Chapter 1 (John H. Mathews).pdf

download Chapter 1 (John H. Mathews).pdf

of 47

Transcript of Chapter 1 (John H. Mathews).pdf

  • 8/17/2019 Chapter 1 (John H. Mathews).pdf

    1/47

    #complex"   numliers

    OverviewGet r ead y   f or  a tr eat.   You'r e a bout   to  begin   stud ying some  of the   most beautiful

    id eas   in   mathematics.   They ar e   ideas with   surpr ises.   They evolved   over sever al

    centuries, yet   they gr eatly simplif y extr emely   d if f icult com putations,   making

    some as   easy   as   sliding a  hot k nife thr ough butter .   They also   have a pplicationsin a var iety   of  ar eas,   r anging   f rom fluid  flow, to  electr ic cir cuits,   to the   myster ious

    quantum   wor ld .   Gener ally,   they   belong t o the ar ea   of   mathematics   k nown as

    complex analysis,   which   is the   sub ject   of  this   book .   This cha pter    f ocuses on the

    d evelo pment   of  entities we now  call   complex numbers.

    Com plex   analysis   can  r oughly   be thought of as the  su bject that   a p plies   the theor y

    of   calculus   to   imaginar y   num ber s.   But   what exactly   ar e   imaginar y   num ber s?

    Usually,   stud ents   lear n   a bout   them in high   school   with   intr oductor y   remar k s

    f r om their   teacher s along   the following   lines:   "We can't take   the   squar e   r oot   of 

    a   negative   number .   But   let's   pr et end    we   can   and   begin by   using   the   sym bol

    i= v = I . "   Rules   ar e then learned f or   doing ar ithmetic   with   these   number s.   Atsome   level   the   rules   mak e sense.   If i=  A ,it stand s to   r eason   that   i2 =   -l.However ,   it   is   not   uncommon for   stud ents   to   wond er whether    they   ar e r eally

    doing   magic   r ather than mathematics.

    If   you   ever   f elt   that   way,   congr atulate yourself! You'r e   in   the company   of some   of the great mathematicians   f rom   the sixteenth   thr ough   the   nineteenth

    centuries. They,   too,   wer e   per  plexed by the   notion   of  r oots   of  negative   num ber s.

    Our purpose in   this section is   to   highlight   some of the   e pisod es   in the   ver y

    colorful histor y of how thinking a bout   imaginar y   num ber s   d evelo ped .   We intend 

    to   show   you that,   contr ar y   to po pular belief , ther e is   r eally   nothing   imaginar  y

    a bout   "imaginar y   num ber s."   They   ar e just as   r eal   as "r eal number s."

  • 8/17/2019 Chapter 1 (John H. Mathews).pdf

    2/47

    Our story begins   in  1545. In   that year ,   the Italian mathematician Girolamo

    Cardano pu blished    Ars Magna (The Great Art),   a 40-cha pter master  piece   in

    which he gave for the fir st   time a method    for solving the gener al   cubic eq uation

    Card ano   d id   not   have at   his d isposal   the   power   of  tod ay's algebraic   notation,

    and he tend ed    to think of cubes or squar es as geometric o b jects rather than al-

    ge braic q uantities.   Essentially,   however,   his solution   began with   the substitution

     z =   x-   a ; .   This move tr ansformed    Eq uation   (1-1)   into a cu bic eq uation   withouta squared    term,   which is called   a   depressed cubic.   To  illustrate,   begin with

     z3 + 9 z2 + 24z  + 20 =   0 and substitute   z   =   x -   a32 =   X   -   *   =   x   -   3. The equationthen   becomes   (x   -   3)3  +  9 (x   -   3)2  +  24 ( x   -   3)  +  20  =0, which sim plif ies   to x3 ~   3x  + 2   =O .

    You need   not wor ry a bout the com putational   details   here, but in general   the

    substitution   z   =   x   -   a32 transf orms Equation   (1-1)   into

    h   b-   1 2   d _    1 2   3wer e   -   al -   3a2,   an c -   -3a1a2   +   27a2   + ao.If   Card ano could   get any value of  x   that solved a depr essed    cu bic,   he could 

    easily get a cor res ponding solution   to Eq uation   (1-1)  from the   id entity   z   =   x   -   a3

    2.

    Ha p pily,   Car d ano   knew  how to solve a depressed cubic.   The techniq ue   had been

    communicated to  him by Niccolo Fontana who,   unf ortunately, came   to  be known

    as Tar taglia (the   stammerer)   d ue to a speaking disord er .   The procedure was also

    ind e pendently   d iscovered   some   30 year s earlier by Scipione   d el  Ferro of Bologna.

    Ferro   and   Tartaglia showed that one of the solutions to Equation   (1-2)   is

     x   =   3   _    ~  + J   c2 +   b 3 +   3   _    ~   _  J   c2 +   b 3 .2 4 272 4 27

    Although   Car d ano   would not have reasoned   in the following way,   tod ay we

    can tak e   this value   f or   x   and use   it   to   f actor the depressed    cubic   into a   linear 

    and quadr atic term. The remaining r oots can then be   f ound   with   the   quad r atic

    formula.   For exam ple,   to solve   z3  + 9z2 + 24z   + 20  =   0,   use the substitution z   =   x-3   to get  x3 -3x+2   =   0, which is a d epressed   cubic in the f orm of Equation(1-2). Next,   apply the   "Fer ro-Tartaglia"   f ormula with   b   =   -3 and c =   2 to   get

    «  2

      V  22 ( _ 3)3

      «  2

      V  22 ( _ 3)3   R' R   S· x   = -   -  +-   + -- +   - - -   - + --   =   -1+   -1=   -2   mce2 4   27   2 4 27   .

    X   =-2   is a   r oot,   x  +  2   must   be a   f actor   of   x3 -   3x   + 2.   Divid ing   x   + 2   into x3 -   3x   +  2  gives   x2 -   2x   +   1, which yields the   r emaining (duplicate)   roots   of  x   =   1. The solutions to   z3+9z2+24z+20   =   0 ar e o btained by r ecalling   z   =   x-3 ,

    which   yield s the thr ee   roots   Zl   =   -2 - 3 =   -5,   and   Z2   =   Z3   =   1 - 3 =   -2.So, by using Tartaglia's work  and a clever transfor mation   techniq ue,   Cardano

    was a ble to crack what had seemed to be the impossi ble task of solving the

  • 8/17/2019 Chapter 1 (John H. Mathews).pdf

    3/47

    gener al cubic   equation. Surprisingly,   this develo pment   played   a signif icant   r ole

    in helping to   esta blish   the   legitimacy   of   imaginar y   number s. Roots   of negative

    number s,   of   course,   had   come   up   ear lier in the   simplest   of quadr atic equations

    such   as   x2 +   1   = O.   The solutions   we   know   tod ay   as   x   = ± j= I  ,   however ,wer e easy   f or   mathematicians to   ignor e.   In Cardano's   time,   negative   number s

    wer e still   being   tr eated    with   some sus picion,   as  it was   d if ficult to conceive of any

     physical   r eality   corr es pond ing to   them. Taking squar e   roots   of   such quantities

    was   sur ely all   the   mor e ludicr ous. Never theless,   Card ano   mad e some   genuine

    attempts to   d eal   with   j=I. Unf or tunately,   his   geometr ic thinking   mad e   ithard   to   mak e   much head way. At   one   point   he commented    that the   pr ocess   of 

    arithmetic that d eals   with   q uantities   such   as  j=I"involves   mental   tor tur es and is   truly sophisticated ."   At   another    point   he condud ed    that the   process   is "as

    r efined as   it   is   useless."   Many   mathematicians   held   this view,   but   f inally there

    was   a   breakthr ough.

    In his   1572 tr eatise   L  '  Algebr a ,   R af ael   Bom belli   showed that   roots of  negative

    numbers   have   gr eat utility   ind eed .   Consid er the   d e pr essed   cu bic   x3 -15 x-4  =

      O.

    Using   For mula   (1-3),   we compute   x  =\/2   +  J=TIT   +   {h-  J -121   or ,   in   asomewhat d iff er ent f orm.   x   =   {h+   II  j=I+   \/2   -   II  j=I.

    Sim plif ying   this ex pression would have   been   ver y   diff icult   if   Bom belli   had 

    not come up   with   what   he called   a   "wild thought."   He   sus pected    that if the

    or iginal depr essed    cubic   had r eal   solutions.   then   the two   parts of   x   in   the   pr e-

    ceding eq uation   could be   written   as   u  +   vj=I    and   u   - v j= I    f or   some   realnumber s   u   and   v.   That   is,   Bom belli   believed    u +  vj= I    =   {h+ ll A   and u   -   v A   =   \/2   -ll A,   which   would mean   (u +  vA)3   =   2 +   ll j=I,

    and   (u   -   v  j=I)3 =   2 -   ll j=I.Then,   using   the well-known   algebr aic   id entity

    (a   +   b) 3 =   a3

    +   3a  2

    b  +   3ab2

    +   b3

     ,   and   assuming that   r oots   of negative   number sobey   the   r ules of alge br a,   he   obtained 

    (u  +  v";=l f    =   u3 +  3(u2)vv=1   +  3(u)(v H )2   +   (vv=1)3

    = u3 +  3(u) (vv=1)2   +  3(u2)vv=1   +   (v H )3

    =   (u3 -   3uv2)   +  (3u2v  -   v3)v=1

    =u(u2 -   3v2) + v(3u2 -   v2)H 

    =2+11H.

    ( J   -   j)

    (1-;) )

    By   eq uating   lik e   par ts of   Eq uations   (1-4)   and    1-.))   Bombelli r easoned    that

    u(u2 -   3v2)   = 2 and   v(3u2 -   v2)   = ll.   Perha ps   think ing   even mor e wild ly,

    Bombelli   then   su pposed    that   u   and   v   wer e   integer s.   ThE' only   integer f actor s   of 

    2 ar e   2 and 1,   so   the equation   u( u2 -   3v2)   =   2 led   Bombelli   to   conclud e thatu  =   2  and   u2 -   3v2 =   1.   Fr om   this   conclusion   it   follows   that   v2 =   1.   or   v   =   ±1.Amazingly,   u   =   2   and   v   =   1   solve   the   second   equation   v(3u2 -   v2)   =   ll,   soBombelli d eclar ed the values   for   u   and   v   to be   u  =   2 and   v =   1,   res pectively.

  • 8/17/2019 Chapter 1 (John H. Mathews).pdf

    4/47

    Since   (2 + -/=1 :)3   =   2 + l1 A ,we clear ly   have   2 +  A =   {h+ l1 A .Similarly,   Bom belli   showed   that   2 -  A=  {h-11 A. But   this   means   that

    ~2   +l1R+

     , / 2-l1R=(2 +R)+ (2 -  R)=4,

    which was   a   pr overbial bombshell.   Prior    to   Bombelli,   mathematicians could 

    easily   scoff   at   imaginar y   number s   when they   ar ose   as   solutions to   quadr atic

    equations. With   cubic   equations,   they   no longer   had this   luxur y. That   x  =4 was

    a   corr ect   solution   to the   equation   x3 -   15x   -   4 =   0 was  indis putable,   as   it could  be check ed   easily.   However ,   to   arrive   at   this   ver y   real   solution,   mathematicians

    had   to tak e   a   d etour   thr ough   the   uncharted ter r itor y   of   "imaginar y   number s."

