chap2_solution manual _ elements of Information thoery,pdf

download chap2_solution manual _ elements of Information thoery,pdf

of 32

Transcript of chap2_solution manual _ elements of Information thoery,pdf

  • 7/30/2019 chap2_solution manual _ elements of Information thoery,pdf

    1/32

    C h a p t e r 2

    E n t r o p y , R e l a t i v e E n t r o p y a n d

    M u t u a l I n f o r m a t i o n

    1 . C o i n i p s . A f a i r c o i n i s i p p e d u n t i l t h e r s t h e a d o c c u r s . L e t X d e n o t e t h e n u m b e r

    o f i p s r e q u i r e d .

    ( a ) F i n d t h e e n t r o p y H ( X ) i n b i t s . T h e f o l l o w i n g e x p r e s s i o n s m a y b e u s e f u l :

    1

    X

    n = 1

    r

    n

    =

    r

    1 ? r

    ;

    1

    X

    n = 1

    n r

    n

    =

    r

    ( 1 ? r )

    2

    :

    ( b ) A r a n d o m v a r i a b l e X i s d r a w n a c c o r d i n g t o t h i s d i s t r i b u t i o n . F i n d a n \ e c i e n t "

    s e q u e n c e o f y e s - n o q u e s t i o n s o f t h e f o r m , \ I s X c o n t a i n e d i n t h e s e t S ? " C o m p a r e

    H ( X ) t o t h e e x p e c t e d n u m b e r o f q u e s t i o n s r e q u i r e d t o d e t e r m i n e X .

    S o l u t i o n :

    ( a ) T h e n u m b e r X o f t o s s e s t i l l t h e r s t h e a d a p p e a r s h a s t h e g e o m e t r i c d i s t r i b u t i o n

    w i t h p a r a m e t e r p = 1 = 2 , w h e r e P ( X = n ) = p q

    n ? 1

    , n 2 f 1 ; 2 ; : : : g . H e n c e t h e

    e n t r o p y o f X i s

    H ( X ) = ?

    1

    X

    n = 1

    p q

    n ? 1

    l o g ( p q

    n ? 1

    )

    = ?

    "

    1

    X

    n = 0

    p q

    n

    l o g p +

    1

    X

    n = 0

    n p q

    n

    l o g q

    #

    =

    ? p l o g p

    1 ? q

    ?

    p q l o g q

    p

    2

    =

    ? p l o g p ? q l o g q

    p

    = H ( p ) = p b i t s .

    I f p = 1 = 2 , t h e n H ( X ) = 2 b i t s .

    7

  • 7/30/2019 chap2_solution manual _ elements of Information thoery,pdf

    2/32

    8

    E n t r o p y , R e l a t i v e E n t r o p y a n d M u t u a l I n f o r m a t i o n

    ( b ) I n t u i t i v e l y , i t s e e m s c l e a r t h a t t h e b e s t q u e s t i o n s a r e t h o s e t h a t h a v e e q u a l l y l i k e l y

    c h a n c e s o f r e c e i v i n g a y e s o r a n o a n s w e r . C o n s e q u e n t l y , o n e p o s s i b l e g u e s s i s

    t h a t t h e m o s t \ e c i e n t " s e r i e s o f q u e s t i o n s i s : I s X = 1 ? I f n o t , i s X = 2 ?

    I f n o t , i s X = 3 ? : : : w i t h a r e s u l t i n g e x p e c t e d n u m b e r o f q u e s t i o n s e q u a l t o

    P

    1

    n = 1

    n ( 1 = 2

    n

    ) = 2 : T h i s s h o u l d r e i n f o r c e t h e i n t u i t i o n t h a t H ( X ) i s a m e a -

    s u r e o f t h e u n c e r t a i n t y o f X . I n d e e d i n t h i s c a s e , t h e e n t r o p y i s e x a c t l y t h e

    s a m e a s t h e a v e r a g e n u m b e r o f q u e s t i o n s n e e d e d t o d e n e X , a n d i n g e n e r a l

    E ( # o f q u e s t i o n s ) H ( X ) . T h i s p r o b l e m h a s a n i n t e r p r e t a t i o n a s a s o u r c e c o d -

    i n g p r o b l e m . L e t 0 = n o , 1 = y e s , X = S o u r c e , a n d Y = E n c o d e d S o u r c e . T h e n

    t h e s e t o f q u e s t i o n s i n t h e a b o v e p r o c e d u r e c a n b e w r i t t e n a s a c o l l e c t i o n o f ( X ; Y )

    p a i r s : ( 1 ; 1 ) , ( 2 ; 0 1 ) , ( 3 ; 0 0 1 ) , e t c . . I n f a c t , t h i s i n t u i t i v e l y d e r i v e d c o d e i s t h e

    o p t i m a l ( H u m a n ) c o d e m i n i m i z i n g t h e e x p e c t e d n u m b e r o f q u e s t i o n s .

