Chapt4 Edited Rbm

download Chapt4 Edited Rbm

of 130

Transcript of Chapt4 Edited Rbm

  • 8/11/2019 Chapt4 Edited Rbm

    1/130

    Chapter 4

    Flow in Pipe

  • 8/11/2019 Chapt4 Edited Rbm

    2/130

    Objectives

    1. Have a deeper understanding of laminar andturbulent flow in pipes and the analysis offully developed flow

    2. Calculate the major and minor lossesassociated with pipe flow in piping networksand determine the pumping powerrequirements

    3. Understand the different velocity and flowrate measurement techniques and learn theiradvantages and disadvantages

  • 8/11/2019 Chapt4 Edited Rbm

    3/130

    Introduction

    Flows completely bounded by solid surfaces are called

    INTERNAL FLOWSwhich include flows through pipes(Round cross section), ducts(NOT Round cross section),nozzles, diffusers, sudden contractions and expansions,valves, and fittings.

    The basic principles involved are independent of the cross-sectional shape, although the details of the flow may bedependent on it.

    The flow regime (laminar or turbulent) of internal flows isprimarily a function of the Reynolds number.

    Laminar flow: Can be solved analytically.

    Turbulent flow: Rely Heavily on semi-empirical

    theories and experimental data.

  • 8/11/2019 Chapt4 Edited Rbm

    4/130

    General Characteristics of

    Pipe Flow

  • 8/11/2019 Chapt4 Edited Rbm

    5/130

    Pipe System

    A pipe system include the pipes themselves(perhaps of more than one diameter), the various

    fittings, the flowrate control devices valves) , and

    the pumps or turbines.

  • 8/11/2019 Chapt4 Edited Rbm

    6/130

    For pipes of constant diameter and

    incompressible flow

    Vavgstays the same down the pipe, even if the

    velocity profile changes

    Why? Conservation of Mass

    Vavg Vavg

    samesame same

  • 8/11/2019 Chapt4 Edited Rbm

    7/130

    For pipes with variable diameter, mis still the

    same due to conservation of mass, but V1 V2

    D2

    V2

    2

    1

    V1

    D1

    m m

  • 8/11/2019 Chapt4 Edited Rbm

    8/130

    Pipe Flow vs. Open Channel Flow

    Pipe flow: Flows completely filling the pipe. (a)The pressure gradient along the pipe is main driving

    force.

    Open channel flow: Flows without completely filling

    the pipe. (b)

    The gravity alone is the driving force.

  • 8/11/2019 Chapt4 Edited Rbm

    9/130

    Laminar or Turbulent Flow

    The flow of a fluid in a pipe may be Laminar ?

    Turbulent ?

    Osborne Reynolds, a British scientist and

    mathematician, was the first to distinguish the

    difference between these classification of flow by

    using a simple apparatusas shown.

  • 8/11/2019 Chapt4 Edited Rbm

    10/130

    Laminar or Turbulent Flow

    For small enough flowrate the dye streak will

    remain as a well-defined line as it flows along, with onlyslight blurring due to molecular diffusion of the dye into

    the surrounding water.

    For a somewhat larger intermediate flowratethe dye fluctuates in time and space, and intermittent

    bursts of irregular behavior appear along the streak.

    For large enough flowrate the dye streak almostimmediately become blurred and spreads across the

    entire pipe in a random fashion.

  • 8/11/2019 Chapt4 Edited Rbm

    11/130

    Indication of Laminar or Turbulent Flow

    The term flowrateshould be replaced by Reynolds

    number, ,where V is the average velocity inthe pipe.

    It is not only the fluid velocitythat determines thecharacter of the flowits density, viscosity, and the pipesize are of equal importance.

    For general engineering purpose, the flow in a round pipe

    LaminarTransitional

    Turbulent

    /VDRe

    2100Re

    4000eR

  • 8/11/2019 Chapt4 Edited Rbm

    12/130

  • 8/11/2019 Chapt4 Edited Rbm

    13/130

    Laminar and Turbulent Flows

    Critical Reynolds number (Recr) for

    flow in a round pipeRe < 2300 laminar2300 Re 4000 transitional

    Re > 4000 turbulent

    Note that these values are approximate.

    For a given application, Recr depends upon

    Pipe roughness

    Vibrations

    Upstream fluctuations, disturbances (valves,elbows, etc. that may disturb the flow)

  • 8/11/2019 Chapt4 Edited Rbm

    14/130

    Comparison of laminar and turbulent flow

    There are some major differences between laminar andturbulent fully developed pipe flows

    Laminar

    Can solve exactly

    Flow is steady Velocity profile is parabolic

    Pipe roughness not important

  • 8/11/2019 Chapt4 Edited Rbm

    15/130

    Turbulent

    Cannot solve exactly (too complex)

    Flow is unsteady (3D swirling eddies), but it is steady

    in the mean Mean velocity profile is fuller (shape more like a top-

    hat profile, with very sharp slope at the wall)

    Pipe roughness is very important

    Instantaneous

    profiles

  • 8/11/2019 Chapt4 Edited Rbm

    16/130

    Turbulent Flow

    Turbulent pipe flow is actually more likely to occur

    than laminar flow in practical situations.

    Turbulent flow is a very complex process.

    Numerous persons have devoted considerable effort

    in an attempting to understand the variety of bafflingaspects of turbulence. Although a considerable

    amount if knowledge about the topics has been

    developed, the field of turbulent flow still remains the

    least understood area of fluid mechanics.

    Much remains to be learned about the nature of turbulent

    flow.

  • 8/11/2019 Chapt4 Edited Rbm

    17/130

    Due to the macroscopic scale of the randomness inturbulent flow, mixing processes and heat transferprocesses are considerably enhanced in turbulentflow compared to laminar flow.

    Such finite-sized random mixing is very effective intransporting energy and mass throughout the flow

    field.

    [Laminar flow can be thought of as very small butfinite-sized fluid particles flowing smoothly in layer,

    one over another. The only randomness and mixingtake place on the molecular scale and result inrelatively small heat, mass, and momentum transferrates.]

  • 8/11/2019 Chapt4 Edited Rbm

    18/130

    In some situations, turbulent flow characteristics are

    advantages. In other situations, laminar flow is

    desirable.

    Turbulence: mixing of fluids.

    Laminar: pressure drop in pipe, aerodynamic drag

    on airplane.

  • 8/11/2019 Chapt4 Edited Rbm

    19/130

    Time Dependence of

    Fluid Velocity at a Point

  • 8/11/2019 Chapt4 Edited Rbm

    20/130

    Entrance Region and Fully Developed Flow

    Any fluidflowing in a pipehad to enter thepipe at some location.

    The region of flow near where the fluid enters

    the pipe is termed the entrance region.

  • 8/11/2019 Chapt4 Edited Rbm

    21/130

    The fluid typically enters the pipe with a nearly

    uniform velocity profile at section (1).

    The region of flow near where the fluid enters

    the pipe is termed the entrance region.

    As the fluid moves through the pipe, viscous

    effects cause it to stick to the pipe wall(the no

    slip boundary condition).

  • 8/11/2019 Chapt4 Edited Rbm

    22/130

    A boundary layerin which viscous effects are

    important is produced along the pipe wall

    such that the initial velocity profile changes

    with distance along the pipe,x , until the fluid

    reaches the end of the entrance length,

    section (2), beyond which the velocityprofile does not vary with x.

