Chapter 14 · Some examples • Interstellar space 10-20 kg/m3 • Laboratory vacuum 10-17 kg/m3...

13
Chapter 14 Fluids Part 1

Transcript of Chapter 14 · Some examples • Interstellar space 10-20 kg/m3 • Laboratory vacuum 10-17 kg/m3...

Page 1: Chapter 14 · Some examples • Interstellar space 10-20 kg/m3 • Laboratory vacuum 10-17 kg/m3 • Air (1 atm 20C) 1.21 kg/m3 • Ice 0.917x103 kg/m3 • Water 0.998x103 kg/m3 •

Chapter 14FluidsPart 1

Page 2: Chapter 14 · Some examples • Interstellar space 10-20 kg/m3 • Laboratory vacuum 10-17 kg/m3 • Air (1 atm 20C) 1.21 kg/m3 • Ice 0.917x103 kg/m3 • Water 0.998x103 kg/m3 •

What is a fluid• A substance that can flow

• Liquids (difficult to compress)• Gases (easy to compress)

• Basic properties:• Fluids take the form of the container.• When shear stress is applied they flow.• The molecules in fluids are in constant random

motion (Brownian motion).• The field of science that describes the

fluid motion is called “Fluid Mechanics”

Page 3: Chapter 14 · Some examples • Interstellar space 10-20 kg/m3 • Laboratory vacuum 10-17 kg/m3 • Air (1 atm 20C) 1.21 kg/m3 • Ice 0.917x103 kg/m3 • Water 0.998x103 kg/m3 •

Density

• Mass per unit volume.• Unit kg/m3.• The density can be different at each

point of the fluid.• An object is uniform if the density is

constant at any point of the body• A fluid is incompressible if the density

does not change as a result of an appliedpressure.

!

" =#m

#V

Page 4: Chapter 14 · Some examples • Interstellar space 10-20 kg/m3 • Laboratory vacuum 10-17 kg/m3 • Air (1 atm 20C) 1.21 kg/m3 • Ice 0.917x103 kg/m3 • Water 0.998x103 kg/m3 •

Some examples

• Interstellar space 10-20 kg/m3

• Laboratory vacuum 10-17 kg/m3

• Air (1 atm 20C) 1.21 kg/m3

• Ice 0.917x103 kg/m3

• Water 0.998x103 kg/m3

• Seawater 1.024x103 kg/m3

• Earth 5.5x103 kg/m3

• Neutron star 1018 kg/m3

Page 5: Chapter 14 · Some examples • Interstellar space 10-20 kg/m3 • Laboratory vacuum 10-17 kg/m3 • Air (1 atm 20C) 1.21 kg/m3 • Ice 0.917x103 kg/m3 • Water 0.998x103 kg/m3 •

Pressure

• Force per unit area (the force is perpendicular tothe surface)

• Scalar: the pressure has the same value in alldirections!

• Units: 1Pa=1N/1m2.• Other popular units 1 atm = 1 bar = 1.01x105 Pa = 760 torr = 14.7 lb/in2

!

p ="F

"A

Page 6: Chapter 14 · Some examples • Interstellar space 10-20 kg/m3 • Laboratory vacuum 10-17 kg/m3 • Air (1 atm 20C) 1.21 kg/m3 • Ice 0.917x103 kg/m3 • Water 0.998x103 kg/m3 •

Some Examples

• Sea level atm. pressure 105 Pa• Bottom of the ocean 1.1x108 Pa• Center of the Earth 4x1011 Pa• Center of the Sun 2x1016 Pa

Page 7: Chapter 14 · Some examples • Interstellar space 10-20 kg/m3 • Laboratory vacuum 10-17 kg/m3 • Air (1 atm 20C) 1.21 kg/m3 • Ice 0.917x103 kg/m3 • Water 0.998x103 kg/m3 •

Fluids at rest• Static equilibrium

!

F2

= F1+ mg

!

F1

= p1A F

2= p

2A

!

p2A = p

2A + "Vg

!

V = A(y1" y

2)

!

p2

= p1

+ "g(y1# y

2)

!

p = p0

+ "gh Hydrostatic pressure

Page 8: Chapter 14 · Some examples • Interstellar space 10-20 kg/m3 • Laboratory vacuum 10-17 kg/m3 • Air (1 atm 20C) 1.21 kg/m3 • Ice 0.917x103 kg/m3 • Water 0.998x103 kg/m3 •

Gauge pressure

• Absolute pressure = total pressure• Gauge pressure = total - atmospheric• The atmospheric pressure on the free surface

of a liquid is often neglected.

!

pgauge = "gh

Page 9: Chapter 14 · Some examples • Interstellar space 10-20 kg/m3 • Laboratory vacuum 10-17 kg/m3 • Air (1 atm 20C) 1.21 kg/m3 • Ice 0.917x103 kg/m3 • Water 0.998x103 kg/m3 •

Measuring pressure

• Mercury barometer:measures theatmospheric pressure.

• Open tube manometer:measures the gaugepressure of a gas.

!

pg = p " p0

= #gh

!

p0

= "gh

Page 10: Chapter 14 · Some examples • Interstellar space 10-20 kg/m3 • Laboratory vacuum 10-17 kg/m3 • Air (1 atm 20C) 1.21 kg/m3 • Ice 0.917x103 kg/m3 • Water 0.998x103 kg/m3 •

Sample problem

• What gauge pressure must a machine produceto suck mud of density 1800 kg/m3 up a tubeby a height of 1.5 m?

mud

p

h pa

!

pg = p " pa

pa = p + #gh

pg = "#gh = "2.6 $104Pa

Page 11: Chapter 14 · Some examples • Interstellar space 10-20 kg/m3 • Laboratory vacuum 10-17 kg/m3 • Air (1 atm 20C) 1.21 kg/m3 • Ice 0.917x103 kg/m3 • Water 0.998x103 kg/m3 •

HITT question

• The figure shows four containers of oliveoil. For which container the pressure atdepth h is greatest?

1) A 2) B 3) C 4) D 5) it is the same for all cases

Page 12: Chapter 14 · Some examples • Interstellar space 10-20 kg/m3 • Laboratory vacuum 10-17 kg/m3 • Air (1 atm 20C) 1.21 kg/m3 • Ice 0.917x103 kg/m3 • Water 0.998x103 kg/m3 •

Pascal’s Principle

• A change in the pressure appliedto an enclosed incompressiblefluid is transmitted undiminishedto every portion of the fluid andto the walls of the container.

!

"p = "pext

Page 13: Chapter 14 · Some examples • Interstellar space 10-20 kg/m3 • Laboratory vacuum 10-17 kg/m3 • Air (1 atm 20C) 1.21 kg/m3 • Ice 0.917x103 kg/m3 • Water 0.998x103 kg/m3 •

Hydraulic Lever• An input force applied over a

distance is transformed intobigger force over a shorterdistance

• The work done by the input forceand the output force is the same!!

"p =Fi

Ai

=Fo

Ao

!

Fo

= Fi

Ao

Ai

> Fi

!

V = Aidi= A

odo

!

W = Fodo

= doFi

Ao

Ai

= doFi

di

do

= Fidi