    2 . E n t r o p y o f f u n c t i o n s . L e t X b e a r a n d o m v a r i a b l e t a k i n g o n a n i t e n u m b e r o f v a l u e s .

    W h a t i s t h e ( g e n e r a l ) i n e q u a l i t y r e l a t i o n s h i p o f H ( X ) a n d H ( Y ) i f

    ( a ) Y = 2

    X

    ?

    ( b ) Y = c o s X ?

    S o l u t i o n : L e t y = g ( x ) . T h e n

    p ( y ) =

    X

    x : y = g ( x )

    p ( x ) :

    C o n s i d e r a n y s e t o f x ' s t h a t m a p o n t o a s i n g l e y . F o r t h i s s e t

    X

    x : y = g ( x )

    p ( x ) l o g p ( x )

    X

    x : y = g ( x )

    p ( x ) l o g p ( y ) = p ( y ) l o g p ( y ) ;

    s i n c e l o g i s a m o n o t o n e i n c r e a s i n g f u n c t i o n a n d p ( x )

    P

    x : y = g ( x )

    p ( x ) = p ( y ) . E x -

    t e n d i n g t h i s a r g u m e n t t o t h e e n t i r e r a n g e o f X ( a n d Y ) , w e o b t a i n

    H ( X ) = ?

    X

    x

    p ( x ) l o g p ( x )

    = ?

    X

    y

    X

    x : y = g ( x )

    p ( x ) l o g p ( x )

    ?

    X

    y

    p ( y ) l o g p ( y )

    = H ( Y ) ;

    w i t h e q u a l i t y i g i s o n e - t o - o n e w i t h p r o b a b i l i t y o n e .

    ( a ) Y = 2

    X

    i s o n e - t o - o n e a n d h e n c e t h e e n t r o p y , w h i c h i s j u s t a f u n c t i o n o f t h e

    p r o b a b i l i t i e s ( a n d n o t t h e v a l u e s o f a r a n d o m v a r i a b l e ) d o e s n o t c h a n g e , i . e . ,

    H ( X ) = H ( Y ) .

    ( b ) Y = c o s ( X ) i s n o t n e c e s s a r i l y o n e - t o - o n e . H e n c e a l l t h a t w e c a n s a y i s t h a t

    H ( X ) H ( Y ) , w i t h e q u a l i t y i f c o s i n e i s o n e - t o - o n e o n t h e r a n g e o f X .

  • 7/30/2019 chap2_solution manual _ elements of Information thoery,pdf

    3/32

    E n t r o p y , R e l a t i v e E n t r o p y a n d M u t u a l I n f o r m a t i o n

    9

    3 . M i n i m u m e n t r o p y . W h a t i s t h e m i n i m u m v a l u e o f H ( p

    1

    ; : : : ; p

    n

    ) = H ( p ) a s p r a n g e s

    o v e r t h e s e t o f n - d i m e n s i o n a l p r o b a b i l i t y v e c t o r s ? F i n d a l l p ' s w h i c h a c h i e v e t h i s

    m i n i m u m .

    S o l u t i o n : W e w i s h t o n d a l l p r o b a b i l i t y v e c t o r s p = ( p

    1

    ; p

    2

    ; : : : ; p

    n

    ) w h i c h m i n i m i z e

    H ( p ) = ?

    X

    i

    p

    i

    l o g p

    i

    :

    N o w ? p

    i

    l o g p

    i

    0 , w i t h e q u a l i t y i p

    i

    = 0 o r 1 . H e n c e t h e o n l y p o s s i b l e p r o b a b i l i t y

    v e c t o r s w h i c h m i n i m i z e H ( p ) a r e t h o s e w i t h p

    i

    = 1 f o r s o m e i a n d p

    j

    = 0 ; j 6= i .

    T h e r e a r e n s u c h v e c t o r s , i . e . , ( 1 ; 0 ; : : : ; 0 ) , ( 0 ; 1 ; 0 ; : : : ; 0 ) , : : : , ( 0 ; : : : ; 0 ; 1 ) , a n d t h e

    m i n i m u m v a l u e o f H ( p ) i s 0 .

    4 . A x i o m a t i c d e n i t i o n o f e n t r o p y . I f w e a s s u m e c e r t a i n a x i o m s f o r o u r m e a s u r e o f i n f o r -

    m a t i o n , t h e n w e w i l l b e f o r c e d t o u s e a l o g a r i t h m i c m e a s u r e l i k e e n t r o p y . S h a n n o n u s e d

    t h i s t o j u s t i f y h i s i n i t i a l d e n i t i o n o f e n t r o p y . I n t h i s b o o k , w e w i l l r e l y m o r e o n t h e

    o t h e r p r o p e r t i e s o f e n t r o p y r a t h e r t h a n i t s a x i o m a t i c d e r i v a t i o n t o j u s t i f y i t s u s e . T h e

    f o l l o w i n g p r o b l e m i s c o n s i d e r a b l y m o r e d i c u l t t h a n t h e o t h e r p r o b l e m s i n t h i s s e c t i o n .