    The boundary layer has grown in thickness tocompletely fill the pipe.

  • 8/11/2019 Chapt4 Edited Rbm

    23/130

    eR06.0D

    Viscous effects are of considerable importance

    within the boundary layer. Outside the

    boundary layer, the viscous effects are negligible.

    The shape of the velocity profile in the pipe

    depends on whether the flow is laminar or

    turbulent, as does the length of the entranceregion,

    .

    6/1

    eR4.4D

    For laminar flow For turbulent flow

    Dimensionless entrance length

  • 8/11/2019 Chapt4 Edited Rbm

    24/130

    Once the fluid reaches the end of the entrance

    region, section (2), the flow is simpler todescribe because the velocity is a function of only

    the distance from the pipe centerline, r, and

    independent of x.

    The flow between (2) and (3) is termedfully

    developed.

  • 8/11/2019 Chapt4 Edited Rbm

    25/130

    The Entrance Region

    Consider a round pipe of diameter D. The flow canbe laminar or turbulent. In either case, the profile

    develops downstream over several diameters called

    theentry lengthLh. Lh/Dis a function of Re.

    Lh

  • 8/11/2019 Chapt4 Edited Rbm

    26/130

    Pressure Distribution along Pipe

    In the entrance region of a pipe, the fluid

    accelerates or decelerates as it flows. There is a

    balance between pressure, viscous, and inertia

    (acceleration) force. The magnitude of the pressuregradient is constant.

    The magnitude of the pressure gradient is larger than that

    in the fully developed region.

    0p

    x

    p

  • 8/11/2019 Chapt4 Edited Rbm

    27/130

    Shear Stress for Laminar Flow

    Laminar flow is modeled as fluid particles that flow

    smoothly along in layers, gliding past the slightly sloweror faster ones on either side.

    The fluid actually consists of numerous molecules

    darting about in an almost random fashion. The motionis not entirely randoma slight bias in one direction.

  • 8/11/2019 Chapt4 Edited Rbm

    28/130

    The momentum flux in the x direction across

    plane A-A give rise to a drag of the lower fluid

    on the upper fluid and an equal but oppositeeffect of the upper fluid on the lower fluid.

    dy

    du

    yx

    Shear stress is present only if there is a

    gradient in u=u(y)

  • 8/11/2019 Chapt4 Edited Rbm

    29/130

    Shear Stress for Turbulent Flow

    The turbulent flow is thought as a series of

    random, three-dimensional eddy type motions.These eddies range in size from very small

    diameter to fairly large diameter.

    This eddy structure greatly promotes mixingwithin the fluid.

  • 8/11/2019 Chapt4 Edited Rbm

    30/130

    The flow is represented by (time-mean velocity )

    plus u and v (time randomly fluctuating velocity

    components in the x and y direction).

    The shear stress on the plane A-A

    u

    turbulentarminla'v'udyud

    The shear stress is not merely proportional to the

    gradient of the time-averaged velocity, .

    )y(u

  • 8/11/2019 Chapt4 Edited Rbm

    31/130

    Structure of Flow in a Pipe

    Near the wall(the viscous sublayer), thelaminar shear

    stress lamis dominant.

    Away fromthe wall (in the outer layer) ,the turbulent

    shear stress turbis dominant.

    The transition between these two regions occurs in the

    overlap layer.

  • 8/11/2019 Chapt4 Edited Rbm

    32/130

    The relative magnitude of lamcompared toturbis a complex function dependent on the

    specific flow involved.

    Typically the value of turbis 100 to 1000times greater than lam inthe outer region.

  • 8/11/2019 Chapt4 Edited Rbm

    33/130

    Analysis of Pipe Flow

  • 8/11/2019 Chapt4 Edited Rbm

    34/130

    Energy Considerations

    Total head loss , hL, is regarded as the sumof major losses, hL major, due to frictional

    effects in fully developed flow in constant

    area tubes, and minor losses, hL minor

    ,

    resulting from entrance, fitting, area

    changes, and so on.

    orminmajor LLL hhh

  • 8/11/2019 Chapt4 Edited Rbm

    35/130

    Major Losses: Friction Factor

    L2

    2

    2221

    2

    111 hgz2

    Vpgz

    2

    Vp

    L1221 h)zz(g

    pp

    For fully developed flow through a constant area

    pipe

    For horizontal pipe, z2=z1

    L21 h

    ppp

    The energy equation for steady and

    incompressible flow with zero shaft work

    C d h d f R l h f L d l

  • 8/11/2019 Chapt4 Edited Rbm

    36/130

    Consider a pipe with radius of R, length of L and angleof qis flowing a fluid as shown in figure below

    Flow is steady and incompressible fluid. Control volume inbetween 1 to 2.

  • 8/11/2019 Chapt4 Edited Rbm

    37/130

    Continuity equation between point 1 and point 2 :

    Q1= Q2or

    From Bernoullis equation

    When the flow is fully developed

    g

    Pz

    g

    Pz

    g

    P

    zg

    P

    zhf

    2

    2

    1

    1

    2

    22

    1

    11

    A

    Qv

    A

    Qv

    fhzgv

    gPz

    gv

    gP 2

    2221

    2

    11

    21

    21

  • 8/11/2019 Chapt4 Edited Rbm

    38/130

    Momentum concept in control volumeResultant Force = Rate of Momentum

    Change

    Divide by gpR2, becomes

    Therefore

    0)()2(sin)( 2122

    vvmLRLRgRP wq

    zLbutRg

    LL

    g

    P w

    q

    q

    sin0

    2sin

    Rg

    Lz

    g

    Ph wf

    2

    Due to pressure

    Due to weightDue to shear

    But

    dvF )(

  • 8/11/2019 Chapt4 Edited Rbm

    39/130

    and from analysis dimensional

    where f (dimensionless) is call Darcy friction factor

    By combination of the above equation

    or

    The above equation is called Darcy Weisbach equation. It usedfor both flow regime i.e. laminar and turbulence

    roughnesspipeis

    dvFw

    ),,,,(

    dFf

    vw

    Re,82

    Rg

    vLfhf

    8

    2 2

    dg

    vLfhf

    2

    2

  • 8/11/2019 Chapt4 Edited Rbm

    40/130

    1. Major Losses: Laminar Flow

    There are numerous ways to derive importantresults pertaining to laminar flow:

    From F=ma applied directly to a fluid element.

    From the Navier-Stokes equations of motion

    From dimensional analysis methods : Selected

  • 8/11/2019 Chapt4 Edited Rbm

    41/130

    Based on Dimensional Analysis

    Assume that the pressure drop in the horizontalpie, p, is a function of the average velocity of the

    fluid in the pipe, V, the length of the pipe, , the pipe

    diameter, D, and the viscosity of the fluid, .

    ),D,,V(Fp Dimensional analysis

    DVpD

    an unknown function of the

    length to diameter ratio of thepipe.

  • 8/11/2019 Chapt4 Edited Rbm

    42/130

    D

    C

    V

    pD

    where C is a constant.

    2DVCp

    p

    4pD)C4/(AVQ

    The value of C must be determined by theory or

    experiment. For a round pipe, C=32. For duct ofother cross-sectional shapes, the value of C is

    different.