    Thus,   whatever else  might have   been   said   a bout these num ber s   (which,   tod ay,

    we  call com plex num bers),   their utility could   no   longer be   ignor ed .

    Admittedly,   Bombelli's technique   a pplies   only   to  a f ew s pecialized   cases, and 

    lots   of   work r emained    to   be   d one   even if   Bom belli's   r esults could   be extend ed.

    Af ter   all,   today   we   r e pr esent r eal num ber s geometrically   on   the   number    line.

    What possi ble   r e pr esentation   could   com plex   number s   have?   In   1673   John Wallis

    mad e   a sta b   at   a geometric   pictur e   of com plex   number s that   comes   close to   what

    we   use   tod ay.   He   was   inter ested in r  e pr esenting   solutions   to   gener al quadr atic

    equations,   which  we can write as x2+2b x+c2 = a   to mak e   the   f ollowing discussioneasier to follow.   When we use   the   quadratic   formula   with   this equation,   we  get

    Wallis   imagined    these solutions as  dis placements   to the   lef t   and   right   fr om

    the   point   -b.   He   saw   each   d is placement,   whose   value   is   J b2 -   c2,   as  the   length

    of the   sid es of  the r ight   triangles shown in   Figur e   1.1.The   points   PI   and   P2   r e pr esent   the solutions   to our   eq uation,   which is clear ly

    corr ect if  b 2 -   c2 2 ':   O. But   how should we pictur e   PI   and   P2   when   negative   r ootsarise   (i.e., when   f )L  .   -   c L .  

  • 8/17/2019 Chapter 1 (John H. Mathews).pdf

    5/47

    b 2 -   C2 <   O. He   evid ently   thought   that,   because   b   is shor ter    than   c,   it   could   nolonger be   the hy potenuse of the   right   triangle   as   it   had   been   ear lier .   The side  of 

    length   c would   now have   to   tak e   that role.

    Wallis's   method has   the   und esir able   consequence that -  Ais r e pr esented  by   the   same   point as   is  A.  Never theless,   this   interpr etation   hel ped    set thestage   f or   thinking   of   complex   num ber s as " points on the   plane."   By   1732,   the

    gr eat   Swiss   mathematician Leonard Euler ( pr onounced    "oiler ") adopted this

    view   concerning the   n   solutions   to the   eq uation   xn -   1   =O.   You   will   learn

    shortly   that these   solutions can   be   ex pr essed    as cos e   +  Asin e   f or   var iousvalues of   e ;   Euler    thought of   them   as   being   located at the vertices of   a regular 

     polygon   in the plane.   Euler    was   also the   fir st to use the symbol   if or   A.Tod ay,   this   notation is still   the most   popular , although   some electrical   engineers

     pref er   the   symbol   j   instead    so  that they can use ito re pr esent cur rent.

    Two   additional   mathematicians   d eser ve   mention.   The Frenchman   Augustin-

    Louis Cauchy (1789-1857) formulated    many of the classic theor ems that ar e   now

     par t of the corpus   of  com plex analysis. The   Ger man   Carl   Fr iedr ich Gauss   (1777-1855) r einfor ced    the   utility of   com plex   number s by   using them   in his several

     proof s   of  the   f und amental   theorem   of  alge br a   (see Cha pter    6).   In an 1831 pa per ,

    he   pr oduced    a  clear   geometr ic r e pr esentation of  x  + i y   by   id entif ying   it   with the point   (x ,   y )   in the coor d inate plane. He also d escri bed how to perf orm   ar ithmetic

    oper ations with   these   new  number s.

    It   would be a   mistak e,   however ,   to conclud e that   in 1831   complex num-

     ber s were   tr ansf or med into   legitimacy. In   that same   year   the   prolif ic   logician

    Augustus   De   Mor gan   commented    in his   book ,   On   the Study and Di fficult ies   of 

     M athematics,   "We have shown the sym bol   v = a   to be void   of  meaning,   or r ather self -contrad ictor y   and a bsurd.   Nevertheless,   by   means   of such   symbols,   a   par t

    of  alge br a   is esta blished    which is of  gr eat   utility."

    Ther e ar e,   ind eed ,   genuine   logical   pr o blems associated    with   complex num-

     ber s.   For   exam ple,   with   r eal   numbers   V O J j   =   y'liV b   so   long as   both   sides of the eq uation   ar e   d efined .   Ap plying   this   id entity   to com plex numbers   leads to

    1 =  V I   =   vi (-1) (-1)   =  AA =   -1.   Plausible   answer s   to these pr oblemscan be given,   however ,   and   you   will  lear n   how to   r esolve   this a pparent   contr ad ic-

    tion in  Section   2.2.   De Mor gan's   r emark illustr ates that   many   f actor s ar e   needed 

    to   per suad e   mathematicians to adopt new   theories.   In   this case,   as always,   a

  • 8/17/2019 Chapter 1 (John H. Mathews).pdf

    6/47

    f irm  logical   foundation   was crucial,   but   so,   too,   was a willingness   to  modif y   some

    id eas   concerning cer tain   well-esta blished pr o perties   of number s.

    As time   passed,   mathematicians gr ad ually   r efined   their   thinking,   and by   the

    end   of   the nineteenth centur y complex number s wer e fir mly   entr enched . Thus,

    as   it is   with many   new mathematical   or   scientific   innovations,   the   .theor y   of 

    complex   number s evolved by   way of a   ver y   intricate process.   But   what is the

    theor y that Tar taglia,   Fer ro,   Car d ano,   Bombelli,   Wallis,   Euler , Cauchy,   Gauss,

    and so many   other s   helped   produce?   That   is,   how do we now think   of   complex

    number s?   We   ex plor e   this   q uestion in  the r emaind er    of  this   chapter .

    2. Ex plain   why cubic equations,   r ather   than q uadr atic   equations,   played   a   pivotal

    r ole in helping  to obtain   the acce ptance   of  complex number s.

    (a)   27x3 -   9 x   -   2 =   O. H int:   Get   an   eq uivalent monic polynomial.

    (b)   x3-27  x+54=0.

    4. Explain   why Wallis's view of com plex number s results   in - v = T   being re pr esented  by the   same  point  as is v = T .

    5.   Use Bombelli's technique to get  all solutions   to  the   following d e pr essed   cubics.

    (a)   x3 -   30 x   -   36   =   O .

    ( b)   x3 -   8 7  x   -   130   =O.

    (c)   x3-6 0x-32=0.

    (a)   Z 3 -   6  z2 -   3z +   18   =   O .

    ( b)   z3 +  3 z2

    -   24 z  +  28   =O.

    7.   Is it possible to   modif y slightly   Wallis's   picture of  com plex number s   so that   it is

    consistent with the   r e pr esentation used  tod ay?   To help you answer   this   q uestion,

    ref er to the   article by Alec  Norton and Ben jamin Lotto,   "Com plex  Roots   Mad e

    Visi ble,"   The C ollege Mathemat ics   Journal ,   15(3),   June   1984,   p p.   248-249.

    8. Investigate   librar y or we b r esources and  wr ite   up a d etailed d escription   ex plaining

    why the  solution to the d e pr essed   cubic,   Equation   (1-3), is valid .

  • 8/17/2019 Chapter 1 (John H. Mathews).pdf

    7/47

    We have shown that complex number s came to be viewed   as   ord ered pairs   of 

    r eal number s.   That   is,   a complex   number    Z   is   d efined   to be

    wher e   x   and yare both r eal number s.

    The   reason   we say   or d er ed    pair is because we ar e   think ing of  a   point   in the

     plane.   The point (2,   3),   for   example,   is   not the same as   (3,   2).   The   ord er    in

    which we write   x   and   Y   in   Equation   (1-7) mak es a dif f er ence. Clearly,   then,   two

    complex   number s ar e equal if and only   if  their   x   coor d inates   ar e equal   and   their 

    Y   coordinates   ar e   equal.   In other word s,

    (Throughout this   text,   iff means   i f   and only   if .)

    A meaningful number   system r eq uires a method    for combining order ed   pair s.

    The definition of   alge br aic oper ations must   be consistent so  that   the   sum,   d if -

    ference,   product,   and quotient   of any   two   order ed   pair s   will  again be   an order ed 

     pair . The key   to defining   how   these   number s should   be   manipulated is to f  ol-

    low Gauss's   lead and   equate   (x,   y )   with   x   +   i y .   Then,   if   Zl   = (Xl,   y d    and Z2  =( X  2 ,   Y 2 )   ar e   arbitr ar y complex   number s,   we have

    Zl   +   Z2  =   (Xl,   y d    +   ( X  2 ,   Y  2 )

    =   (X l   +  i y d    +   (X 2   + iY 2 )

    =   (Xl   +  X  2 )   + i(Y I   + Y  2 )

    =(X l   + X  2 ,   Y I  + Y 2 ) .

    Zl   +   Z2  =   (Xl,   Y  l)   +   (X 2 ,   Y  2 )

    =   (Xl   +  X  2 ,   Y I   +   Y  2 ) .   (1-8)   I

    Zl   -   Z2  =   (Xl,   yd    -   (X 2 ,   Y  2 )

    =   (X l   -   X  2 ,   Y I   -   Y 2 ) .   (1-9)   I

  • 8/17/2019 Chapter 1 (John H. Mathews).pdf

    8/47

    Zl  +   Z2   =(3,   7) +  (5, -6)   =(8,   1)   and 

    Zl   -   Z 2   =   (3.   7)   -   (5.   -6)   =   (-2.   13).

    Zl  +   Z 2   =   (3 +  7i)  +   (5 -   6i)   =   8 + i   and 

    Zl   -   Z 2   =(3 +  7i)   -   (5 -   6i)   =-2   +   13i.

    Given the rationale   we   devised f or   ad dition and   subtraction,   it   is   tempting

    to define   the pr od uct   Z lZ 2   as   ZlZ2   =   ( X 1X2 ,   Y1Y2).   It turns   out,   however ,   thatthis is   not   a good d ef inition,   and   we ask you in the   exercises   for this   section to

    explain   why. How,   then, should pr oducts   be   d efined ?   Again,   if  we  eq uate   (x ,   y )

    with   x  + iy   and assume,   f or   the   moment,   that   i=  Amak es sense   (so thati2 =   -1),   we   have

     Z l Z 2   =   (Xl,   Y l)(X 2 ,   Y 2)

    =(X l   + i yd(X2   + iY2)

    =   X 1X2   + iX1Y2   + iX 2Yl   + i2Y1Y2

    = X1X 2   - Y1Y2   + i(X 1Y2   +  X 2Y l)

    =(X1X 2   -   Y1Y 2, X1Y 2

      + x2yd ··

     Z l Z 2   =(Xl ,   yd( X 2' Y2)

    =(X1X2   -   Y1Y2 ,   X1Y 2   +   X2Yl).   (1-10)   I

     Z l Z 2   =(3,   7)(5,   -6)

    =   (3·5   -   7·   (-6),   3·   (-6)   + 5 . 7)=   (15 + 42.   -18   + 35)=   (57,   17).