    I f a s e q u e n c e o f s y m m e t r i c f u n c t i o n s H

    m

    ( p

    1

    ; p

    2

    ; : : : ; p

    m

    ) s a t i s e s t h e f o l l o w i n g p r o p e r -

    t i e s ,

    N o r m a l i z a t i o n : H

    2

    1

    2

    ;

    1

    2

    = 1 ;

    C o n t i n u i t y : H

    2

    ( p ; 1 ? p ) i s a c o n t i n u o u s f u n c t i o n o f p ,

    G r o u p i n g : H

    m

    ( p

    1

    ; p

    2

    ; : : : ; p

    m

    ) = H

    m ? 1

    ( p

    1

    + p

    2

    ; p

    3

    ; : : : ; p

    m

    ) + ( p

    1

    + p

    2

    ) H

    2

    p

    1

    p

    1

    + p

    2

    ;

    p

    2

    p

    1

    + p

    2

    ,

    p r o v e t h a t H

    m

    m u s t b e o f t h e f o r m

    H

    m

    ( p

    1

    ; p

    2

    ; : : : ; p

    m

    ) = ?

    m

    X

    i = 1

    p

    i

    l o g p

    i

    ; m = 2 ; 3 ; : : : : ( 2 . 1 )

    T h e r e a r e v a r i o u s o t h e r a x i o m a t i c f o r m u l a t i o n s w h i c h a l s o r e s u l t i n t h e s a m e d e n i t i o n

    o f e n t r o p y . S e e , f o r e x a m p l e , t h e b o o k b y C s i s z a r a n d K o r n e r 3 ] .

    S o l u t i o n : A x i o m a t i c d e n i t i o n o f e n t r o p y . T h i s i s a l o n g s o l u t i o n , s o w e w i l l r s t

    o u t l i n e w h a t w e p l a n t o d o . F i r s t w e w i l l e x t e n d t h e g r o u p i n g a x i o m b y i n d u c t i o n a n d

    p r o v e t h a t

    H

    m

    ( p

    1

    ; p

    2

    ; : : : ; p

    m

    ) = H

    m ? k

    ( p

    1

    + p

    2

    + + p

    k

    ; p

    k + 1

    ; : : : ; p

    m

    )

    + ( p

    1

    + p

    2

    + + p

    k

    ) H

    k

    p

    1

    p

    1

    + p

    2

    + + p

    k

    ; : : : ;

    p

    k

    p

    1

    + p

    2

    + + p

    k

    : ( 2 . 2 )

    L e t f ( m ) b e t h e e n t r o p y o f a u n i f o r m d i s t r i b u t i o n o n m s y m b o l s , i . e . ,

    f ( m ) = H

    m

    1

    m

    ;

    1

    m

    ; : : : ;

    1

    m

    : ( 2 . 3 )

    W e w i l l t h e n s h o w t h a t f o r a n y t w o i n t e g e r s r a n d s , t h a t f ( r s ) = f ( r ) + f ( s ) .

    W e u s e t h i s t o s h o w t h a t f ( m ) = l o g m . W e t h e n s h o w f o r r a t i o n a l p = r = s , t h a t

  • 7/30/2019 chap2_solution manual _ elements of Information thoery,pdf

    4/32

    1 0

    E n t r o p y , R e l a t i v e E n t r o p y a n d M u t u a l I n f o r m a t i o n

    H

    2

    ( p ; 1 ? p ) = ? p l o g p ? ( 1 ? p ) l o g ( 1 ? p ) . B y c o n t i n u i t y , w e w i l l e x t e n d i t t o i r r a t i o n a l

    p a n d n a l l y b y i n d u c t i o n a n d g r o u p i n g , w e w i l l e x t e n d t h e r e s u l t t o H

    m

    f o r m 2 .

    T o b e g i n , w e e x t e n d t h e g r o u p i n g a x i o m . F o r c o n v e n i e n c e i n n o t a t i o n , w e w i l l l e t

    S

    k

    =

    k

    X

    i = 1

    p

    i

    ( 2 . 4 )

    a n d w e w i l l d e n o t e H

    2

    ( q ; 1 ? q ) a s h ( q ) . T h e n w e c a n w r i t e t h e g r o u p i n g a x i o m a s

    H

    m

    ( p

    1

    ; : : : ; p

    m

    ) = H

    m ? 1

    ( S

    2

    ; p

    3

    ; : : : ; p

    m

    ) + S

    2

    h

    p

    2

    S

    2

    : ( 2 . 5 )

    A p p l y i n g t h e g r o u p i n g a x i o m a g a i n , w e h a v e

    H

    m

    ( p

    1

    ; : : : ; p

    m

    ) = H

    m ? 1

    ( S

    2

    ; p

    3

    ; : : : ; p

    m

    ) + S

    2

    h

    p

    2

    S

    2

    ( 2 . 6 )

    = H

    m ? 2

    ( S

    3

    ; p

    4

    ; : : : ; p

    m

    ) + S

    3

    h

    p

    3

    S

    3

    + S

    2

    h

    p

    2

    S

    2

    ( 2 . 7 )

    .