    2D

    V32p

    For a round pipe

  • 8/11/2019 Chapt4 Edited Rbm

    43/130

    f is termed the friction factor, or

    sometimes the Darcy friction factor.

    For a round pipe

    DRe

    64

    DVD64

    V

    D/V32

    V

    p2

    21

    2

    2

    21

    2

    V

    Dfp

    2

    2

    V

    Dp

    f2

    2wV

    8

    Re

    64f

    For laminar flow

    dvvdv

    vf w

    64)/8(88 22

  • 8/11/2019 Chapt4 Edited Rbm

    44/130

    Then,

    Losses due to friction becomes

    or based on HagenPoiseuille equation

    gd

    vL

    gd

    vLhf

    Re

    32

    2Re

    64 22

    4128

    dgQLhf

  • 8/11/2019 Chapt4 Edited Rbm

    45/130

    2. Major Losses: Turbulent Flow

    2

    V

    Dfp

    2

    Applying dimensional analysis, the result were a correlation

    of the form

    Experiments show that the nondimensional head loss isdirectly proportional to /D. Hence we can write

    D,

    D,VD

    Vp

    2

    21

    DDV

    p

    Re,

    2

    21

    DRe,f

    g2

    V

    Dfh

    2

    Lmajor

    Darcy-Weisbach

    equation

  • 8/11/2019 Chapt4 Edited Rbm

    46/130

    Value of friction factor f is dependent to Reynolds's number Reandpipe roughness or relative roughness /d

    For laminar flow, f=64/Re, which is independent of the relativeroughness.

    For very large Reynolds numbers, f=(/D), which is independentof the Reynolds numbers.

    For flows with very large value of Re, commonly termedcompletely turbulent flow (or wholly turbulent flow or fulldeveloped turbulent), the laminar sublayer is so thin (its thicknessdecrease with increasing Re) that the surface roughness completely

    dominates the character of the flow near the wall.

    For flows with moderate value of Re, the friction factorf=(Re,/D).

    Blausius (1913) was introduced an expression as below

    3160

  • 8/11/2019 Chapt4 Edited Rbm

    47/130

    Prandtl (1935) made a further improvement of Blausiussequation for 4000 < Re < 108iaitu

    Nikuradse was introduced the effect of pipe roughness ontofriction factor

    Colebrooke (1939) was combined the Prantl and Nikuradseand become

    Moody (1944) was simplified the above equation into agraphic but the accuracy is about 15%

    pipesmoothandforf 54/1

    10Re4000Re

    316.0

    pipesmoothff

    8.0)(Relog21

    roughnessrelativedwhered

    f /

    7.3/log21

    f

    d

    f Re

    51.2

    7.3

    /log2

    1

    Friction Factor by L F Moody

  • 8/11/2019 Chapt4 Edited Rbm

    48/130

    Depending on the

    specific circumstances

    involved.

    Friction Factor by L. F. Moody

    Roughness for Pipes

  • 8/11/2019 Chapt4 Edited Rbm

    49/130

    Roughness for Pipes

  • 8/11/2019 Chapt4 Edited Rbm

    50/130

    Example

  • 8/11/2019 Chapt4 Edited Rbm

    51/130

    p

    Oil with specific gravity of 0.85 and kinematics

    viscosity is 6 x 10-4m2/s is flowing in a pipe of 15 cm

    diameter at flowrate of 0.020 m3/s. Determine thehead loss of 100 m pipe distance.

    Find type of flow regime

    Re < 2100: Laminar flow, then

    Head Loss, hf

    =

    E l

  • 8/11/2019 Chapt4 Edited Rbm

    52/130

    Example

    Determine head loss due to friction in a horizontal

    pipe of 40 mm diameter and 750 m long when a flowis 67.6 x 10-6m3/s. Given a pipe roughness and

    kinematics viscosity is 0.0008 m and 1.14 x 10-6m2/s,

    respectively

    Re < 2100: Laminar flow, then

    Example

  • 8/11/2019 Chapt4 Edited Rbm

    53/130

    Example

    Water at 20oC is flowing at 0.05 m3/s through a

    asphalted cast iron pipe of 20 cm diameter. What is a

    head loss for 1 kilometer pipe length.

    From table, kinematics viscosity at 20oC is

    Turbulent flow

    Roughness of asphalted cast iron,

    From Moody Chart

    Mi L

  • 8/11/2019 Chapt4 Edited Rbm

    54/130

    Minor Losses

    Most pipe systems consist of considerably more

    than straight pipes. These additionalcomponents (valves, bends, tees, and the like)

    add to the overall head loss of the system.

    Such losses are termed MINOR LOSS.

    The flow pattern through a valve

  • 8/11/2019 Chapt4 Edited Rbm

    55/130

    The theoretical analysis to predict the

    details of flow pattern (through these

    additional components) is not, as yet,possible.

    The head loss information for essentially allcomponents is given in dimensionless form

    and based on experimental data.

    The most common method used to

    determine these head losses or pressure

    drops is to specify the loss coefficient, KL

  • 8/11/2019 Chapt4 Edited Rbm

    56/130

    2

    L2

    2

    L

    L V2

    1Kp

    V

    2

    1

    p

    g2/V

    hK ormin

    Re),geometry(KL

    fDK

    g2

    V

    Df

    g2

    VKh

    Leq

    2eq

    2

    LL ormin

    Minor losses are

    sometimes given in terms

    of an equivalent lengtheq

    The actual value of KLis strongly dependent on the

    geometry of the component considered. It may alsodependent on the fluid properties. That is

  • 8/11/2019 Chapt4 Edited Rbm

    57/130

    For many practical applications the Reynoldsnumber is large enough so that the flow throughthe component is dominated by inertial effects,

    with viscous effects being of secondaryimportance.

    In a flow that is dominated by inertia effectsrather than viscous effects, it is usually found thatpressure drops and head losses correlate directlywith the dynamic pressure.

    This is the reason why the friction factor for verylarge Reynolds number, fully developed pipe flowis independent of the Reynolds number.

  • 8/11/2019 Chapt4 Edited Rbm

    58/130

    This is true for flow through pipe components.

    Thus, in most cases of practical interest the loss coefficientsfor components are a function of geometry only,

    Therefore minor losses can be calculated in a head loss as

    gVKh Lm2

    2

    )geometry(KL

    Mi L C ffi i t Entrance

  • 8/11/2019 Chapt4 Edited Rbm

    59/130

    Minor Losses Coefficient Entranceflow

    Entrance flow conditionand loss coefficient

    (a) Reentrant,KL

    = 0.8

    (b) sharp-edged,KL

    = 0.5

    (c) slightly rounded,KL

    = 0.2

    (d) well-rounded,KL

    = 0.04

    KL

    = function of

    rounding of the

    inlet edge.

  • 8/11/2019 Chapt4 Edited Rbm

    60/130

    A vena contracta region may result because the fluid

    cannot turn a sharp right-angle corner. The flow is saidto separate from the sharp corner.

    The maximum velocity at section (2) is greater than

    that in the pipe section (3), and the pressure there islower.

    If this high speed fluid could slow down efficiently, the

    kinetic energy could be converted into pressure.

    Such is not the case Although the fluid may be accelerated

  • 8/11/2019 Chapt4 Edited Rbm

    61/130

    Such is not the case. Although the fluid may be accelerated

    very efficiently, it is very difficult to slow down (decelerate)

    the fluid efficiently.