  • 8/17/2019 Chapter 1 (John H. Mathews).pdf

    9/47

     Z l Z 2   =   (3,   7)(5,   -6)

    =   (3 +  7i)(5   ~   6i)

    =   15 -   18i +   35i   -   42i2

    =   15 -   42( -1)   +   (-18   + 35)i

    =57 +   17i

    =(57,   17).

    Of cour se,   it   mak es sense   that the   answer came   out   as   we expected because

    we   used the   notation   x  + iy   as   motivation f or our d efinition   in   the   f ir st   place.

    To   motivate   our   d ef inition f or division,   we   pr oceed    along   the same   lines   aswe did   f or multiplication,   assuming   that   Z 2   - I -   0:

     Z l (X l ,   yd 

     Z2 (X 2 ,   Y 2)

    ( X  l   + i yd ( X 2   + iY 2)   .

    We   need to   figur e   out a way to   write the   pr eceding   quantity   in   the   for m

    X   +   i y.   To d o so,   we   use   a   stand ard    tr ick and multiply the   numer ator and d enominator by   X 2 -   iY 2 ,   which   gives

     Z l   (X l   + iyd( X 2   -   iY 2) Z 2   ( X 2   +   iY2)( X 2   -   iY 2)

     X  I  X 2   +  Y IY 2   + i( - X I Y 2   +  x 2vd 

    X~   + v~ X IX 2   +   V  I V 2   . - X  I Y2   +   X 2Y l-----   + t-----

    X~  +  y~   X~   +  yi

    =   ( X IX 2   + V  I Y2   - X I V2   +  X2VI )X~   +  y~ ,   X~   + y~   .

    ( x I  , yd 

    (X2,Y 2)

    ( X IX 2   + VIV2   - X  IV 2   +  X2VI )

    X~   +   y~   ,   X~   +   V~   .

  • 8/17/2019 Chapter 1 (John H. Mathews).pdf

    10/47

    • EXAM PLE 1.3   If   21   =(3,   7) and    22   =(5,   -6),   then

    21   =~=   (15-4218+35)   =   (-27   53)22   (5,   -6)   25 +   36'   25 +   36   61   '61 .

    As with   the   example   for   multiplication,   we also   get this   answer if   we   use thenotation   x + i y:

    21   (3,7)

    22   (5, -6)

    3 + 7i5 -   6i

    3 +   7i 5 + 6i----5 -   6i   5 + 6i

    15 +   18i  +   35i   + 42i2

    25   +   30i   -   30i   -   36i2

    15 -   42  +   (18   +   35)   i

    25  + 3 6-27   53.

    =51+   61  t

    = ( - 2 7   5 3 ) .61   '61

    To   per f or m oper ations   on   complex   numbers,   most   mathematicians would   use

    the notation   x + iy   and   engage   in   alge br aic   manipulations,   as   we   d id her e,   r ather than   a pply   the complicated -looking d ef initions   we gave   for those   oper ations on

    order ed pair s.   This   procedure   is   valid because   we   used    the   x   +   i y   notationas   a   guid e   f or   d efining the   oper ations   in   the   fir st   place.   R emem ber ,   though,

    that the   x  + iy   notation is   nothing   mor e than a convenient   bookk ee ping   d evicefor k ee ping tr ack    of how   to manipulate   ord ered    pair s. It   is   the or d ered    pair 

    alge braic d efinitions that form the r eal   found ation   on which the com plex   number 

    system is   based. In   f act,   if   you wer e   to pr ogr am a   computer to   d o arithmetic on

    complex   numbers, your program   would    perf or m   calculations on   or d er ed    pair s,

    using   exactly the def initions   that   we gave.

    Our    alge br aic   d ef initions   give   complex num ber s all   the   properties   we   nor -

    mally ascr i be to the   r eal number    system.   Tak en   together ,   they   d escr i be   what

    algebr aists call   a   field .   In f or mal   terms, a   f ield   is   a set   (in   this case,   the com-

     plex   num ber s) together with   two   binar y o perations   (in this case,   addition   and 

    multiplication)   having   the   f ollowing   properties.

    (PI)   Commutative   law   f or    ad d ition:   21 + 22  =22 +   21.

    (P2) Associative   law for addition:   21 +   (22   +   23)   =   (21  +   22)   +   23·

  • 8/17/2019 Chapter 1 (John H. Mathews).pdf

    11/47

    (P3)   Ad ditive   id entity: Ther e   is a complex num ber   w  such that   z+w   =   z   f or all   complex num ber s   z.   The   number    w   is  obviously   the   ord er ed pair   (0,   0).

    (P4)   Ad ditive inverses:   For  any complex   number    z ,   ther e   is a  unique   com plex

    number    1]  (d e pending on z)   with   the property   that   z+1]  =(0,   0).   Obviously,

    if  z  =( x ,   y)  = x + i y ,   the number    1]  will be   (-x ,   - y)   =- x   -   iy  =- z.

    (P5)   Commutative law   f or multi plication:   Zl Z2   = Z 2Z1' 

    (P6)   Associative law for multiplication:   Z l(Z2 Z3)   =( ZlZ 2)Z 3.

    (P7) Multi plicative identity: There is a  complex   number   (such   that   z(   =   zfor all complex   number s   z.   As you might   ex pect, (1,   0) is the   unique complex

    number    (   having this   pr o perty.   We ask   you   to   verify this id entity   in the

    exercises   f or   this section.

    (P8) Multiplicative inverses:   For any complex   number    z   =   ( x ,   y )   other than   the number   (0,   0),   ther e   is a complex   num ber (d e pending   on  z ) ,   whichwe denote   Z-l,   having   the property   that   ZZ -l   =   (1,   0)  =   1.   Based on our def inition f or   division,   it   seems   r easonable that   the   number    z-l   would   be

    z-l   =   (1,0)   =   1   =   _1 _   =   ~   =  _ x_   +   i-- -= .1L -   =   (_ x_   -- -= .1L -)   We z z x+i y x2+ y2   xY+ y2 x2+ y2   x2+ y2 ,   x2+ y2   .

    ask   you   to conf irm   this   r esult in  the exercises   f or this section.

     None of these   pr oper ties   is   dif f icult to prove. Most   of   the proof s   mak e   use

    of corr es ponding facts   in  the real   num ber   system. To   illustr ate, we give a pr oof 

    of  pr o per ty   (PI).

    Proof of the commutative law for addition:   Let   Zl

     Z2  =( X2 ,   Y2)   be   arbitr ar y   com plex   num ber s.   Then,

    ( Xl ,   yd   + (X 2 ,   Y2)( X l   +   X 2 ,   Y1   + Y2)(X 2+ X 1 ,   Y2+Y 1)

    ( X2,   Y 2)   + ( X l ,   yd  Z 2 +   zl·

    ( by   definition of   add ition of complex numbers)

    ( by the   commutative   law for    real   numbers)

    ( by definition   of add ition of   complex num ber s)

    Actually,   you   can think   of the real number    system as   a   su bset of the   com-

     plex   number system.   To see why, let's   agr ee that,   as any com plex num ber   of  the

    f or m   ( t  ,   0)  is on  the x-axis,   we can id entify it with   the   real   num ber   t.   With   this

    cor res pond ence,   we can   easily   verif y   that our   def initions   f or addition, subtrac-

    tion,   multi plication, and d  ivision   of   com plex numbers   ar e consistent   with   the

    corr es ponding o perations   on  r eal number s. For   exam ple,   if   Xl   and   X2   ar e r eal

    num ber s,   then

  • 8/17/2019 Chapter 1 (John H. Mathews).pdf

    12/47

    (X l ,   0 )(X 2 ,   0 )

    (XIX 2   -   0,   0 +  0)(XIX2.   0 )

    ( by our agr eed cor  r es pondence)

    (by   definition of multi plication of com plex   num bers)

    (confirming the consistence   of our correspondence).

    It   is   now time to show  s pecif ically   how the   sym bol   ir elates to   the   q uantity

      A. Note that

    (0,   1)(0,   1)

    (0   -   1, 0 +  0)   (by   d efinition of multiplication of complex num bers)(-1.   0)

    -1   ( by our agr eed    corr espond ence).

    which   means   i=   (0,   1)  =  R.SO, the next   time you ar e   having a   d iscussionwith   your friends and they scof f   when you claim that  A is not   imaginar y,

    calmly put your pencil   on   the point (0.   1) of the coord inate   plane and   ask them

    if  ther e   is anything   imaginary a bout it.   When   they agree there   isn't,   you   can   tell

    them that this   point,   in   fact,   r e presents the   mysterious  Rin   the same waythat (1,   0)   r e pr esents   1.

    We can   also see mor e clearly   now  how  the notation   X   + iy   equates to   (x .   y).Using the   preced ing conventions (i.e.,   X    =   (x ,   0), etc.),   we   have

    (x ,   0)  + ( 0 .   l)(y,   0)(x ,   0)  +   (0,   y )(x ,   y)

    ( by our previously discussed conventions)

    ( by   d efinition   of multiplication   of   complex numbers)

    ( by   d ef inition of addition of complex numbers).

    Thus,   we may move   f reely   between   the   notations   x   +   iy   and    (x ,   y) ,   d e- pending on   which is mor e convenient   f or   the context   in   which   we   ar e working.

    Stud ents sometimes wonder whether it   matter s wher e the   "i"   is  located    in  writ-

    ing a complex number.   It d oes   not.   Gener ally,   most texts   place   terms containing

    an   "i"   at the end   of  an   ex pr ession,   and place   the   "i"   before a var ia ble   but after 

    a constant. Thus. we wr ite   x +  iy.   u +  iv ,   etc ..   but 3 +  7i. 5 -   6i.   and so  f or th.

    Because   letter s   lower in the alpha bet gener ally   d enote constants,   you will  usually( but   not always) see the ex pr ession   a + bi   instead of  a + ib.   Many authors   wr iteq uantities   lik e   1 + iv'3   instead    of   1+ v'3i   to   mak e sur e   the   "i"   is not mistak enlythought to   be   insid e the sq uare   r oot symbol.   Additionally,   if   there   is concern

    that the "i"   might   be  missed ,   it   is sometimes   placed   bef or e a lengthy   expression,

    as   in   2  cos (-~7 r   +   2m ]")  + i 2   sin   (-~7 r   + 2m]").We  close this   section   with   three important d ef initions and a   theor em   involv-

    ing them.   We ask   you for a   pr oof   of   the theorem in  the exer cises.