    .

    . ( 2 . 8 )

    = H

    m ? ( k ? 1 )

    ( S

    k

    ; p

    k + 1

    ; : : : ; p

    m

    ) +

    k

    X

    i = 2

    S

    i

    h

    p

    i

    S

    i

    : ( 2 . 9 )

    N o w , w e a p p l y t h e s a m e g r o u p i n g a x i o m r e p e a t e d l y t o H

    k

    ( p

    1

    = S

    k

    ; : : : ; p

    k

    = S

    k

    ) , t o o b t a i n

    H

    k

    p

    1

    S

    k

    ; : : : ;

    p

    k

    S

    k

    = H

    2

    S

    k ? 1

    S

    k

    ;

    p

    k

    S

    k

    +

    k ? 1

    X

    i = 2

    S

    i

    S

    k

    h

    p

    i

    = S

    k

    S

    i

    = S

    k

    ( 2 . 1 0 )

    =

    1

    S

    k

    k

    X

    i = 2

    S

    i

    h

    p

    i

    S

    i

    : ( 2 . 1 1 )

    F r o m ( 2 . 9 ) a n d ( 2 . 1 1 ) , i t f o l l o w s t h a t

    H

    m

    ( p

    1

    ; : : : ; p

    m

    ) = H

    m ? k

    ( S

    k

    ; p

    k + 1

    ; : : : ; p

    m

    ) + S

    k

    H

    k

    p

    1

    S

    k

    ; : : : ;

    p

    k

    S

    k

    ; ( 2 . 1 2 )

    w h i c h i s t h e e x t e n d e d g r o u p i n g a x i o m .

    N o w w e n e e d t o u s e a n a x i o m t h a t i s n o t e x p l i c i t l y s t a t e d i n t h e t e x t , n a m e l y t h a t t h e

    f u n c t i o n H

    m

    i s s y m m e t r i c w i t h r e s p e c t t o i t s a r g u m e n t s . U s i n g t h i s , w e c a n c o m b i n e

    a n y s e t o f a r g u m e n t s o f H

    m

    u s i n g t h e e x t e n d e d g r o u p i n g a x i o m .

    L e t f ( m ) d e n o t e H

    m

    (

    1

    m

    ;

    1

    m

    ; : : : ;

    1

    m

    ) .

    C o n s i d e r

    f ( m n ) = H

    m n

    (

    1

    m n

    ;

    1

    m n

    ; : : : ;

    1

    m n

    ) : ( 2 . 1 3 )

  • 7/30/2019 chap2_solution manual _ elements of Information thoery,pdf

    5/32

    E n t r o p y , R e l a t i v e E n t r o p y a n d M u t u a l I n f o r m a t i o n

    1 1

    B y r e p e a t e d l y a p p l y i n g t h e e x t e n d e d g r o u p i n g a x i o m , w e h a v e

    f ( m n ) = H

    m n

    (

    1

    m n

    ;

    1

    m n

    ; : : : ;

    1

    m n

    ) ( 2 . 1 4 )

    = H

    m n ? n

    (

    1

    m

    ;

    1

    m n

    ; : : : ;

    1

    m n

    ) +

    1

    m

    H

    n

    (

    1

    n

    ; : : : ;

    1

    n

    ) ( 2 . 1 5 )

    = H

    m n ? 2 n

    (

    1

    m

    ;

    1

    m

    ;

    1

    m n

    ; : : : ;

    1

    m n

    ) +

    2

    m

    H

    n

    (

    1

    n

    ; : : : ;

    1

    n

    ) ( 2 . 1 6 )

    .

    .

    . ( 2 . 1 7 )

    = H

    m

    (

    1

    m

    ; : : : :

    1

    m

    ) + H (

    1

    n

    ; : : : ;

    1

    n

    ) ( 2 . 1 8 )

    = f ( m ) + f ( n ) : ( 2 . 1 9 )

    W e c a n i m m e d i a t e l y u s e t h i s t o c o n c l u d e t h a t f ( m

    k

    ) = k f ( m ) .