    (2)(3) The extra kinetic energy of the fluid is partially lostbecause of viscous dissipation, so that the pressure does

    not return to the ideal value.

    Flow pattern

    and pressure

    distribution for

    a sharp-edgedentrance

  • 8/11/2019 Chapt4 Edited Rbm

    62/130

    Minor Losses Coefficient Exit flow

    Exit flow condition and loss coefficient

    (a) Reentrant,KL= 1.0

    (b) sharp-edged,KL= 1.0

    (c) slightly rounded,KL= 1.0

    (d) well-rounded,KL= 1.0

    Mi L C ffi i t varied

  • 8/11/2019 Chapt4 Edited Rbm

    63/130

    Minor Losses Coefficient varieddiameter

    Loss coefficient forsudden contraction,

    expansion,typical

    conical diffuser.

    2

    2

    1L

    A

    A1K

    Minor Losses Coefficient - Bend

  • 8/11/2019 Chapt4 Edited Rbm

    64/130

    Minor Losses Coefficient Bend

    Carefully designed guide vanes help direct the flow with less

    unwanted swirl and disturbances.

    Character of the flow in bend and the associated loss

    coefficient.

  • 8/11/2019 Chapt4 Edited Rbm

    65/130

    Internal Structure of Valves

    (a) globe valve

    (b) gate valve

    (c) swing check valve(d) stop check valve

    Loss Coefficients for Pipe Components

  • 8/11/2019 Chapt4 Edited Rbm

    66/130

    Loss Coefficients for Pipe Components

    Losses due to Sudden Enlargement

  • 8/11/2019 Chapt4 Edited Rbm

    67/130

    Losses due to Sudden Enlargement

    A sudden expansion is one of the component for which the

    loss coefficient can be obtained by means of simple analysis

    Let consider a control volume of ABCDEF as shown in figure

    below. Pressure P1 and P2 at point 1 and Point 2 respectively.

    Based on continuity equation

    1

    212211

    A

    AVVAVA

    (a)

    Momentum equation in the control volume

  • 8/11/2019 Chapt4 Edited Rbm

    68/130

    q

    Resultant Force in flow direction = Rate of momentum change in flow

    direction

    where P is pressure acts on annulus that represent by AB and CD

    which is at area of A2A1.

    We assume the flow is uniform and pressure is constant across the

    left-hand side of CV (PAB=PBC=PCD=P1=P) then

    Based on Bernoullis equation from 1 to 2.

    )()(' 12221211 VVQAPAAPAP

    )(

    )()(

    12221

    1222122221

    VVVPP

    VVAVVVQAPAP

    (b)

    )(2

    1

    2

    1212

    222

    1

    2

    11 horizontalZZhzg

    v

    g

    Pz

    g

    v

    g

    Pm

    ThenVVPP 22

  • 8/11/2019 Chapt4 Edited Rbm

    69/130

    Substitute (b) into the above equation becomes

    But, from (a)

    Then

    or

    g

    VV

    g

    PP

    g

    V

    g

    V

    g

    P

    g

    Phm

    2

    22

    22

    2121

    2121

    g

    VV

    g

    VV

    g

    VVV

    g

    VV

    g

    VVVhm

    2

    )(

    22

    )(

    2

    21

    2

    2

    2

    121

    2

    2

    2

    2

    2

    112

    2

    2122

    2)/(

    gVAAVhm

    2

    2

    1

    2

    1

    2

    1

    2

    2

    2 12

    12

    A

    A

    g

    V

    A

    A

    g

    Vhm

    )/( 1221 AAVV

  • 8/11/2019 Chapt4 Edited Rbm

    70/130

    Therefore

    or

    Losses due to Sudden ContractionThe mechanism by which energy is lost due to sudden contraction is

    quite complex. Momentum concept cannot be used since the distribution

    of pressure along ABCD is unknown.

    2

    1

    2 1

    A

    Ak

    2

    2

    11

    A

    Ak

    For this case, however, there is a vena contracta section that

  • 8/11/2019 Chapt4 Edited Rbm

    71/130

    , ,possible to use sudden enlargement method. Then,

    where Cc contraction coefficient between Acand A2.

    Generally

    where K is losses coefficient and it depend to A2/A1 ratio. Tablebelow is the guideline of some K values.

    22

    2

    2

    2

    2

    2

    12

    12

    c

    c

    m

    C

    I

    g

    V

    A

    A

    g

    Vh

    gVkhm2

    2

    2

  • 8/11/2019 Chapt4 Edited Rbm

    72/130

    A2/A1 0.1 0.3 0.5 0.7 1.0

    Cc 0.61 0.632 0.673 0.73 1.0

    k 0.41 0.34 0.24 0.14 0

    Example

  • 8/11/2019 Chapt4 Edited Rbm

    73/130

    Water pipe has changes it diameter from 140 mm to 250 mm. If a flow of

    water from smaller diameter to bigger diameter experienced of a head loss

    is 0.6 m higher than the opposite direction, calculate a velocity in the pipe.V1 V2 V1 V2

    V1= flow in small pipe

    V2= flow in small pipe

    Interpolation methodFrom table

    Thereforeand

    Flow from big to small pipe : Sudden Contraction

    Flow from small to big pipe : Sudden Enlargement

  • 8/11/2019 Chapt4 Edited Rbm

    74/130

  • 8/11/2019 Chapt4 Edited Rbm

    75/130

  • 8/11/2019 Chapt4 Edited Rbm

    76/130

    Example

    Water of 1.94 slugs/ft3density and 0.000011 ka2/s kinematics viscosity was

    pumped between two tanks at 0.2 ka3/s flowrate through a pipe of 2 inchdiameter and 400 ft length as shown in figure below. Given a relative

    roughness of pipe is 0.01. Determine a horsepower required by the pump.

    Sharp

    entranceGlobe

    Valve: Open

    90oElbow

    Bend of 12 inch

    diemater

    Gate valve:

    Half open

    Sharp

    Exist

    Pump

    Energy Equation

  • 8/11/2019 Chapt4 Edited Rbm

    77/130

    From Moody chart

    For minor losses

    Sharp entrance

    Globe valve: Fully openPipe bend 12 inch diameter

    90o Elbow

    Gate valve: Half open

    Sharp exist

    Pump Head

    Power of Pump

    But

    Equivalent Length

  • 8/11/2019 Chapt4 Edited Rbm

    78/130

    Minor losses are also expressed in terms of equivalent length Le,defined as

    where fTis friction factor and D is the diameter of the pipe thatcontains the component.

    fTis the friction factor in the pipe to which the valve of fitting isconnected, taken to be in the zone of fully developed turbulence

    Leis the length of straight pipe of the same nominal diameter as thevalve that would have the same resistance as the valve

    Lecan be one unit of component or total of components in pipesystem

    gVk

    gdVLfh eTf

    22

    22

    T

    ef

    dkL

    Both approaches are used in practice but the use of loss coefficients is

  • 8/11/2019 Chapt4 Edited Rbm

    79/130

    Both approaches are used in practice, but the use of loss coefficients is

    more common

    Therefore, the total head loss in a piping system is determines from (if

    f =fT)

    Example

    A pipe of 0.2 m diameter and 50 m length is consists of 2 unit of 90o

    elbows, gate valve, sharp entrance and sharp exist. Calculate the pipeequivalent length and a total head loss whenever a flowrate is 0.2 m3/s

    and valve is fully open. Assume a friction factor is 0.005.