  • 8/17/2019 Chapter 1 (John H. Mathews).pdf

    13/47

    Definition 1.5: Real part

    The   real part   of   z,   d enoted    R e  ( z).   is the   r eal number    x.

    I   Definiti on 1.6: Imaginary part

    The-  imaginary   part of   z.   denoted    Im  ( z) .   is the   r eal   num ber   y.

    I   Definiti on 1.7: ConjugateThe   conjugate of   z ,   denoted    z ,   is the   complex number    (x ,   - y)   = x -   iy .

    • EXAMPLE 1.4   a) Re (-3+ 7i)   =   -3   and    R e[(9,   4)]   =   9. b)   Im( -3+7i)   =   7 and    Im[(9,   4)] =   4.  c)   -3   +   7i  =   -3   -   7i   and    (9,   4) =   (9,   -4)   .

    • Theorem 1.1   S uppose t  hat    z ,   Zl,   and    Z2   are ar bitrary com plex numbers.

    Then

     Re( z)=z+ z.2

     z- zIm(z)   =~.

  • 8/17/2019 Chapter 1 (John H. Mathews).pdf

    14/47

    Because of  what   it erroneously connotes,   it   is a shame that the ter m   imagi-

    nary   is used in Definition   (1.6).   It   was  coined   by the   br illiant   mathematician   and 

     philosopher R ene   Descar tes   (1596-1650)   d ur ing an   era when   quantities such   as

     Rwer e   thought to   be  just that.   Gauss,   who   was successful in  getting   math-ematicians to   adopt the   phr ase   complex   number    r ather    than   imaginar  y   number  ,

    also suggested that   they   use   lat eral   par t   of  z   in place  of  imaginar  y part   of  z.   Un-

    f ortunately,   that suggestion never   caught on,   and   it   a ppear s   we   ar e stuck with

    what histor y   has   hand ed d own   to   us.

    (a)   i275.

    (b) ~.

    (c)   R e(i).

    (d )   Im(2).

    (e)   (i   -   1)3.

    (f )   (7 -   2i)(3i   + 5).

    (g)   R e (7 + 6i)   + 1m (5 -   4i)   .

    (h)   1m (  ;~~~) .

    (i)   (4-i)(1-3i)-1+2i

    (a)   (1 + i)(2   + i)(3   + i).

    (b)   (3+i)/(2+i).

    (c) R  e   [(i   -   1)3]   .

    (d )   Im[(l   + i)-2].(e) ;~~:   _   ~ - = - ~ i .(f ) (1 + i)-2

    (g)   R e   [(x -   iy)2]   .

    (h)   1m ( X  ~ i Y  )   .

  • 8/17/2019 Chapter 1 (John H. Mathews).pdf

    15/47

    (i)   Re   [( x   + iy )   (x   -   iy)].

    ( j)   1m  [ (x   + iy )3]   .

    3.   Show that   zz   is  always a   real number .

    4. Ver if y   Id entities   (1-12)-(1-19).

    5.   Let   P   (z)  =anzn + an _ Izn-1 + ... + alZ   + ao   be a polynomial   of   d egr ee   n.

    (a) Suppose that   an,   an-I,   ...   ,  aI,   ao ar e   all r eal.   Show that if  Zl is a root

    of  P ,   then   Zl  is  also   a r oot.   In   other word s,   the roots   must   be   complex

    conjugates,   something you lik ely   learned    without   proof   in  high   school.

    ( b) Suppose   not   all of   an,   an-I,   ...   ,  aI,   ao  ar e   r eal.   Show that   P   has at

    least   one   root whose complex   con jugate   is   not a root.   Hint:   Pr ove   the

    contr a positive.

    (c)   Find an   example of   a   polynomial that   has some   roots occur ring as

    complex con jugates,   and   some   not.

    6.   Let Zl   =   (Xl,   Yl)   and    Z2   =   (X 2 ,   Y2 )   be arbitr ar y com plex   number s. Pr ove or d is pr ove the   f ollowing.

    (a)   R e(Zl  +  Z 2 )   =Re(zl)   + R e(z2).

    ( b)   Re(zlz2)   =R e (Zl) R e   (Z 2).

    (c)   1m (Zl +  Z 2 )   =1m (Zl) + 1m ( Z 2 ) ' 

    (d )   Im(zlz2)   =1m (Zl) 1m ( Z  2).

    7.   Prove that   the   complex   num ber (1,   0) (which   we  id entif y with   the   real   number    1)

    is  the   multi plicative   id entity   f or com plex num ber s.

    8.   Use  mathematical   induction   to show that   the   binomial   theor em   is valid for  com plex

    num ber s. In   other   wor d s,   show  that   if  z   and   war e ar  bitrar y complex   number s and n

    .   't"   t   th   (+)n   '\' (n) k   n-k   h   (n)   n!nISa   POSI Ive In  eger ,   en   z   w   =6   k Z W   ,  wer e   k   =k!(n-k)!'k= O 

    9. Let's   use the sym bol   *   f or   a new  ty pe   of  multiplication of com plex   num ber s   d ef ined  by Zl*Z 2   =(X  I  X 2 , Yl Y2 ).   This exercise shows why   this   is an unfor tunate d ef inition.

    (a) Use the   d efinition   given in pr o per ty (P7)   and    state what   the   multi-

     plicative   id entity ( would   have to   be for   this   new   multiplication.

    ( b) Show that   if  you   use  this   new  multiplication,   nonzer o   com plex   num ber s

    of the   for m   (0,   a)   have   no   inver se.   That   is, show   that if   Z   =   (0,   a),ther e   is   no complex   num ber    w   with the pr o per ty that   z *  w   =(, wher e(   is  the   multi plicative id entity you f ound in par t   (a).

    10.   Ex plain   why   the   com plex   num ber    (0,   0) (which, you recall,   we  id entify with the

    r eal   number    0)   has   no   multi plicative   inver se.

    11.   Prove pr oper ty   (P9), the   distr i butive   law   for complex   number s.

  • 8/17/2019 Chapter 1 (John H. Mathews).pdf

    16/47

    12.   Verif y that if z =   (x,   y ) ,   with x   and   y   not both   0, then   Z -l   =   (l , z   0)   (i.e.,   Z -l   =   ~).

     H int:   Let z   =(x,   y )   and use the (ord er ed  pair)   d efinition f or division to   compute

    Z-l   =   ((1,0».   Then,   with   the   r esult  you o btained ,   use the (or dered  pair )   d efinition x , y

    for  multi plication   to   confir m that   zz-l   =(1, 0)  =1.

    13.   Fr om Exer cise  12 and   basic cancellation laws, it   f ollows that   z-l   =~~~.   Thenumerator here,   Z,   is trivial   to   calculate and ,   as   the   d enominator   zz   is a realnum ber (Exer cise 3), com puting the   quotient ~ should be r ather straightfor war d.

    Use this fact to com pute   Z-l   if z =   2 + 3i and again if z =   7 -   5i.

    14. Show, by equating the   r eal number s   Xl   and   X2   with   (Xl ,   0) and   (X2 ,   0),   r espec-

    tively, that the complex definition f or d ivision is consistent with   the real d efinition

    f or  d ivision.   H int:   Mimic the ar gument given in the text   f or multi plication.

    Complex   numbers ar e ord er ed pair s   of real   num ber s, so they can be re pr esented 

     by points   in the plane.   In this section   we show the   ef f ect that alge br aic o per ations

    on   com plex number s   have   on   their   geometric   repr esentations.

    \lVecan   re present the   num ber z   =x  + iy   =(x ,   y)   by a position vector   in the x y   plane whose tail   is at   the   or igin   and whose head is at the   point   ( x ,   y).   When

    the   xy   plane   is   used   for dis playing complex num ber s,   it is called   the   complex

     plane, or mor e sim ply,   the   z   plane. Recall   that   Re(z)   =   x   and Im(z)   =   y.Geometr ically,   Re(z)   is the projection of z   =(x ,   y)   onto the x-axis,   and Im(z)

    is the   pr o jection of  z   onto   the y-axis.   It mak es sense,   then,   to call the x-axis the

    real axis   and the y-axis the   imaginar y   axis,   as  Figur e   1.3 illustrates.

    Add ition   of complex   numbers   is analogous to   add ition of vector s in   the plane. As we saw   in Section   1.2,   the sum of   Zl   =   Xl   +   iY l   =   (Xl,   Y l)   and Z2   =   X  2   + iY 2   =   ( X 2 , Y 2)   is   (Xl   +  X 2 , Y l   + Y2) .   Hence   Zl   + Z2   can   be   obtained vectorially   by   using the   " par allelogr am law,"   wher e the vector   sum is the vector 

    r e pr esented    by the d iagonal of the   par allelogram f or med   by   the two original

    vector s. Figure 1.4 illustr ates   this   notion.

    The   diff er ence   Zl   -   Z2   can   be   r e pr esented    by the   d is placement vector f r om

    the   point   Z2  =   (X 2 ,   Y 2 )   to the   point   Zl   =   (Xl,   Y l),   as Figur e   1.5 shows.

    C  Co py   of vector    21

    Ci y(positioned at the   tail of   vector   22)

    Z •••   .,..~.ZI+Z22. .   •   •

    " Copy of   vector    22

    .   'z~   (positioned    at the tail   of   vector   2t)

    Imaginary axisY 

    n ; , ? , f  '• I I   I   I   I I

    X

  • 8/17/2019 Chapter 1 (John H. Mathews).pdf

    17/47

     y   ~   Co py of vector    ZI-   Z2

    ~

    ~..l..~( positioned at  the tail   of   vector   z : J ,.   ZI

    X----~   r ~   Co py   of   vector    - Z2

    Z  •  - z7.   1(positioned at the tail of   vector   Zl)1 -   2

    4  +  3i

    /LFigur e   1.6   The   r eal and    imaginar y par ts of  a   complex number .

    Definition 1.8:   Modulus

    The   modulus,   or absolute value,   of   the com plex   num ber    z   =   x   +   iy   is   anonnegative r eal number    denoted by   Izl and   d efined by   the   r elation

    The   number    Izi is  the   d istance   between   the   origin   and the   point   z   =   (x ,   y) .The   only   complex number with modulus zero is the   number    o .   The   number  z   =4 + 3i  has mod ulus 14+ 3il   =J42 + 33 =v '25   =5 and   is de picted in Figur e1.6. The   number s IR e(z)l, IIm(z)l,   and   Izi ar e the   lengths   of  the sid es   of  the   right

    triangle   OPQ   shown   in Figur e   1.7.   The   inequality   IZ11<   IZ21means that   the point   Z1   is closer   to   the origin than the point   Z2.   Although   o bvious   from Figur e

    1.7,   it is still prof ita ble to   work out   alge braically the   stand ard r esults   that

    which   we   leave as   an   exercise.