    N o w , w e w i l l a r g u e t h a t H

    2

    ( 1 ; 0 ) = h ( 1 ) = 0 . W e d o t h i s b y e x p a n d i n g H

    3

    ( p

    1

    ; p

    2

    ; 0 )

    ( p

    1

    + p

    2

    = 1 ) i n t w o d i e r e n t w a y s u s i n g t h e g r o u p i n g a x i o m

    H

    3

    ( p

    1

    ; p

    2

    ; 0 ) = H

    2

    ( p

    1

    ; p

    2

    ) + p

    2

    H

    2

    ( 1 ; 0 ) ( 2 . 2 0 )

    = H

    2

    ( 1 ; 0 ) + ( p

    1

    + p

    2

    ) H

    2

    ( p

    1

    ; p

    2

    ) ( 2 . 2 1 )

    T h u s p

    2

    H

    2

    ( 1 ; 0 ) = H

    2

    ( 1 ; 0 ) f o r a l l p

    2

    , a n d t h e r e f o r e H ( 1 ; 0 ) = 0 .

    W e w i l l a l s o n e e d t o s h o w t h a t f ( m + 1 ) ? f ( m ) ! 0 a s m ! 1 . T o p r o v e t h i s , w e

    u s e t h e e x t e n d e d g r o u p i n g a x i o m a n d w r i t e

    f ( m + 1 ) = H

    m + 1

    (

    1

    m + 1

    ; : : : ;

    1

    m + 1

    ) ( 2 . 2 2 )

    = h (

    1

    m + 1

    ) +

    m

    m + 1

    H

    m

    (

    1

    m

    ; : : : ;

    1

    m

    ) ( 2 . 2 3 )

    = h (

    1

    m + 1

    ) +

    m

    m + 1

    f ( m ) ( 2 . 2 4 )

    a n d t h e r e f o r e

    f ( m + 1 ) ?

    m

    m + 1

    f ( m ) = h (

    1

    m + 1

    ) : ( 2 . 2 5 )

    T h u s l i m f ( m + 1 ) ?

    m

    m + 1

    f ( m ) = l i m h (

    1

    m + 1

    ) : B u t b y t h e c o n t i n u i t y o f H

    2

    , i t f o l l o w s

    t h a t t h e l i m i t o n t h e r i g h t i s h ( 0 ) = 0 . T h u s l i m h (

    1

    m + 1

    ) = 0 .

    L e t u s d e n e

    a

    n + 1

    = f ( n + 1 ) ? f ( n ) ( 2 . 2 6 )

    a n d

    b

    n

    = h (

    1

    n

    ) : ( 2 . 2 7 )

    T h e n

    a

    n + 1

    = ?

    1

    n + 1

    f ( n ) + b

    n + 1

    ( 2 . 2 8 )

    = ?

    1

    n + 1

    n

    X

    i = 2

    a

    i

    + b

    n + 1

    ( 2 . 2 9 )

  • 7/30/2019 chap2_solution manual _ elements of Information thoery,pdf

    6/32

    1 2

    E n t r o p y , R e l a t i v e E n t r o p y a n d M u t u a l I n f o r m a t i o n

    a n d t h e r e f o r e

    ( n + 1 ) b

    n + 1

    = ( n + 1 ) a

    n + 1

    +

    n

    X

    i = 2

    a

    i

    : ( 2 . 3 0 )

    T h e r e f o r e s u m m i n g o v e r n , w e h a v e

    N

    X

    n = 2

    n b

    n

    =

    N

    X

    n = 2

    ( n a

    n

    + a

    n ? 1

    + : : : + a

    2

    ) = N

    N

    X

    n = 2

    a

    i

    : ( 2 . 3 1 )

    D i v i d i n g b o t h s i d e s b y

    P

    N

    n = 1

    n = N ( N + 1 ) = 2 , w e o b t a i n

    2

    N + 1

    N

    X

    n = 2

    a

    n

    =

    P

    N

    n = 2

    n b

    n

    P

    N

    n = 2

    n

    ( 2 . 3 2 )

    N o w b y c o n t i n u i t y o f H

    2

    a n d t h e d e n i t i o n o f b

    n

    , i t f o l l o w s t h a t b

    n

    ! 0 a s n ! 1 .

    S i n c e t h e r i g h t h a n d s i d e i s e s s e n t i a l l y a n a v e r a g e o f t h e b

    n

    ' s , i t a l s o g o e s t o 0 ( T h i s

    c a n b e p r o v e d m o r e p r e c i s e l y u s i n g ' s a n d ' s ) . T h u s t h e l e f t h a n d s i d e g o e s t o 0 . W e

    c a n t h e n s e e t h a t

    a

    N + 1

    = b

    N + 1

    ?

    1

    N + 1

    N

    X

    n = 2

    a

    n

    ( 2 . 3 3 )

    a l s o g o e s t o 0 a s N ! 1 . T h u s

    f ( n + 1 ) ? f ( n ) ! 0 a s n ! 1 : ( 2 . 3 4 )

    W e w i l l n o w p r o v e t h e f o l l o w i n g l e m m a

    L e m m a 2 . 0 . 1 L e t t h e f u n c t i o n f ( m ) s a t i s f y t h e f o l l o w i n g a s s u m p t i o n s :

    f ( m n ) = f ( m ) + f ( n ) f o r a l l i n t e g e r s m , n .

    l i m

    n ! 1

    ( f ( n + 1 ) ? f ( n ) ) = 0

    f ( 2 ) = 1 ,

    t h e n t h e f u n c t i o n f ( m ) = l o g

    2

    m .