    dg

    VLLfh ef

    2

    )( 2

    90oElbow

    Gate valve of fully open

    Sharp entrance

    Sharp exist

  • 8/11/2019 Chapt4 Edited Rbm

    80/130

    p

    Total losses

    2 units of 90o

    ElbowsGate valve

    Sharp Entrance

    Sharp exist

    Minor losses

    Loss due to friction

    Total head losses

    Alternative Method

    Application of Pipe Flow

  • 8/11/2019 Chapt4 Edited Rbm

    81/130

    Application of Pipe Flow

    g

    V

    Dfh

    majorL 2

    2

    The energy equation, relating the conditions at

    any two points 1 and 2 for a single-path pipesystem

    by judicious choice of points 1 and 2 we cananalyze not only the entire pipe system, but also

    just a certain section of it that we may beinterested in.

    g2

    VKh

    2

    LL ormin

    orminmajor LLL22

    2221

    2

    111 hhhzg2

    V

    g

    pz

    g2

    V

    g

    p

    Major loss Minor loss

  • 8/11/2019 Chapt4 Edited Rbm

    82/130

    Single pipe whose length may be interrupted byvarious components.

    Multiple pipes in different configurationParallelSeries

    Network

    Pipe flow problems can be categorized by whatparameters are given and what is to be calculated.

  • 8/11/2019 Chapt4 Edited Rbm

    83/130

    Multiple Path Systems

  • 8/11/2019 Chapt4 Edited Rbm

    84/130

    Multiple-Path Systems

    Series and Parallel Pipe System

    321 LLL321 hhhQQQQ

    321BA LLLL321 hhhhQQQ

    Multiple-Path Systems

  • 8/11/2019 Chapt4 Edited Rbm

    85/130

    p y

    Multiple Pipe Loop System

    3L2L

    3L1LB

    2

    BBA

    2

    AA

    2L1LB

    2

    BBA

    2

    AA

    321

    hh

    31hhz

    g2

    Vpz

    g2

    Vp

    21hhzg2

    Vpz

    g2

    VpQQQ

    Multiple-Path Systems

  • 8/11/2019 Chapt4 Edited Rbm

    86/130

    Three-Reservoir System

    CBhhzg2

    Vpz

    g2

    Vp

    BAhhzg2

    Vpz

    g2

    Vp

    QQQ

    3L2LC

    2

    CCB

    2

    BB

    2L1LB

    2

    BBA

    2

    AA

    321

    If valve (1) was closed, reservoir Breservoir C

    If valve (2) was closed, reservoir Areservoir CIf valve (3) was closed, reservoir Areservoir B

    With all valves open

    Serial Pipe

  • 8/11/2019 Chapt4 Edited Rbm

    87/130

    The diameter may be the same or different

    Total of head loss is a summation of all losses encounter throughout the

    system.

    Consider on the figure below.

    By applying of Bernoullis equation and B is taken as a datum, then

    hL = Entrance loss + Friction loss in pipe 1 +

    Valve loss + Sudden enlargement loss +

    Friction loss at pipe 2 + Exist loss

    Pipe 1

    Pipe 2Valve

    VVLf)VV(Vk

    VLfV50

    2

    2

    2

    22

    2

    21

    2

    1

    2

    11

    2

    1

  • 8/11/2019 Chapt4 Edited Rbm

    88/130

    Other equation required to solve the related problem is continuityequation

    Q1= Q2or A1V1= A2V2

    Example

    Satu paip tersambung di antara 2 takungan yang mempunyaiperbezaan aras 6 m. Panjang paip 720 m dan menaik kepadaketinggian 3 m di atas takungan atas pada jarak 240 m daripadamasukan sebelum menurun ke takungan bawah. Jika paipberdiameter 1.2 m dan pekali geseran 0.01, apakah kadaralir dantekanan pada titik tertinggi paip tersebut. Abaikan kehilanganmasukan dan keluaran.

    g2gd2g2

    )(

    g2k

    gd2g25.0 2

    2

    22211

    1

    111

  • 8/11/2019 Chapt4 Edited Rbm

    89/130

    Parallel Pipe

  • 8/11/2019 Chapt4 Edited Rbm

    90/130

    Purpose:

    1. Stable supplywithout interruption

    2. To increase flow without changing the existing pipe system.

    Consider a system as shown in figure below

    Based on continuity equation

    Q1 = QA+ QB+ QC= Q2Based on Bernoullis equation between point 1 and 2

    L2

    2

    22

    1

    2

    11 hzg

    v

    2

    1

    g

    Pz

    g

    v

    2

    1

    g

    P

    where hLis losses between point 1 and 2

  • 8/11/2019 Chapt4 Edited Rbm

    91/130

    Therefore, the losses generated in this two point is constant andindependent to the direction of flow.

    Then

    Contoh

    Two pipes with a sharp edge of diameter d1= 50 mm and d2= 100mm and both have a 100 m length is connected in parallel to twotanks with a difference of elevation h of h = 10 m as shown in figurebelow. If a friction factor for both pipes f is 0.008 , determine

    a) Flowrate in each pipe

    b) Diameter D of single pipe of 100 m length to provide the sametotal of flow

    LCLBLA hhh

  • 8/11/2019 Chapt4 Edited Rbm

    92/130

  • 8/11/2019 Chapt4 Edited Rbm

    93/130

    Example

  • 8/11/2019 Chapt4 Edited Rbm

    94/130

    Two pipes connect two reservoirs A and B (figure below), which have a length

    difference of 20 m. Pipe 1 has 50 mm diameter and 100 m length. Pipe 2 has 100

    mm diameter and 100 m length. Both have entry loss, KL= 0.5 and exist loss, KL=1.0, and friction factor f = 0.032, calculate

    a) rate of flow for each pipe

    b) the diameter D of a pipe 100 m length that could replace the two pipes and

    provide the same flow

    Solution

  • 8/11/2019 Chapt4 Edited Rbm

    95/130

  • 8/11/2019 Chapt4 Edited Rbm

    96/130

    Branch Pipe

  • 8/11/2019 Chapt4 Edited Rbm

    97/130

    Figure below shows a branch pipe system is connecting three waterreservoirs

    Based on figure

    Water from reservoir A flow to reservoir C through pipe 1 and pipe 3.

    Head losses is generated at exist A, junction C and friction in pipe 1 andpipe 3.

    Based on Bernoullis equation between reservoir A and reservoir C

    2

    3V2

    3V

    3L

    3f2

    3V2

    1V

    1L

    1f2

    1V2

    Cv1C

    P2

    Av1A

    P

  • 8/11/2019 Chapt4 Edited Rbm

    98/130

    PA= PC= Patm= 0VA= VC= 0,

    Then

    Similar for reservoir B to reservoir C

    g2

    3

    3gd2

    333

    g2

    3k

    1gd2

    111

    g2

    15.0

    Cz

    g

    C

    2

    1

    g

    C

    Az

    g

    Av

    2

    1

    g

    A

    g2V

    d1Lfk

    g2V

    dLf5.0ZZ

    2

    3

    3

    33

    2

    1

    1

    11

    CA

    g2

    V

    d

    1Lfk

    g2

    V

    d

    Lf5.0ZZ

    2

    3

    3

    33

    2

    2

    2

    22CB

    Example

  • 8/11/2019 Chapt4 Edited Rbm

    99/130

    Water is flowing from reservoir A through diameter pipe d1= 120 mm

    and distance L1 = 120 m to a junction D. From D the pipe is branched out

    into two which diameter d2

    = 75 mm and distance L2

    = 60 m to reservoir

    B that 16 m below reservoir A and diameter d3= 60 mm and distance L3

    = 40 m to reservoir C that 24 m below reservoir A. If a friction factor of

    all pipes is 0.01 and minor losses is negligible, calculate flowrate of each

    pipe.