    The   differ ence   Z1 -   Z2 r e presents the   dis placement vector from   Z2 to   Z1,   so

    the   distance   between   Z1   and   Z2   is given by   1Z1 - z21. We can   obtain   this   distance

     by   using   Definitions   (1.2)   and (1.3) to obtain   the   familiar    f or mula

    If   z   =(x,   y)   = x + iy ,   then   - z   =(- x ,   - y)   =- x   -   iy   is   the   r ef lection of   z

    through   the   or igin,   and   z   =   (x,   - y)   =   x   -   iy   is   the   r eflection   of   z   thr ough   thex-axis, as   illustr ated    in Figur e   1.8.

    We can use an im por tant   alge br aic   r elationship   to establish pr o per ties   of  the

    absolute value that   have geometric   a pplications.   Its   proof   is   rather    str aightfor -

    war d ,   and   we ask   you to   give   it in   the exer cises   for this section.

  • 8/17/2019 Chapter 1 (John H. Mathews).pdf

    18/47

    z   =   (x,  y)=x+   i y

    ~--+-----+-----

  • 8/17/2019 Chapter 1 (John H. Mathews).pdf

    19/47

    • EXAMPL E 1.5   To   pr oduce an   example of   which Figur e   1.9 is a   r eason-

    a ble   illustr ation,   we   let   Z l   =   7 + i   and    Z 2   =   3 + 5i.   Then   I Z l l   =   )49   + 1  =v'5Oand   I Z 2 1   =   )9   + 25 =   V34.   Clear ly.   Zl   +   Z 2   =   10+ 6i:   hence   I Z l   + z 2 1   =)100   +   36  =J136.   In this case.   we can   verify the triangle   ineq uality withoutr ecour se to   computation   of   sq uar e roots   because   I Z l   + z 2 1   )136   =   2V34 =V34 +   V34

  • 8/17/2019 Chapter 1 (John H. Mathews).pdf

    20/47

    (a)   1(1+i)(2+i)l.

    (b)   I ~ - = - ~ i l .(c)   1(1+i)

    50I.

    (d)   Izzl, wher e z =   x  +   iy.

    (e)   Iz-112,wher ez=x+iy.

    (a)   Zl   =   2 +  3i and   Z2   =   4  + i.

    ( b)   Zl   =   -1   +  2i and   Z2  =   -2   +  3i.

    (c)   Zl  =1 + iV 3   and   Z2  =-1   + iV 3 .

    (a)   ~+i.

    ( b)   V2+i(V2+1).

    (c)   2+3i.

    (d)   -./   + iV 3.

    (a)   (1-21)-

    ( b)   (1-22).

    (c)   (1-26).

  • 8/17/2019 Chapter 1 (John H. Mathews).pdf

    21/47

    (a)   Iz +   1 - 2il  =2.

    (b)   Re(z+ I )=O.

    (c)   Iz+2il::':;1.

    (d )   1m (z   -   2i)   >  6.

    7.   Prove that   v'2lzl   2 : :   IRe(z)1 +   IIm(z)l·

    8. Show that the   point   z!  ~Z2   is   the   midpoint   of   the   line segment   joining Zl   to   Z2.

    9.   Show that   IZI -   z21 ::.:;IZll +   IZ21.

    10. Prove that   Izi  =0   if f   z   =O.

    11.   Show   that   if  z  #   0,   the   four   points   z ,   2,   - z ,   and   -2   are  the   ver tices   of   a   r ectanglewith   its center    at   the origin.

    12. Show   that if   z  #   0, the   f our   points   z,   i z ,   - z ,   and    -iz   ar e the vertices   of   a squarewith its center    at   the origin.

    13.   Show   that the equation of the   line thr ough the   points   Zl   and    Z2   can   be ex pressed 

    in the form   z   =   Zl +   t (Z 2   -   Zl),   where   t   is a   r eal   number.

    14. Show   that   the   nonzer o   vector s Zl and    Z2   are   par allel   iff  Im(zlz2)   =   O.

    15. Show that   IZIZ2Z31=IZlllz21lz31.

    16. Show that   Iznl   =Izln

    ,   wher e   n is an integer .

    17.   Suppose that either    Izi  =1 or   Iwl  =1.   Prove that   Iz -   wi   =11- 2wl·

    18.   Pr ove the Cauchy-Schwar z   inequality:   I k ~l   ZkU!"k  I   : : . : ;

    19.   Show   Ilzll-lz211   ::.:;IZl -   z21.

    20.   Show that   ZlZ2 + ZlZ2 is a   r eal number.

    21.   If   you   stud y carefully   the   pr oof of   the   triangle   inequality,   you   will note   that the

    r easons   for the   inequality   hinge   onRe(zlz2) ::.:;IZIZ21. Und er    what   conditions will

    these   two quantities   be equal,   thus   turning   the triangle   inequality   into an equality?

    22.   Prove   that   IZl -   z212=IZll2 - 2   Re(zlz2) +   IZ212.

    23. Use   induction   to pr ove   that   I t Zk   I   : : . : ; t IZk   I for all natur al number s   n.k =l   k =l

    24. Let   Zl and   Z2   be two distinct   points   in   the com plex plane,   and   let   K   be   a positive

    r eal   constant   that is   less   than   the   d istance   between   Zl  and   Z2.

    (a) Show   that   the set   of points   {  z:   Iz - zll-   Iz -   z21 =   K}   is a hy perbolawith   f oci   Zl and    Z2·

    ( b) Find the   equation of   the   hy perbola with foci ±2   that goes   thr ough the

     point 2  + 3i.

    (c) Find the equation of the   hy per  bola with f  oci   ±25   that goes thr ough

    the   point   7 + 24i.

  • 8/17/2019 Chapter 1 (John H. Mathews).pdf

    22/47

    25.   Let   Zl   and   Z2   be two distinct   points   in the complex plane,   and   let   K   be a positive

    r eal   constant   that   is gr eater than the d istance   between   Zl   and   Z 2.

    (a) Show that   the set of   points   { z   :   [z -   z l l   +  I z - z 2 1 =K}   is an   ellipsewith   foci  Zl   and   Z2.

    ( b)   Find the   equation   of the   ellipse with foci  ±3i that goes through  .the point 8 -   3i.

    (c) Find the   eq uation   of  the elli pse with   f oci   ±2i   that goes  through   the

     point 3 + 2i.

    1.4 THE GEOMETRY OF   COMPLEX NUMBERS,

    CONTINUED

    In Section 1.3 we saw   that a   complex   num ber    z  = x   + i y   could   be viewed   as avector   in the   xy   plane   with   its tail   at the origin   and its   head   at the   point   (x,   y).

    A vector can be   uniquely s pecif ied by   giving   its   magnitud e (i.e.,   its   length)   and 

    dir ection   (i.e.,   the   angle   it   mak es   with   the   positive x-axis).   In this section,   we

    f ocus on these   two geometr ic aspects   of   com plex   numbers.

    Let   r   be the   mod ulus   of   z   (i.e.,   r  =Iz l) ,   and let  e   be the angle that   the   linefrom the or igin   to the complex number    z   mak es with   the   positive x-axis. (Note:

    The   number   e   is   und efined    if   z   =0.)   Then,   as  Figur e   1.11(a)   shows,

    Definition 1. 9: Polar representation

    Id entity   (1-TI)   is  known   as  a   polar representation   of  z ,   and   the values   T    and 

    e   ar e called   polar   coordinates   of  z.

     z   = ( x ,y)   = x+   i y

    - -'1=(r cos   e ,   r sin   e )   = r (cos   e   + isin  e )1

    1

    e   I(x,   0)

    z  = (x, y)   =   x   +  iy

    (0, y)   .... :   =(r    cos   e,   r   sin  e)   = r (cos   e+ isin   e)

    r    :

    e

    (x,  0)

  • 8/17/2019 Chapter 1 (John H. Mathews).pdf

    23/47

    • EXAMPLE 1.7   If   z   =   1 +   i, then   r   =   .;2   and   z   =   (.;2cos   % '   .;2   sin % )   =.;2 (cos %   +   i sin % )   is a   polar re pr esentation   of   z. The   polar coordinates   in   thiscase ar e   r   =.;2,   and   B   =% .

    As Figur e   1.11   ( b)   shows,   B   can be   any   value   f or  which the   id entities cos B   =~

    and    sin B   =   ~   hold. For   z   = 1 =   0,   the   collection of   all   values   of   B   f or   whichz  =r(cosB+isinB)   is d enoted    ar g   z.   For mally,   we have   the   following   d efinitions.

    Definition 1.10: arg z

    If   z   = 1 =   0,

     Note that we   wr ite   B   E   ar g z   as   o pposed to 8   =ar g   z. We   do   so because

    ar g   z   is a set,   and the   d esignation   e   E   ar g   z   indicates   that 8 belongs to   that set. Note   also that,   if   81   E ar g   z   and 82   E   arg   z,   then   ther e exists some integer    n

    such   that

    {7r    } {   77r 7r 97r 177r    }

    ar g (1 +   i)   =   ~  +   2n7 r   : n   is an   inteO"er    =   ...   -- -   -   --   ...   .4   b'   4'4'4'4'

    Mathematicians   have agr eed to single   out   a s pecial   choice   of 8   E ar g   z. It   is

    that   value of  e   f or which   -7r   

  • 8/17/2019 Chapter 1 (John H. Mathews).pdf

    24/47

    yar g   z   C ar ctan   -,

     x

    wher e ar ctan;   = { B :   tan   B   =;} . Note that,   as with   ar g,   ar ctan   is a set (as

    o pposed    to   Ar c tan.   which is   a   num ber ). We   s pecif ically   id entif y   ar g   z   as a

     pr o pe r su bse t    of   ar ctan   ~   because tan   B   has   per iod   n,   wher eas cos B   and   sin B

    have per iod    2n.   In   selecting the   proper   values   f or   arg   z,   we must   be car ef ul in

    s pecif ying   the choices of  ar ctan   ~ so that   the   point   z   associated   with   rand    B   lies

    in the ap propr iate   q uadr ant.   _ 

    • EX AM PLE 1.10   If   z   =  -J3   -   i   = T (c os B   +   isinB),   then   r    = [ z l   =1-J3-il   = 2   and BE   ar ctan;   = ar ctan _ -~   = {~+nn:nisaninteger }.

    It   would be a  mistak e   to   use ~   as an   acce pta ble value   for   B ,   as the   point   z   asso-

    ciated   with   r  =   2 and   B   =   ~   is in  the   f ir st quadrant,   wher eas   -J3   -   i   is in   thethird quadr ant.   A cor rect choice   f or   B   is   B   =~-  n   =-g " .   Thus.

    -5n   -5n- J 3   -   i  =   2cos   --   +   i2sin--

    6 6

    (-5n   )   (-5n   )=   2 cas   -6- +   2mr    +   i2 sin   -6- +   2nn   .

    Ar g (- J 3   -   i)

    ar g (-v3 -   i)

    6

    { -5n   }

    =   -6-   +   2nn : n   is an integer    .