    P r o o f o f t h e l e m m a : L e t P b e a n a r b i t r a r y p r i m e n u m b e r a n d l e t

    g ( n ) = f ( n ) ?

    f ( P ) l o g

    2

    n

    l o g

    2

    P

    ( 2 . 3 5 )

    T h e n g ( n ) s a t i s e s t h e r s t a s s u m p t i o n o f t h e l e m m a . A l s o g ( P ) = 0 .

    A l s o i f w e l e t

    n

    = g ( n + 1 ) ? g ( n ) = f ( n + 1 ) ? f ( n ) +

    f ( P )

    l o g

    2

    P

    l o g

    2

    n

    n + 1

    ( 2 . 3 6 )

    t h e n t h e s e c o n d a s s u m p t i o n i n t h e l e m m a i m p l i e s t h a t l i m

    n

    = 0 .

  • 7/30/2019 chap2_solution manual _ elements of Information thoery,pdf

    7/32

    E n t r o p y , R e l a t i v e E n t r o p y a n d M u t u a l I n f o r m a t i o n

    1 3

    F o r a n i n t e g e r n , d e n e

    n

    ( 1 )

    =

    n

    P

    : ( 2 . 3 7 )

    T h e n i t f o l l o w s t h a t n

    ( 1 )

    < n = P , a n d

    n = n

    ( 1 )

    P + l ( 2 . 3 8 )

    w h e r e 0 l < P . F r o m t h e f a c t t h a t g ( P ) = 0 , i t f o l l o w s t h a t g ( P n

    ( 1 )

    ) = g ( n

    ( 1 )

    ) ,

    a n d

    g ( n ) = g ( n

    ( 1 )

    ) + g ( n ) ? g ( P n

    ( 1 )

    ) = g ( n

    ( 1 )

    ) +

    n ? 1

    X

    i = P n

    ( 1 )

    i

    ( 2 . 3 9 )

    J u s t a s w e h a v e d e n e d n

    ( 1 )

    f r o m n , w e c a n d e n e n

    ( 2 )

    f r o m n

    ( 1 )

    . C o n t i n u i n g t h i s

    p r o c e s s , w e c a n t h e n w r i t e

    g ( n ) = g ( n

    ( k )

    +

    k

    X

    j = 1

    0

    @

    n

    ( i ? 1 )

    X

    i = P n

    ( i )

    i

    1

    A

    : ( 2 . 4 0 )

    S i n c e n

    ( k )

    n = P

    k

    , a f t e r

    k =

    l o g n

    l o g P

    + 1 ( 2 . 4 1 )

    t e r m s , w e h a v e n

    ( k )

    = 0 , a n d g ( 0 ) = 0 ( t h i s f o l l o w s d i r e c t l y f r o m t h e a d d i t i v e p r o p e r t y

    o f g ) . T h u s w e c a n w r i t e

    g ( n ) =

    t

    n

    X

    i = 1

    i

    ( 2 . 4 2 )

    t h e s u m o f b

    n

    t e r m s , w h e r e

    b

    n

    P

    l o g n

    l o g P

    + 1

    : ( 2 . 4 3 )

    S i n c e

    n

    ! 0 , i t f o l l o w s t h a t

    g ( n )

    l o g

    2

    n

    ! 0 , s i n c e g ( n ) h a s a t m o s t o ( l o g

    2

    n ) t e r m s

    i

    .

    T h u s i t f o l l o w s t h a t

    l i m

    n ! 1

    f ( n )

    l o g

    2

    n

    =

    f ( P )

    l o g

    2

    P

    ( 2 . 4 4 )

    S i n c e P w a s a r b i t r a r y , i t f o l l o w s t h a t f ( P ) = l o g

    2

    P = c f o r e v e r y p r i m e n u m b e r P .

    A p p l y i n g t h e t h i r d a x i o m i n t h e l e m m a , i t f o l l o w s t h a t t h e c o n s t a n t i s 1 , a n d f ( P ) =

    l o g

    2

    P .

    F o r c o m p o s i t e n u m b e r s N = P

    1

    P

    2

    : : : P

    l

    , w e c a n a p p l y t h e r s t p r o p e r t y o f f a n d t h e

    p r i m e n u m b e r f a c t o r i z a t i o n o f N t o s h o w t h a t

    f ( N ) =

    X

    f ( P

    i

    ) =

    X

    l o g

    2

    P

    i

    = l o g

    2

    N : ( 2 . 4 5 )

    T h u s t h e l e m m a i s p r o v e d .