  • 8/11/2019 Chapt4 Edited Rbm

    100/130

  • 8/11/2019 Chapt4 Edited Rbm

    101/130

    Example

  • 8/11/2019 Chapt4 Edited Rbm

    102/130

    A closed tank was filled up by a fluid and connected with a polyethylene pipe of 5

    cm diameter as shown in figure below. If,

    a) Fluid is water and required to distribute at 60 m3/hr of flowrate, what is a

    pressure P1required. Assume water density is 998 kg/m3and neglect the

    minor losses

    b) Fluid with a specific gravity of 0.68, pressure P1is 700 kPa and flowrate is 27

    m3

    /jam, what is a viscosity of the fluid. Neglect a minor losses.

    Bendalir

    60m

    P1

    Bendalir

    10 m

    Q

    (terbuka keatmosfera)

    80m

    Solution

    60a)

  • 8/11/2019 Chapt4 Edited Rbm

    103/130

    Pax

    xP

    gd

    flV

    g

    V

    g

    P

    hZg

    V

    g

    PZ

    g

    V

    g

    P

    f

    PipeSmoothChartMoodyFrom

    Vd

    smA

    QV

    f

    6

    2

    1

    22

    21

    2

    2

    221

    2

    11

    2

    1038.2

    05.0

    1700136.01

    81.92

    49.8108081.9998

    280

    20010

    22

    0136.0

    :

    424000001.0

    05.049.8998Re

    /49.8

    05.0

    4

    3600

    mkg27

    /67999868.0 3b)

  • 8/11/2019 Chapt4 Edited Rbm

    104/130

    smkg

    xx

    Vd

    PipeSmoothChartMoodyFrom

    f

    fxg

    P

    gd

    flV

    g

    VZ

    g

    P

    hZg

    V

    g

    PZ

    g

    V

    g

    P

    smA

    QV

    f

    ./00031.0

    05.082.3679416000

    Re

    416000Re

    :

    0136.0

    05.01701

    81.9282.370

    22

    22

    /82.3

    05.04

    3600

    27

    2

    1

    22

    21

    2

    2

    221

    2

    11

    2

    Example

    Air dialirkan daripada reserbor A menerusi satu talian paip sepanjang 4 km dan

  • 8/11/2019 Chapt4 Edited Rbm

    105/130

    p p p p j g

    berdiameter 50 cm kepada reserbor B yang mempunyai perbezaan aras sebanyak

    12.5 meter. Jika air perlu dialirkan kepada reserbor C yang mana mempunyai

    perbezaan aras sebanyak 15 meter di bawah reserbor A menerusi talian paip

    sepanjang 1.5 km yang menyambungkan pada paip utama pada jarak 1 km daripadakeluarannya seperti ditunjukkan dalam rajah di bawah. Jika diabaikan kehilangan

    kecil kecuali kehilangan geseran yang ditentukan melalui dan dipertimbangkan nilai

    pekali geseran sebagai 0.006, tentukan

    a) Kadaralir ke reserbor B jika tidak ada kadaralir ke reserbor C

    b) Kadaralir ke reserbor B jika kadaralir ke reserbor C adalah 150 liter per saatc) Diameter paip baru supaya aliran ke dalam ke dua-dua reserbor iaitu B dan C

    adalah sama.

    C

    B

    A

    12.5 m

    15 m

    15005.12

    30005.0

    100040004

    DCAB

    DBAB

    ADAB

    mLmZ

    mLmD

    mLmkmL

  • 8/11/2019 Chapt4 Edited Rbm

    106/130

    225

    5

    2

    5

    2

    22

    552

    5

    2

    5

    2

    22

    5

    2

    15.03

    5.12

    335.1200000

    22

    15.0

    )

    /2209.0

    4000006.0

    5.125.035.123

    5.123

    35.1200000

    22

    )

    3

    006.015

    ADDBADAD

    DBADDBAD

    DB

    DBDBDB

    AD

    ADADAD

    fDBfADB

    BB

    A

    AA

    ADDB

    fABBBB

    AAA

    DBAD

    f

    AC

    QLQLd

    f

    ddff

    Diberi

    d

    Qlf

    d

    Qlf

    hhZg

    V

    g

    P

    Zg

    V

    g

    P

    QQ

    BkeAAliranb

    smQ

    fl

    dQ

    d

    flQ

    d

    flQ

    hZg

    V

    g

    PZ

    g

    V

    g

    P

    QQQ

    BkeAAlirana

    d

    flQh

    fmZ

    QQ 15030001000006.0512 22

  • 8/11/2019 Chapt4 Edited Rbm

    107/130

    sm

    QQ

    sm

    x

    xxQ

    a

    acbbQ

    QuadratikPersamaanGuna

    QQ

    QQQ

    QQQ

    QQ

    ADDB

    AD

    ADAD

    ADADAD

    ADADAD

    ADAD

    /174.0

    15.0324.015.0

    /324.0

    40002

    8125.12740004900900

    2

    4

    08125.1279004000

    5.67900300010003125.195

    0225.03.030001000

    5.03

    006.05.12

    15.0300010005.03

    5.12

    3

    3

    2

    2

    2

    22

    22

    5

    2

    5

    T t i

    QQQ

    c

    DCDBAD

    )

  • 8/11/2019 Chapt4 Edited Rbm

    108/130

    cmmd

    d

    xx

    x

    xx

    d

    Qlf

    d

    QlfZZ

    CkeAAliran

    smQQ

    Maka

    smQ

    Q

    lld

    fQ

    d

    Qlf

    d

    QlfZ

    g

    V

    g

    PZ

    g

    V

    g

    P

    BkeAAliran

    QQQ

    Tetapi

    DC

    DC

    DC

    DCDC

    AD

    ADAD

    CA

    DCDB

    AD

    AD

    DBADAD

    DB

    DBDB

    AD

    ADAD

    BBB

    AAA

    ADDCDB

    34.404034.0

    3

    167.01500006.0

    5.03

    334.01000006.015

    33

    /167.02

    334.0

    /334.0

    4

    30001000

    5.03

    006.05.12

    2

    1

    35.12

    3322

    2

    5

    2

    5

    2

    5

    2

    5

    2

    3

    3

    5

    2

    2

    5

    5

    2

    5

    222

    Example

  • 8/11/2019 Chapt4 Edited Rbm

    109/130

    Rajah menunjukkan suatu sistem paip berdiameter 50 mm

    dilengkapkan dengan sebuah pam empar bagi mengepam air dari

    sebuah tasik ke sebuah tangki air yang terletak di atas Bukit Kijal.Pam tersebut dapat meningkatkan tenaga per unit berat air yang

    melaluinya sebanyak 80 Nm/N. Ketinggian paras air bebas di

    dalam tangki dari pam ialah 70m. Dalam sistem paip tersebut,

    paip A sehingga paip H berada pada permukaan mendatar yang

    sama tetapi paip C sehingga paip D terpaksa membentukseparuh bulatan bagi mengelak sebuah kolam ikan bulat yang

    berdiameter 50m. Jika faktor geseran ialah 0.08, kira kadar alir

    jisim air bagi sistem paip tersebut. Seterusnya tentukan jenis

    aliran di dalam paip penghantaran, berdasarkan nombor Reynold.