     Note   that ar g   (-J3   -   i) is  indeed   a   proper    subset   of  ar ctan   ~~~ .

    • EXA M PLE 1.11   If  z   =   x   +  iy   =   0 +  4i ,   it would be a   mistak e   to attem pt tofind Ar g  z   by   look ing at   ar ctan   ~,   as  x   =   0, so ~  is und ef ined .   If   z   i =   0 is on   they-axis,   then

    Ii

     Ar g z   = " 2   if  Imz   >   O.   and n

     Ar g z   =-"2   if Imz   < O .

  • 8/17/2019 Chapter 1 (John H. Mathews).pdf

    25/47

    As   you   will   see   in Chapter 2,   Ar g   z   is   a   discontinuous   f unction of    z   because

    it   " jumps"   by an   amount   of   27 T    as   z   crosses the   negative   r eal   axis.

    In   Chapter    5 we   d efine   e Z  f or   any   com plex   num ber    z.   You   will   see   that this

    com plex   ex ponential has all   the   pr o per ties   of r eal   ex ponentials that   you   studied 

    in   ear lier mathematics   cour ses. That   is.   e Z l e Z 2 =e Zl +Z 2.   and    so on.   You   will

    also   see, amazingly,   that   if   z  = x   +   iy ,   then

    We   will   esta blish this   r esult r  igorously   in Cha pter    5,   but ther e   is a   plausible

    ex planation we can give now.   If   eZ has   the   normal pr operties   of  an exponential,   it

    must be   that   e x

    +iy

    =   eXeiy

    .   Now,   r ecall   f r om   calculus the values   of   thr ee   infinite00   00   (   )n   00   (   )n

    series:   e X   =  L trXk    C OS  X    =  L (~~)!   x2n.   and    sinx   =  L (2~~l)lx2n+l.   Su b-k =O   n= O   n=O

    00   00

    stituting   i y   f or   x   in   the   infinite series   f or   eX   gives   eiy =  L t r   (iy l=   2 : =   t r ik  yk k =O k =O

    At this   point.   our ar gument   loses   r igor because we   haye   not talk ed a bout   infinite

    ser ies of   complex   number s. let   alone whether    such   series conver ge.   Never theless.

    if we   mer ely   tak e the   last series   as a   f ormal   expr ession   and   s plit   it   into two   ser ies

    accor ding   to   whether    the   ind ex   k   is   even   (k   =2n)   or   od d    (k   =2 n   + 1),   we get

    co   1   co   1=L __ i2n y2n   +L   i2n+1 y2n+ l

    n=O   (2n)!   n=O   (2 n   +   I)!

    = f  _ 1 _   (i2t y2n   + f    1   (i2ti y2n +ln= O   (2n)'    n=O   (2n   +   1)1

    =f  _l _(-lty2n+if 1   (_lt  y2n+1n=O   (2 n)!   n=O   (2 n   +   I)!

    =cos  y  + isin   y.

    Thus,   it seems the   only   possible   value   for   eZ is that given by   Eq uation   (1-:11).

    We   will use   this   r esult   f r eely   fr om   now   on   and.   as stated . supply   a   r igor ous   pr oof 

    in   Cha pter    5.

    If we set   x   =0   and    let   e   tak e   the   r ole of   y   in   Eq uation   (1~31   . we get   af amous   r esult   known   as   Euler's formula:

  • 8/17/2019 Chapter 1 (John H. Mathews).pdf

    26/47

     y   e'~=   (O,I)=i

    ei"=(-1, 0)  =-1   t/lei~=   G , '1 )   =1+ '1i

    \+;eiOr l

    =ea

    "=(l,O)=1~ - x 

    I   r    Li~=e-if =(.f i _ .f i)=.f i- 'ff iThe unit   cir cle   t   2'   2 2   2

    If   (j   is a real   number ,   eie will  be   located   somewhere on the cir cle   with r adius

    1 centered    at the origin.   This assertion is easy   to verif y because

    Figure 1.12 illustrates the   location of  the   points   eie for various   values of   (j.

     Note that, when   ( j   =1T  ,   we  get ei7r  =(COS 1T,   sinn)   =(-1,   0)   =-1,  so

    Euler was the   f ir st to   discover   this   r elationshi p;   it   is   r ef err ed   to as   Euler 's

    identity.   It   has been la beled    by many mathematicians as the most amazing

    relation   in   analysis-and with   good r eason.   Sym bols with a r  ich histor y   ar e

    mir aculously woven   together -the constant   n   used by   Hippocr ates   as ear ly as

    400   B.C.;   e, the   base of  the   natur al logarithms;   the   basic conce pts of ad dition   (+)

    and   equality   (=);   the   f ound ational   whole   numbers   0   and   1;   and   i,   the   number 

    that is the central focus   of  this   book .

    Euler 's   f or mula   (1-32)   is   of tr emend ous use   in   esta blishing im por tant alge-

     braic and   geometric   properties   of  complex num ber s. You will  see shor tly that   it

    enables you   to   multiply complex   number s with   gr eat ease. It also   allows you to

    expr ess a   polar   form   of the   com plex   number    z   in   a   mor e compact way.   R ecall

    that if   r   =   Iz i   and   (j   E  arg   z ,   then   z   =   r( cos (j + isin (j).   Using Euler 's   f ormulawe can   now   wr ite   z   in its   exponential   for m:

    • EXAMPLE 1.12   With   ref er ence to Exam ple   1.10,   with   zhave   z   =   2ei( -57r /6)  .

  • 8/17/2019 Chapter 1 (John H. Mathews).pdf

    27/47

    Together    with the r ules   f or   ex ponentiation   that   we will   verif y   in Cha pter 5,

    Equation   (1-35) has   inter esting a p plications.   If   Zl   =   r 1 ei&,   and   Z2 =   r2ei&2,   then

    ZlZ2   =   r1 ei&l   r2ei&2   =   r1 r2ei(&,   +&2)

    =   r 1r2   [cos(81 + 82)   +isin (81 + 82)]   .

    Figur e 1.13 illustr ates the geometr ic   signif icance of this equation.

    We have alread y   shown   that   the modulus of the prod uct is the product of the

    moduli;   that   is,   I Z 1 z 2 1   =I Z 1 1 1 z 2 1 .   Id entity   (1-36) esta blishes that an   argument   of ZlZ2   is an   argument   of   Zl   plus a n ar gument of   Z2.   It   also answer s   the   question

     posed   at the end   of  Section 1.3 r egar ding why the   pr oduct   ZlZ2   was in a  d if f erent

    q uad r ant than   either    Zl   or   Z2.   It further of fers an   inter esting explanation as

    to why   the   pr oduct of two   negative   r eal numbers   is   a   positive   r eal   number .

    The   negative   number s, each of which has an angular displacement of  Jr  r adians,

    combine to produce   a pr od uct that   is   r otated to a point with   an ar gument of 

    Jr + Jr =   2Jr  r adians,   coincid ing with   the positive   real   axis.Using ex ponential for m,   if  Z  #   0,  we can   write ar g   z   a bit   mor e compactly as

    Doing so ena bles   us to see a nice r elationshi p between the   sets ar g   (ZlZ2)   ,  ar g   Zl,

    and   ar g   Z2.

    Befor e   pr oceeding with   the   proof , we r ecall   two   important facts   a bout   sets.

    Fir st,   to esta blish   the equality of  two sets,   we must   show that each  is a su bset of 

    the other .   Second ,   the   sum of  two   sets   is the sum of  all  combinations of  elements

  • 8/17/2019 Chapter 1 (John H. Mathews).pdf

    28/47

    fr om   the   fir st and   second   sets,   r es pectively.   In   this   case, ar g   Zl   +   arg   Z 2

    {81 +   82 : 81 E  arg   Zl   and 82 E  ar g   Z 2} .

    Proof    Let   8   E   ar g   ( Z l Z 2).   Because   Z l Z 2   =r1 r2ei(O,   +02),   it   f ollows   fr omFor mula   (1-37)   that   81+ 82  E   ar g   (Z l Z 2).   By Equation   (1-29)   ther e   is   someinteger    n   such   that 8   =81 +   82 +   2mr.   Fur ther , as   Z l   =r1 e

    iO"    81   E   arg   Z l·

    Lik ewise,   Z2   =r2ei02   gives 82   E arg   Z2.   But if 82   E arg   Z 2 ,   then 82 +   2mr   E

    ar g   Z 2.   This r esult shows that   8  =   81+ (82 + 2mr ) E   ar g   Z l   + arg   Z 2.   Thus,arg(zlz2) ~ arg   Z l   +ar g   Z 2.   The   proof   that ar g   Z l   +ar g   Z 2   ~   arg(zlz2)   is lef t

    as an exer cise.

    1

      1  10

    Z-   =   -   [cos(-8)   +isin(-8)]   =   _e-t .r r 

     z   =   r   (cos8   - isin8)   =   r   [cos (-8)   +   isin   (-8)]   =   r e-iO ,   and 

     Z l   =   r 1   [cos (81

     _    82) +   i sin (81  _   82)] =   r1   ei(O,-02). Z 2   r 2 r 2

    If   z   is   in   the   fir st quadrant.   the   positions   of   the   number s   z,   z ,   and   Z-l   ar eas shown in Figure   1.14 when   Izi   <   1.   Figur e   1.15   d e picts   the   situation when

    I z l   >  1.

     y

    t =   (0,1) y

    t = (0,1)   z

    f The   unit   circle f The   unit   circle

    Figur e 1.14   R elative   positions   of  z ,   Z,

    and   z-l   when   I z [   <   1.Figur e   1.15   R elative   positions   of  z ,   Z,

    and   Z-l   when   I z l   >  1.

  • 8/17/2019 Chapter 1 (John H. Mathews).pdf

    29/47

    • EX AM PL E 1.13   If   z   =   1 +  i,   then   r   =   Izi   =   V 2   and   e   =   Ar gz   =   % .Ther ef or e,   z-l   = ~  [cos (~4"') + isin (7)]   = ~  [...;;- i...;;]and   has   modulus

    1 _    v'2v'2   -   2'

    • EX AM PLE 1.14   If   Zl   =   8i   and    Z2   =   1 +   iV3,   then r e presentative   polar f orms   f or   these   num bers ar e   Zl   =  8 (cas   ~ + isin ~) and   Z2   =  2 (cas ~  + isin ~) .Hence

    Zl   8 [   ( 7 r   7 r )   . .   ( 7 r   7 r ) ] (   7 r   . . 7 r )Z2   =   2   cas   2 "   -   3 "   + ~sm   2 "   - 3 "   =   4 cas " 6   + Z   S111 " 6

    =2)3 + 2i.

    (a)   1-   i.

    (b)   -/3+ i.

    (c)   (-1-i/3)2

    (d)  (1 -   i)3   .

    (e) 1+~v'3'

    (f )   i2 1.

    (g)

    (a)   (v'3-   i) (1+ i/3) = 2V3+ 2i.

    ( b) (1+i)3=-2+2i.