    T h e l e m m a c a n b e s i m p l i e d c o n s i d e r a b l y , i f i n s t e a d o f t h e s e c o n d a s s u m p t i o n , w e

    r e p l a c e i t b y t h e a s s u m p t i o n t h a t f ( n ) i s m o n o t o n e i n n . W e w i l l n o w a r g u e t h a t t h e

  • 7/30/2019 chap2_solution manual _ elements of Information thoery,pdf

    8/32

    1 4

    E n t r o p y , R e l a t i v e E n t r o p y a n d M u t u a l I n f o r m a t i o n

    o n l y f u n c t i o n f ( m ) s u c h t h a t f ( m n ) = f ( m ) + f ( n ) f o r a l l i n t e g e r s m ; n i s o f t h e f o r m

    f ( m ) = l o g

    a

    m f o r s o m e b a s e a .

    L e t c = f ( 2 ) . N o w f ( 4 ) = f ( 2 2 ) = f ( 2 ) + f ( 2 ) = 2 c . S i m i l a r l y , i t i s e a s y t o s e e

    t h a t f ( 2

    k

    ) = k c = c l o g

    2

    2

    k

    . W e w i l l e x t e n d t h i s t o i n t e g e r s t h a t a r e n o t p o w e r s o f 2 .

    F o r a n y i n t e g e r m , l e t r > 0 , b e a n o t h e r i n t e g e r a n d l e t 2

    k

    m

    r

    < 2

    k + 1

    . T h e n b y

    t h e m o n o t o n i c i t y a s s u m p t i o n o n f , w e h a v e

    k c r f ( m ) < ( k + 1 ) c ( 2 . 4 6 )

    o r

    c

    k

    r

    f ( m ) < c

    k + 1

    r

    ( 2 . 4 7 )

    N o w b y t h e m o n o t o n i c i t y o f l o g , w e h a v e

    k

    r

    l o g

    2

    m <

    k + 1

    r

    ( 2 . 4 8 )

    C o m b i n i n g t h e s e t w o e q u a t i o n s , w e o b t a i n

    f ( m ) ?

    l o g

    2

    m

    c

    <

    1

    r

    ( 2 . 4 9 )

    S i n c e r w a s a r b i t r a r y , w e m u s t h a v e

    f ( m ) =

    l o g

    2

    m

    c

    ( 2 . 5 0 )

    a n d w e c a n i d e n t i f y c = 1 f r o m t h e l a s t a s s u m p t i o n o f t h e l e m m a .

    N o w w e a r e a l m o s t d o n e . W e h a v e s h o w n t h a t f o r a n y u n i f o r m d i s t r i b u t i o n o n m

    o u t c o m e s , f ( m ) = H

    m

    ( 1 = m ; : : : ; 1 = m ) = l o g

    2

    m .

    W e w i l l n o w s h o w t h a t

    H

    2

    ( p ; 1 ? p ) = ? p l o g p ? ( 1 ? p ) l o g ( 1 ? p ) : ( 2 . 5 1 )

    T o b e g i n , l e t p b e a r a t i o n a l n u m b e r , r = s , s a y . C o n s i d e r t h e e x t e n d e d g r o u p i n g a x i o m

    f o r H

    s

    f ( s ) = H

    s

    (

    1

    s

    ; : : : ;

    1

    s

    ) = H (

    1

    s

    ; : : : ;

    1

    s

    | { z }

    r

    ;

    s ? r

    s

    ) +

    s ? r

    s

    f ( s ? r ) ( 2 . 5 2 )

    = H

    2

    (

    r

    s

    ;

    s ? r

    s

    ) +

    s

    r

    f ( s ) +

    s ? r

    s

    f ( s ? r ) ( 2 . 5 3 )

    S u b s t i t u t i n g f ( s ) = l o g

    2

    s , e t c , w e o b t a i n

    H

    2

    (

    r

    s

    ;

    s ? r

    s

    ) = ?

    r

    s

    l o g

    2

    r

    s

    ?

    1 ?

    s ? r

    s

    l o g

    2

    1 ?

    s ? r

    s

    : ( 2 . 5 4 )

    T h u s ( 2 . 5 1 ) i s t r u e f o r r a t i o n a l p . B y t h e c o n t i n u i t y a s s u m p t i o n , ( 2 . 5 1 ) i s a l s o t r u e a t

    i r r a t i o n a l p .

  • 7/30/2019 chap2_solution manual _ elements of Information thoery,pdf

    9/32

    E n t r o p y , R e l a t i v e E n t r o p y a n d M u t u a l I n f o r m a t i o n

    1 5

    T o c o m p l e t e t h e p r o o f , w e h a v e t o e x t e n d t h e d e n i t i o n f r o m H

    2

    t o H

    m

    , i . e . , w e h a v e

    t o s h o w t h a t

    H

    m

    ( p

    1

    ; : : : ; p

    m

    ) = ?