    Diberi kelikatan air ialah 1.14 x 10-6m2/s. Gunakan persamaan

    hf=flv2/(2gd) jika perlu.

  • 8/11/2019 Chapt4 Edited Rbm

    110/130

    22 VPVP

    gkitandalamairPermukaan:2Titik

    tasikPermukaan:1Titik

  • 8/11/2019 Chapt4 Edited Rbm

    111/130

    222

    f

    mf

    mf

    p

    2

    pmf2

    pmf2

    pmf222

    111

    V1.5805.081.92

    V5.71208.0

    gd2

    flVh

    m5.712

    54053052530

    50501005.78100150404l

    m5.7825r

    separuhPanjang

    08.0f

    Diberi

    6hh

    80hh740

    Maka

    m80E

    m74470Z

    EhhZ0

    EhhZ00000

    EhhZg2

    V

    g

    PZ

    g2

    V

    g

    P

    bulatan

    g

    KVh

    hKira

    m

    m

    2

    2

  • 8/11/2019 Chapt4 Edited Rbm

    112/130

    GeloraadalahsistemdalamAliran

    x

    Vd

    s

    kgAVm

    Diketahuis

    mV

    VV

    demikianyangOleh

    V

    VVVVVh

    Jadi

    VV

    hupInjap

    VV

    hglobInjap

    VV

    hKeluaran

    VV

    hMasukan

    VV

    hSesiku

    g

    m

    m

    m

    m

    m

    m

    o

    2100Re

    140351014.1

    05.032.0Re

    628.032.005.04

    1000

    32.0

    96.59

    6

    686.11.580

    86.1

    01.027.105.003.050.0

    01.081.92

    19.0:int

    27.181.92

    )5.12(2:

    05.081.92

    0.1:

    03.081.92

    5.0:

    50.081.92

    75.013:90

    6

    2

    22

    2

    22222

    22

    22

    22

    22

    22

    Example

  • 8/11/2019 Chapt4 Edited Rbm

    113/130

    Rajah di bawah menunjukkan sebuah sistem paip yang telah dibina bagi

    menghubungkan tangki 1 yang terletak di kaki Bukit Awana dengan

    tangki 2 di Kawasan Tinggi Awana. Paip bersaiz 50 mm itu diperbuatdaripada besi tuang (Cast Iron) dan ia digunakan untuk menghantar air

    (graviti tentu 9810 N/m3) dan kelikatan kinematik 1 x 10-6m2/s ke

    tangki 2. Titik A hingga titik D berada pada permukaan rata yang sama

    dengan paip dari titik B dan titik C terpaksa dipasang dengan bentuk

    separuh bulatan untuk mengelak kolam ikan bulat. Sesiku B hinggasesiku G adalah daripada jenis 90o. Sebuah injap globe dalam keadaan

    terbuka penuh dan sebuah injap pintu juga dalam keadaan terbuka

    penuh masing-masing telah dipasang pada kedudukan sebelum pam dan

    selepas pam. Ar bebas di dalam tangki 2 ialah 20 m berbanding paras

    air bebas di dalam tangki 1. Sebuah pam telah digunakan untuk

    mengepam air dalam sistem sehingga kadaalir mencapai 0.05 m3/s. Jika

    kecekapan pam adalah 80%, kirakan kuasa kuda yang diperlukan oleh

    motor elektrik untuk memacu pam tersebut.

  • 8/11/2019 Chapt4 Edited Rbm

    114/130

    EhhZg

    V

    g

    PZ

    g

    V

    g

    Ppmf

    222

    222

    1

    211

  • 8/11/2019 Chapt4 Edited Rbm

    115/130

    ml

    mBCPanjang

    md

    d

    makamIkanKolamKeluasan

    f

    Jadid

    makammIronCastUntuk

    DarcyPersamaangunamakageloraadalahaliran

    x

    xVd

    sm

    xAQV

    hhZE

    EhhZ

    mfp

    pmf

    751012612612125

    122

    65.7

    65.7

    446

    ,46

    031.0

    0052.050

    26.0

    26.0

    ,2100Re

    1275000101

    10505.25Re

    5.25

    10504

    05.0

    00000

    2

    2

    6

    3

    23

    2

    2

    m

    flVh f 1541

    5.2575031.022

  • 8/11/2019 Chapt4 Edited Rbm

    116/130

    hpHP

    kecekapanBila

    hp

    gQE

    HP

    Jadi

    mE

    demikianyangOlehm

    g

    V

    g

    Vg

    KVh

    mxgd

    h

    p

    p

    m

    f

    17248.0

    1379

    %80

    1379

    746

    209805.081.91000

    746

    2098537154120

    537

    2

    19.16

    119.075.06105.02

    2

    1541105081.922

    2

    2

    2

    3

    Example

  • 8/11/2019 Chapt4 Edited Rbm

    117/130

    Rajah menunjukkan air dipam dari tangki sedutan A ke tangki tadahan

    G melalui suatu siri talian paip yang diperbuat daripada keluli

    kemersial. Talian paip ini dilengkapkan dengan sebuah injap pintuterbuka sepenuhnya. Talian paip B ke D berdiameter 140 mm dengan

    talian paip seterusnya berdiameter 250 mm. Masukan dan keluaran

    adalah tajam. Meter aliran ultrasonik menunjukkan halaju aliran di

    dalam paip berdiameter 140 mm ialah 8 m/s. Paras air bebas di dalam

    tangki tadahan pula didapati 50 m di atas paras air bebas tangkisedutan. Jika kelikatan air 1.06 x 10-6m2/s, tentukan tenaga per unit

    berat yang perlu dibekalkan oleh pam supaya air dapat dialirkan

    mengikut perancangan asal. Gunakan hf=flv2/(2gd).