    (c)   2i(v'3+i) (l+i/3)   = -8.(d )   1~i   =4-4i.

    (a)   -4.

    ( b)   6-6i.

    (c)   -7i.

  • 8/17/2019 Chapter 1 (John H. Mathews).pdf

    30/47

    (d)   -2V3-2i.

    (e)   (1~t)2'

    (f )   i+6 .. /3   .

    (g)   3 + 4i.

    (h) (5 + 5i)3 .

    4.   Show   that ar g   Zl   + ar g   Z2  

  • 8/17/2019 Chapter 1 (John H. Mathews).pdf

    31/47

    1.5 THE ALGEBRA OF COMPLEX NUMBERS,

    REVISITED

    The real number s ar e   d ef icient   in   the sense that   not all   algebr aic   oper ations   on

    them   pr oduce real num bers.   Thus,   f or  V = T   to mak e   sense,   we must consid er thedomain   of   com plex   num ber s.   Do complex number s have   this same d eficiency?

    That is,   if  we ar e   to mak e   sense of ex pr essions such   as   ~. must we a ppeal

    to yet another    new number system?   The answer   to   this   question is   no.   In   other 

    word s,   any reasonable algebraic operation   perfor med on   complex numbers   gives

    com plex   num ber s.   Later we show   how to   evaluate   intriguing expressions   such as

    ii. For   now we only   look   at   integr al powers and   r oots   of   com plex   numbers.

    The   impor tant   player s   in   this   r egard    ar e the ex ponential   and polar   for ms of 

    a nonzero complex   number    z   =   r eie =   r( cos B   + i sin B ).   By the   laws   of ex ponents(which, you   r ecall,   we   have pr omised to pr  ove   in   Cha pter    5) we  have

     zn =   (reiet    =   r neine =   r n [cos(nB)   +isin(nB)], and 

     z-n   =   (reie) -n   =   r -ne-ine =   r -n [cos (-nB)   + i sin   (-nB)]   .

    • EXA MPLE 1.15   Show   that   (-V3 -   i)3   =-8i in  two ways.

    Solution   (Method 1):   The binomial   f or mula   (Exer cise   14 of Section 1.2) gives

    (   ; ; : ;   ) 3 (   .( _ 5 r .) )3   ( 3   '(-15r.))   ( - 1 5 1 1   - 1 5 1 1 )-v3   -   i   =   2et  -6-   =   2   et  -6-   =   8   cos-6-+ isin  -6-=   -8i.

  • 8/17/2019 Chapter 1 (John H. Mathews).pdf

    32/47

    • EXAMPLE   1.16   Evaluate   (-V3 -   i)30.

    Solution   (-V3 -   i)30   =   (2ei(-r ))30   =   2 30e-i251 r    =   _ 230.

    An interesting a p plication   of   the   laws of   ex ponents comes   fr om putting the

    eq uation   (eie)n   =   eine in its   polar    form.   Doing so   gives

    which is   k nown as   De Moivre's f or mula,   in   honor of   the   French   mathematician

    A br aham De Moivre (1667-1754).

    • EXAMPLE 1.17   Use   De   Moivr e's   f ormula (Equation   (1-40))   to   show that

    cos 5B =   cos58   -   10 cos3 8 sin2 8 +   5 cos 8 sin4 8.

    Solution   If   we   let   n=   5 and use the   binomial   f or mula to ex pand    the   left   sid eof   Eq uation   (1--10), we obtain

    The   r eal part   of  this ex pr ession is cos5 8 -   10 cos3 e   sin 2 e +5 cos e   sin 4 e .   Equatingthis   to   the   r eal   par t   of   cos 5B + isin   58 on   the   right sid e of   Eq uation   (1--10)esta blishes the   d esir ed    r esult.

    A k ey   aid in   d etermining   r oots of   complex   num ber s   is a   corollar y   to the

    f und amental theor em of   alge bra.   We   prove this   theor em   in   Cha pter    6.   Our 

     pr oof s   must   be ind e pend ent   of the conclusions   we   d er ive   here   because we   are

    going to   mak e   use   of   the cor ollar y   now .

    • Theorem 1.4 (Corollary to the fundamental theorem of algebra)

     I  f P   ( z)   is   a pol ynomial   o f d egr ee   n   (n>   0)   with   comple x   coe ff icient s ,   then

    the   equat ion P   (z)   =   0   has   pr ecisel y   n   (not    necessaril y   d ist inct )   solut ions.

    Proof    R ef er   to   Chapter 6.

    • EXAMPLE 1.18   Let   P   ( z)   =   z3   + (2   -   2i)   z2   + (-1- 4i)   z -   2. This   polyno-mial of   d egr ee   3   can   be   written as   P   ( z)   =( z   -   i)2   ( z   + 2).   Hence the equationP   ( z)   =   0   has   solutions   Z l   =   i,   Z 2   =   i,   and    Z 3   =   -2.   Thus,   in   accord ance   withTheor em   1.4,   we   have   thr ee solutions,   with   Z l   and    Z 2   being   repeated    roots.

  • 8/17/2019 Chapter 1 (John H. Mathews).pdf

    33/47

    Theor em 1.4 implies that   if  we can find   n d ist inct    solutions   to   the eq uation

     zn   =   c (or   zn   -   C  =   0),   we   will   have   f ound    all   the solutions.   We   begin our 

    sear ch for   these   solutions   by   look ing at the simpler    eq uation   zn   = 1.   Solving

    this eq uation   will ena ble   us   to   hand le the   mor e gener al one   q uite easily.

    To   solve   zn   =   1   we   f ir st   note   that,   fr om Id entities   (1-29)   and    (1-37),   wecan   deduce   an   im por tant condition   that d eter mines when   two nonzer o   com plex

    number s ar e   eq ual.   If we let   Zl   =   Tl eiB,   and   Z2  =   T2eiB2,   then

    wher e   k   is an integer .   That   is,   two   nonzer o complex   number s   ar e   equal iff  their 

    mod uli agr ee and   an   ar gument of one   equals   an   ar gument of  the   other to   within

    an integr al   multi ple of  21 f .

    We   now find all   solutions   to   zn   =   1   in   two stages, with   each   stage corr e-

    s ponding to one   d ir ection   in  the   iff par t of R  elation   (1-41)'   Fir st,   we show that

    if   we   have a solution   to   zn   =   1,   then   the solution   must   have a cer tain   f or m.Second ,   we show that   any   q uantity   with   that form is  ind eed   a solution.

    For   the   f ir st   stage,   suppose that   z   =   TeiB is a solution   to   zn   =   1.   Putting

    the   latter    equation in exponential   form  gives   TneinB =   1·   ei'O,   so R elation   (1-,n)

    implies that   Tn   =   1 and   n e   = °   +   21f k.   In   other   word s,e   =27 r k

    ,n

    wher e   k   is an integer .

    So,   i f    z   =   TeiO is a solution   to   zn   =   1,   then R elation   (1-42)   must be true.

    This o bser vation   completes the   f ir st stage of  our   solution   str ategy.   For   the   second 2   k   '0'   2~k 

    stage,   we   note that   i f    T   =   1,   and   e   =   ~,   then   z   =   Te'   =   e'--n   is   ind eed asolution   to   zn   =   1 because   zn   =   (ei 2';,k)   n   =   ei2r r k  =   1.   For   exam ple,   if  n =   7

    and   k   =   3,  then   z   = e i¥    is  a   solution to   Z7   =   1 because   ( e i¥  )   7   =   ei6r r  =   1.Fur thermor e,   it is   easy  to   verif y   that   we get   n   distinct    solutions   to   zn   =   1

    (and ,   ther ef or e,   all   solutions,   by   Theor em   1.4)   by   setting   k   =   0,   1, 2,   , n -   1.

    The   solutions   for   k   =   n,   n +   1, ... merely   r e peat those   for   k   =   0,   1,   , because

    the   arguments so   generated    agr ee   to within   an integr al   multiple   of   21f.   As   we

    stated    in Section   1.1,  the n solutions   can be ex pr essed as

    i2k~   21f k.   .   21f kZk=e   n   =cos--+zsm--,   for k=0,1,2,   ...   ,n-1.

    n n

    They   ar e   called the   nth   r oots of   unity.·2rr " O   0

    When   k    =   °   in   Equation   (1-43),   we get   Zo  =   et -n   =   e   =   1,   which isa   r ather    trivial   r esult.   The   f ir st   inter esting   r oot of   unity   occur s   when   k   =   1,

    giving   Zl   =   ei~.   This   par ticular    value shows   up so of ten   that   mathematicians

    have   given   it   a special   symbol.

  • 8/17/2019 Chapter 1 (John H. Mathews).pdf

    34/47

    Definition 1.12: Primitive   nth root

    For   any   natur al number    n ,  the value   W n  given   by

    .h   2Jr    2Jr W n   =e' n =cos -   +  i sin -

    n n

    By   De   Moivr e's   f ormula   (Eq uation   (1--10)),  the   nth   roots of   unity   can   be

    ex pr essed   as

    Geometrically,   the   nth roots   of unity   ar e   equally s paced points   that   lie on

    the unit   circle   C1(0)   ={  z   :   Izi =I}   and for m   the vertices   of a r egular    polygon

    with   n sid es .

    • E X A M PL E 1.19   The   solutions   to the   equation   z8   =   1 ar e given by   the eight1   -   i2" k    -   2 1T k    ..   2 1T k    r    k   -   0   1 2   7   Ie·   .   r vaueszk -e   8   -coss+zsms,lor    -   , , , ...   ,   .   n   alteslanlorm,

    these   solutions   ar e   ±1,   ±i.   ±  V2tV2)   and   ±  V22 iV2.   The   primitive   8th r oot of 

    unity   is   W8   -   ei¥ -   -   ei~   -   cos2': +isin2':   -   V2   +iV2-   -   -   4 4-   2   2'

    From   Ex pressions   (1-11)   it   is   clear   that   W 8  = Z l   of Eq uation   (I-J3). Figur e

    1.18 illustr ates   this   r esult.

    The   pr ocedur e   f or   solving   zn   =   1 is easy   to gener alize   in   solving   zn   =   c f or any   nonzer o com plex   number c. If   c  =   pei¢   =   p  (cas ¢ +  isin ¢)   and   z   =   r eie ,then   zn   =C   iff  r neine = pei¢.   But this   last   eq uation   is  satisf ied if f 

    r n = p ,   and 

    nO   =¢+ 2k  J r .   wher e   k   is an   integer.

    --n   + i-n  -OJ32   8

    2 -   i-n   _ ,.,72   -~8

    ~-i=OJ~

  • 8/17/2019 Chapter 1 (John H. Mathews).pdf

    35/47

    As   bef ore,   we get   n distinct solutions   given by

    l   i4>+2nk    l  (   ¢+27r k    ..   ¢+ 27rk ) Z k    =   pne   n   =   pn   cos---+2sm   ---   ,

    n n

    f or   k   =   0,  1, 2, ...   ,n -   1.

