there is no change in the bending moment.

Page 86: Chapter 4 Torsion Beams + SFD and BMD.(SOM-201)

Vijay Gupta

Area Method: At the location of concentrated moment

dx

M

V

x

M0

M+dM

V + dV

R1 R2

M0

P

AB DC

q(x) N/m

E

At the location of a concentrated moment, the bending moment jumps down by a value equal to the applied moment, but there is no change in the value of the shear force across such an element.

Page 87: Chapter 4 Torsion Beams + SFD and BMD.(SOM-201)

Vijay Gupta

Area Method: At the location of a distributed load

q(x)

M+dM

x

V + dVM

Vdx

R1 R2

M0

P

AB DC

q(x) N/m

E

The rate of change of shear force at a location is equal to the (downward) load density at that point. Similarly, the rate of change of bending moment is equal to the (negative of) shear force at that point.

Page 88: Chapter 4 Torsion Beams + SFD and BMD.(SOM-201)

Vijay Gupta

Area Method: Drawing SFD• First draw the loading diagram of the beam.• Calculate the reaction at the supports.• Start drawing the SFD at a point slightly left of the

left support where the shear force is taken as zero.• Travel along the beam to the right, modifying the SF

using the rules given below.• Shear force does not change over the segment of the

beam with no external load.• The presence of a concentrated moment does not

change the value of shear force.

Page 89: Chapter 4 Torsion Beams + SFD and BMD.(SOM-201)

Vijay Gupta

Area Method: Drawing SFD• A concentrated force causes a jump in SFD at the

location of the force: go up for every load downwards, down for every load upwards.

• The slope of the SFD at any location is equal to the distributed load density (load per unit length). Positive slopes for loads downward, and negative slopes for loads acting upwards.

• Change in SF between any two locations is equal to the area under the distributed load curve. Positive changes for negative areas and negative changes for positive areas.

• Proceed till you are slightly right of the right support where the SF should be zero again. This last is a check on calculations.

Page 90: Chapter 4 Torsion Beams + SFD and BMD.(SOM-201)

Vijay Gupta

Verifying Area Method: SFD

- P/2+ P/2

P/2 P/2

P

PP

PP

-PP

wwL/2 wL/2

- wL/2

wL/2

- Mo/L

Mo

Mo/L

Mo/L●

Page 91: Chapter 4 Torsion Beams + SFD and BMD.(SOM-201)

Vijay Gupta

PPPL

xV

-PPPPL/2

x-P

x

-wL

w

wL

wL2/2

Verifying Area Method: SFD

Page 92: Chapter 4 Torsion Beams + SFD and BMD.(SOM-201)

Vijay Gupta

Constructing SFD100 N 100 N 100 N

200 N/m

150 150

x

-150

+50+100

Page 93: Chapter 4 Torsion Beams + SFD and BMD.(SOM-201)

Vijay Gupta

• First complete the shear force diagram of the beam. • Start at a point slightly left of the left support where

the bending moment is taken as zero.• Travel along the beam to the right, modifying the BM

using the rules given below.• The slope of the BMD at any location is equal to

(negative of) the SF value at that location• Change in BM between any two locations is equal to

the (negative of) the area under the SF curve.

Area Method: Drawing BMD

Page 94: Chapter 4 Torsion Beams + SFD and BMD.(SOM-201)

Vijay Gupta

• Concentrated moments cause a jump in BMD at the location of the moment.

• Go up for every negative concentrated moment, down for every positive concentrated moment.

• Proceed till you are slightly right of the right support where the BM should again be zero again. This last is a check on calculations.

Area Method: Drawing BMD

Page 95: Chapter 4 Torsion Beams + SFD and BMD.(SOM-201)

Vijay Gupta

- P/2

+ P/2

+PL/4

P

P

P

P

- P

+ P

PL/4

Verifying Area Method: BMD

Page 96: Chapter 4 Torsion Beams + SFD and BMD.(SOM-201)

Vijay Gupta

Verifying Area Method: BMDw N/mwL/2 wL/2

- wL/2

+ wL/2

wL2/8

- Mo/L

+Mo/2

-Mo/2

MoMo/L Mo/L

Page 97: Chapter 4 Torsion Beams + SFD and BMD.(SOM-201)

Vijay Gupta

PP

PL

- P

- PL

PP

PL/2

- P

- PL/2

Verifying Area Method: BMD

Page 98: Chapter 4 Torsion Beams + SFD and BMD.(SOM-201)

Vijay Gupta

Constructing BMD100 N 100 N 100 N

200 N/m

150 150

-150

+50+100

+150

+150

206.25200

50

Page 99: Chapter 4 Torsion Beams + SFD and BMD.(SOM-201)

Vijay Gupta

Another Example

20 kN

− 50 kN

− 10 kN

30 kN

40 kNR1

20 kN.m

20 kN/mR2

40 kN

0.5 m

x, m1 2 43

A D EF

CB

− 10 kNm

40 kNm45 kNm

25 kNm

30 kNm

x

V

x

M