  • 8/11/2019 Chapt4 Edited Rbm

    118/130

    Example

    Rajah di bawah menunjukkan sistem talian paip plastik selari

  • 8/11/2019 Chapt4 Edited Rbm

    119/130

    Rajah di bawah menunjukkan sistem talian paip plastik selari

    mengandungi dua paip yang serba sama yang dipasangkan secara

    mendatar. Air memasuki simpang A pada kadaralir 0.4 m3/s dan

    meninggalkannya dengan berpecah kepada dua bahagian untukmembekalkan air kepada galas (bearing) yang akan memutarkan aci

    turbin. Jika galas (bearing) untuk kedua-dua paip adalah sama dan nilai

    pekali kehilangan K adalah 10, diameter paip 250 mm dan kelikatan

    kinematik air 1.12 x 10-6m2/s, tentukan:

    a) Halaju dalam setiap paip

    b) Kejatuhan tekanan yang merentasi cabang (PA- PB)

    AVQ

    s

    mQQQ

    makasamaadalahpaipCabanga

    T 2.02

    4.0

    2

    )3

    21

  • 8/11/2019 Chapt4 Edited Rbm

    120/130

    m

    xxxLe

    Jadi

    f

    makalicinpaippaipKekasaran

    x

    x

    xVD

    f

    KD

    f

    KD

    f

    kD

    LeLeLeLe

    samaadalahsimpangmerentasiPPtekananKejatuhanb

    smA

    QVV

    AVQ

    elbowga lastee

    T

    elbowga lastee

    elbowga lasteeT

    BA

    203.383

    0128.0

    25.075.02

    0128.0

    25.010

    0128.0

    25.05.12100

    0128.0

    ,

    1008.9

    1012.1

    25.007.4Re

    22100

    22100

    )

    /07.4

    25.0

    4

    2.0

    5

    6

    221

    A B

    100 Le(2tee) Le(galas) Le(2elbow)

    0420338301280fl 22

  • 8/11/2019 Chapt4 Edited Rbm

    121/130

    kPa502.162

    5649.1681.91000

    ghPP

    hg

    P

    g

    PZZ

    VV

    hZg2

    V

    g

    PZ

    g2

    V

    g

    P

    m5649.16

    25.081.92

    07.4203.3830128.0

    gd2

    flVh

    fBA

    fBA

    BA

    BA

    fB

    2BB

    A

    2AA

    22

    f

    Example

    Sebuah pam digunakan untuk mengepam air dari tangki bekalan A ke

  • 8/11/2019 Chapt4 Edited Rbm

    122/130

    Sebuah pam digunakan untuk mengepam air dari tangki bekalan A ke

    tangki agihan B melalui dua batang paip jenis besi tuang terasfalt yang

    disambungkan secara bersiri. Aras air di dalam tangki agihan ialah 10 m di

    atas aras air di dalam tangki bekalan seperti ditunjukkan dalam rajah. Jikakadaralir air ialah 0.0237 m3/s, kelikatan kinematik ialah 1.004x10-6m2/s

    dan kemasukan serta keluaran paip adalah tajam, kira tenaga yang

    dibekalkan oleh pam bagi setiap unit berat.

    10mD=150mm

    L=100m

    D=200mm

    L=100m

    Pam A

    B

    sm

    A

    QV /7544.0

    2.04

    0237.0

    21

    1

  • 8/11/2019 Chapt4 Edited Rbm

    123/130

    mZZ

    VV

    PP

    hhhhZg

    V

    g

    PZ

    g

    V

    g

    P

    f

    f

    MoodycartaDari

    d

    d

    xx

    dV

    xx

    dV

    smA

    QV

    BA

    BA

    BA

    pmffBBB

    AAA

    10

    0

    0

    22

    0203.0

    0199.0

    0008.0150

    12.0

    0006.0

    200

    12.0

    100036.210004.1

    15.03411.1Re

    105028.110004.1

    2.07544.0Re

    /3411.1

    15.04

    0237.0

    21

    222

    1

    2

    1

    5

    6

    222

    5

    6

    111

    22

    2

  • 8/11/2019 Chapt4 Edited Rbm

    124/130

    mh

    hxx

    K

    Jadid

    d

    JadualmelaluidiperolehitibatibapengecilanbagiK

    hg

    V

    g

    VK

    g

    V

    gd

    Vlf

    gd

    Vlf

    p

    p

    p

    6590.11

    15.0

    1000203.02525.01

    81.92

    3411.1

    2.0

    1000199.05.0

    81.92

    7544.010

    2525.022.022.035.08.06.0

    8.075.0

    ,75.02.0

    15.0

    2225.0

    2210

    22

    1

    2

    2

    2

    2

    2

    2

    1

    2

    2

    222

    1

    2

    111

    Example

    Kirakan kejatuhan tekanan P1-P2 yang menerusi talian paip yang

  • 8/11/2019 Chapt4 Edited Rbm

    125/130

    Kirakan kejatuhan tekanan P1 P2yang menerusi talian paip yang

    ditunjukkan dalam rajah. Jika kadaralir minyak yang mempunyai berat

    spesifik 8900 N/m2dan kelikatan 1x 10-6m2/s ialah 0.05 m3/s dan diameter

    paip ialah 100mm. Jika perbezaan ketinggian antara titik 1 dan 2 adalah 4 mdan panjang keseluruhan paip besi tuang antara titik 1 dan 2 ialah 30 m.

    P1

    P24m

    Globe Valve

    (fully Open)

    900

    elbow

    90 0 elbow

    2/37.6

    1.04

    057.0sm

    A

    QV

  • 8/11/2019 Chapt4 Edited Rbm

    126/130

    2

    21

    2

    22

    1221

    22

    2

    2

    22

    1

    2

    11

    5

    6

    /1.314

    890029.35

    29.35

    81.92

    37.65.11

    1.081.92

    37.630025.04

    22

    5.111075.075.0

    2222

    025.0

    0026.0100

    26.0

    1037.6100.1

    1.037.6Re

    mkN

    xPP

    g

    VK

    gd

    flVZZ

    g

    PP

    Jadi

    K

    g

    VK

    gd

    flVZ

    g

    V

    g

    PZ

    g

    V

    g

    P

    f

    MoodycartaDari

    d

    xx

    Vd

    Example

    Sebuah reservoir mengalirkan air melalui sebatang paip (paip 1) berdiameter

  • 8/11/2019 Chapt4 Edited Rbm

    127/130

    Sebua ese vo e ga a a e a u sebata g pa p (pa p ) be a ete200 mm dan 300 m panjang yang dicabangkan kepada dua batang paipberdiameter 150 mm dan 150 m panjang setiap satu (paip 2 dan paip 3). Paip 2

    dan paip 3 terbuka penuh pada hujungnya. Paip 3 mempunyai lubang-lubangkeluaran di sepanjang panjangnya. Semua lubang keluaran ini disusunsedemikian rupa supaya separuh daripada air yang masuk ke dalam paip inidialirkan keluar di hujungnya dengan baki air mengalir keluar secara sama ratamelalui semua lubang keluaran tersebut. Kedua-dua hujung paip 2 dan paip 3berketinggian 15 m di bawah permukaan air bebas di reservoir. Abaikan semua

    kehilangan kecil. Diberi f = 0.024 untuk semua paip dan ketumpatan air = 1000kg/m3.

    a) Dengan menggunakan Persamaan Darcy-Weisbach

    buktikan

    b) Kira kadaralir untuk setiap paip

    gD

    fLVhf

    2

    2

    g

    V

    D

    LfHL

    212

    7 2

    3

    3

    33

    Example

    In figure below kerosene at 25oC is flowing at 500 L/min from the lower tank to

  • 8/11/2019 Chapt4 Edited Rbm

    128/130

    In figure below, kerosene at 25 C is flowing at 500 L/min from the lower tank to

    the upper tank through 2 inch nominal size type K copper tubing and a valve. Tank

    A is very large and tank B is opened to the atmosphere.

    a) If the pressure above the fluid in tank A is 103.42 kPa, how much energy loss

    occurs in the system

    b) Assuming that the energy loss is proportional to the velocity head in the

    tubing, compute the pressure in the tank required to cause a flow of 1000

    L/min

    Solution

  • 8/11/2019 Chapt4 Edited Rbm

    129/130

  • 8/11/2019 Chapt4 Edited Rbm

    130/130