    Each   solution in Equation   - -   can be consider ed an   nth r oot of   c.   Ge-

    ometrically,   the nth r oots of   c   are eq ually   s paced    points that   lie on   the circle

    Cp'k   (0)   ={ z   :   Iz i   = p - ! .   }   and form   the ver tices of   a   r egular polygon   with   n   sid es.Figur e   1.19 illustrates the   case for   n =   5.

    It   is   inter esting   to note   that if   (   is any par ticular solution   to the equation

     zn   =   c,   then   all   solutions can be   gener ated by   multiplying ( by   the var ious nthroots   of unity. That   is.   the solution set   is

    The r eason f or   this   is that   if   (n  =c,   then f or   any   j   =0,   1,   2,   ...   , n -   1,

    ((w~r   =   (n   (w~r   =   (n   (w~)j   =   (n(l)   =   c,   and that   multiplying a   number 

     by   W n   =   ei2;   incr eases an   ar gument   of   that   num ber by   2 : ,   so   that   Ex pressionsl--Hi)   contain   n   d ist inct    values .

    • E X A M PL E 1.20   Find    all   cube   r oots   of   8i   =8 (cos ~  + i sin   ~).

    Solution   Formula   (1   ±. j  I  gives

    (~ +  2 7 r k    ~  + 2 7 r k )

     Z k    =2   cas   ~   3   +isin   2   3   '   f or   k   =O. 1.   2.

    The Cartesian f orms   of the solutions ar e   Zo   =   V3+i.   Zl   =   -v'3+i,   and    Z2   =   -2i.as shown in Figur e   1.20.

  • 8/17/2019 Chapter 1 (John H. Mathews).pdf

    36/47

    Is the   q uadratic formula valid in the complex domain?   The   answer is   yes ,

     pr ovid ed we  ar e caref ul   with   our ter ms.

    t   Theorem 1.5 (Quadratic formula)   I  f   a z2 + b z + c =   0,   t hen   t he solut ion

    set for   z   is   { -b+(b::4ac)!   } ,   wher e   by   (b2  -   4ac)! we m ean all   d ist inct 

    squar e r oot s o f the   number insid e   the   par ent heses.

    Proof    The   proof is  left   as  an   exer cise .

    • E X A M P L E 1.21   Find   all   solutions to the eq uation   z2   + (1 + i) z   + 5i =O.

    Solution   The   quadr atic   f ormula gives

    1

    -(l+i)+   [(1+i)2-4(1)(5i)r    -(1+i)+(-18i)!z   -   -------------   - ---------   2(1)   -   2

    .   '( _ 1 L ). .   .   1 .   1 (-~ + 2 k 1 r )As   -18~ =   18 et  2,   Eq uatlOns   (1-45)gIve   (-18~)2 =   182et    2 , f or   k   =   0and   1.   In Cartesian   form,   this ex pr ession r educes to 3 -   3i and   -3   + 3i.   Thus,our   solution   set   is   {-(Hi)+(3-3i)   -(Hi)+(-3+3i)}   or   {I  -   2i -2   + i}

    2   '   2   '   ,   .

  • 8/17/2019 Chapter 1 (John H. Mathews).pdf

    37/47

    In Exer cise   5 b   of   Section 1.2 we ask ed   you   to   show   that   a   polynomial   with

    nonr eal   coefficients   must have  some   roots that do not occur in complex   conjugate

     pair s. This   last   example   gives   an illustr ation of  such   a   phenomenon.

    (a)   (1   -   iv l3 )3   (v13 + i)2 .

    (b)   (l+i):(l-i)   .

    (a)   by sq uar ing twice.

    ( b)   by   using De Moivr e's   f ormula,   given in Eq uation   (1-40).

    3.   Use the method    of   Example   1.17  to esta blish   tr igonometric identities   for   cos 3B

    and sin3t1.

    4. Let z be   any   nonzero complex   number and   let   n be an  integer.   Show that   zn  + ( z)nis   a   r eal   number .

    1

    (a)   (-2+2i)3.

    1(b)   (-1)5.

    1

    (c)   (-64)4.

    1

    (d)   (8)6.

    6. Prove   Theorem   1.5,   the q uadr atic   formula.

    7. Find all the r oots   of   the   equation   Z4   -   4z3 +  6z2 -   4z +  5 =   a   if  Zl =  iis a root.

    8. Solve the   eq uation   (z +  1)3  =z3.

    9. Find the thr ee solutions to  A   =4 Y 2 + i4 Y 2.10.   Let m and   n  be   positive integer s   that   have   no common f actor.   Show   that   ther e

    ar e   n distinct solutions to   wn =zm   and that   they ar e   given by

    " "    (   m(8 +2." .k )   +.   .   m(8+27I'k ))   f    k    0   1W k    =r   n   cos   n   ~Sln   n   or    =   ,   ,..   ,n-   1.

  • 8/17/2019 Chapter 1 (John H. Mathews).pdf

    38/47

    ( b)   Use par t   (a)  and   De Moivr e's   f or mula to d erive Lagrange's identity:

    1   5 in[(n+1)0 ]1 +  cas e   + cas 2 e   + ... +  cas n e   = 2 "   +   2'~   , wher e  0 < e   <   2 1 1 .

    SIn  2 "

    12.   If 1 =zo,   Z1, ... ,   Zn-1   ar e   the   nth   roots of  unity,   prove that

    (z   -   Zl) (z   -   Z2)'"   (z   -   Zn-1)

      =  1

    +  Z

    +  Z2

     + ... +  zn-l

    13.   Let   Zk  i =   1 be an   nth   r oot of  unity. Pr ove  that   1 +   Zk +   z~  + ... + Z~-1   =   O.

    14.   Eq uation   "   De   Moivr e's   formula.   can   be esta blished without   r ecourse   to

     pr o per ties   of   the ex ponential   f unction.   Note   that   this   id entity   is   trivially   true

    f or  n =1.

    (a) Use basic tr igonometr ic   id entities to showthe id entity   is valid f or n =2.

    ( b) Use induction   to  verif y the   id entity for  all  positive  integer s.

    (c)   How would  you verif y this   id entity   for  all  negative  integer s?

    15.   Find   all f our  r oots of   Z4  + 4 =   0,  and   use them to   d emonstr ate   that   Z4  + 4 can bef actor ed   into two quadr atics with   r eal   coef f icients.

    16.   Ver if y that R elation   1- 1   is valid.

    In   this section we   investigate some basic   ideas concer ning sets of points   in   the

     plane.   The   fir st   conce pt   is that of   a   cur ve.   Intuitively,   we   think of   a cur ve as

    a piece of   str ing   placed   on a   f lat sur f ace in some   ty pe of meand ering pattern.

    Mor e   f or mally,   we def ine a  curve   to   be   the   range   of  a  continuous   com plex-valued 

    f unction   z   ( t )   d ef ined   on   the   interval   [a.   b ].   That   is,   a   curve C   is   the   r ange of a f unction   given   by   z   ( t )   =(x   ( t ) .   y   ( t ) )   = x   ( t )   + i y   ( t ) .   for   a   ::::::t ::::::b,   wher e

     both   x   (t )   and   y   ( t )   ar e continuous r eal-valued f unctions.   If   both   x   ( t )   and   y   ( t )

    ar e   diff er entia ble, we  say   that   the   cur ve   is  smooth.   A cur ve   for   which   x   ( t )   and 

    y   (t)   ar e   dif f er entia ble   exce pt f or   a   f inite number    of   points   is   called   piecewise

    smooth.   We s pecif y   a   cur ve   C   as

    and   say   that   z   (t )   is   a   parametrization   for   the cur ve   C.   Note that,   with   this

     parametrization,   we ar e s pecif ying a d ir ection   f or   the   cur ve   C,   saying   that C is

    a cur ve that goes   f r om   the   initial point   z   (a )   =(x (a ),   y   (a))   =x (a)

      + i y   (a)

    to the   terminal point   z   (b)   =   ( x   (b).   y   (b))   =   x   (b)   + i y   (b).   If   we   had   another function   whose   r ange was   the same   set of   points as   z   (t )   but whose   initial   and 

    final points   wer e   r ever sed ,   we would   ind icate   the   cur ve   that   this function d ef ines

     by   -C .   .

    • E X A M PL E 1.22   Find    par ametrizations   f or   C and    -C .   where C is   the

    str aight-line   segment   beginning   at   Z  o   =(xo ,   Y o )   and   end ing   at   Z l   =(X l ,   yd   .

  • 8/17/2019 Chapter 1 (John H. Mathews).pdf

    39/47

    Solution   R ef er to   Figur e   1.21.   The   vector f or m of   a   line shows that the

    d irection   of C   is   Z l   -   Z o 0   As   Z o   is  a   point   on  C,   its vector   eq uation is

    C : z   (t )   =Zo   + (Z l   -   zo )   t  ,   for 0 : s ;   t   : s ;   1,   or C : z   (t )   =   [ xo   + (X l -   x o )   t ]  +i[Y O   + (Y l - Y O )   t ],   f or   0 : s ;   t   : s ;   1.

     Note that   ")'(t)   =   z(l-   t ).   which   illustr ates   a gener al   pr inciple:   If   C   is acur ve   par ametr ized by   z   ( t )   f or 0 : s ;   t   : s ;   1.   then   one   par ametrization for   -Cwill be   ") '(t)   =   z(l-   t ),   f or   O :S ;   t:s ;   1.

    A cur ve C having the   pr o per ty   that   z (a)   =   z   (b )   is said to   be a closed curve.The   line segment   1--1   is not a  closed   cur ve.   The   r ange   of  z   ( t )   = X   (t )   + iy   ( t ) ,wher e   x   (t )   =   sin 2 t   cas t  ,   and   y   (t )   =   sin 2 t   sin t   for   0 : s ;   t   : s ;   21 r   is a   closed   cur ve because   z(O )   =   (0,0)   =   Z   (21r ) .   The   r ange   of   z( t)   is   the   f our -leaved rose   shownin Figur e   1.22. Note   that,   as   t   goes   f rom 0 to ~.   the   point   is   on   leaf   1:  fr om   ~

    f igurf'   1.22   The cur ve x   (t )   =sin 2 t   cas t .   y   (t )   =sin 2 t   sin t   f or 0 : s ;   t   : s ;   21 r .   whichf orms a four -leaved r ose.

  • 8/17/2019 Chapter 1 (John H. Mathews).pdf

    40/47

    to   7 l" ,   it   is on   leaf   2 ;   between   7 l" and   3 ;,   it   is  on leaf   3;   and   f inally,   for   t   between3 ;   and   2 7 l" ,   it is on leaf   4.

     Note   fur ther that,   at (0,0) , the cur ve   has crossed over   itself   (at points other 

    than   those corr esponding with   t   =0 and   t   =2 7l " ) ;   we want to be   able to d istin-

    guish   when   a curve   d oes   not cr oss over itself   in this   way. The curve C   is called simple if it   does   not cr oss   over   itself