    X

    p

    i

    l o g p

    i

    ( 2 . 5 5 )

    f o r a l l m . T h i s i s a s t r a i g h t f o r w a r d i n d u c t i o n . W e h a v e j u s t s h o w n t h a t t h i s i s t r u e f o r

    m = 2 . N o w a s s u m e t h a t i t i s t r u e f o r m = n ? 1 . B y t h e g r o u p i n g a x i o m ,

    H

    n

    ( p

    1

    ; : : : ; p

    n

    ) = H

    n ? 1

    ( p

    1

    + p

    2

    ; p

    3

    ; : : : ; p

    n

    ) ( 2 . 5 6 )

    + ( p

    1

    + p

    2

    ) H

    2

    p

    1

    p

    1

    + p

    2

    ;

    p

    2

    p

    1

    + p

    2

    ( 2 . 5 7 )

    = ? ( p

    1

    + p

    2

    ) l o g ( p

    1

    + p

    2

    ) ?

    n

    X

    i = 3

    p

    i

    l o g p

    i

    ( 2 . 5 8 )

    ?

    p

    1

    p

    1

    + p

    2

    l o g

    p

    1

    p

    1

    + p

    2

    ?

    p

    2

    p

    1

    + p

    2

    l o g

    p

    2

    p

    1

    + p

    2

    ( 2 . 5 9 )

    = ?

    n

    X

    i = 1

    p

    i

    l o g p

    i

    : ( 2 . 6 0 )

    T h u s t h e s t a t e m e n t i s t r u e f o r m = n , a n d b y i n d u c t i o n , i t i s t r u e f o r a l l m . T h u s w e

    h a v e n a l l y p r o v e d t h a t t h e o n l y s y m m e t r i c f u n c t i o n t h a t s a t i s e s t h e a x i o m s i s

    H

    m

    ( p

    1

    ; : : : ; p

    m

    ) = ?

    m

    X

    i = 1

    p

    i

    l o g p

    i

    : ( 2 . 6 1 )

    T h e p r o o f a b o v e i s d u e t o R e n y i 1 0 ]

    5 . E n t r o p y o f f u n c t i o n s o f a r a n d o m v a r i a b l e . L e t X b e a d i s c r e t e r a n d o m v a r i a b l e .

    S h o w t h a t t h e e n t r o p y o f a f u n c t i o n o f X i s l e s s t h a n o r e q u a l t o t h e e n t r o p y o f X b y

    j u s t i f y i n g t h e f o l l o w i n g s t e p s :

    H ( X ; g ( X ) )

    ( a )

    = H ( X ) + H ( g ( X ) j X ) ( 2 . 6 2 )

    ( b )

    = H ( X ) ; ( 2 . 6 3 )

    H ( X ; g ( X ) )

    ( c )

    = H ( g ( X ) ) + H ( X j g ( X ) ) ( 2 . 6 4 )

    ( d )

    H ( g ( X ) ) : ( 2 . 6 5 )

    T h u s H ( g ( X ) ) H ( X ) :

    S o l u t i o n : E n t r o p y o f f u n c t i o n s o f a r a n d o m v a r i a b l e .

    ( a ) H ( X ; g ( X ) ) = H ( X ) + H ( g ( X ) j X ) b y t h e c h a i n r u l e f o r e n t r o p i e s .

    ( b ) H ( g ( X ) j X ) = 0 s i n c e f o r a n y p a r t i c u l a r v a l u e o f X , g ( X ) i s x e d , a n d h e n c e

    H ( g ( X ) j X ) =

    P

    x

    p ( x ) H ( g ( X ) j X = x ) =

    P

    x

    0 = 0 .

    ( c ) H ( X ; g ( X ) ) = H ( g ( X ) ) + H ( X j g ( X ) ) a g a i n b y t h e c h a i n r u l e .

    ( d ) H ( X j g ( X ) ) 0 , w i t h e q u a l i t y i X i s a f u n c t i o n o f g ( X ) , i . e . , g ( : ) i s o n e - t o - o n e .

    H e n c e H ( X ; g ( X ) ) H ( g ( X ) ) .

  • 7/30/2019 chap2_solution manual _ elements of Information thoery,pdf

    10/32

    1 6

    E n t r o p y , R e l a t i v e E n t r o p y a n d M u t u a l I n f o r m a t i o n

    C o m b i n i n g p a r t s ( b ) a n d ( d ) , w e o b t a i n H ( X ) H ( g ( X ) ) .

    6 . Z e r o c o n d i t i o n a l e n t r o p y . S h o w t h a t i f H ( Y j X ) = 0 , t h e n Y i s a f u n c t i o n o f X , i . e . ,

    f o r a l l x w i t h p ( x ) > 0 , t h e r e i s o n l y o n e p o s s i b l e v a l u e o f y w i t h p ( x ; y ) > 0 .

    S o l u t i o n : Z e r o C o n d i t i o n a l E n t r o p y . A s s u m e t h a t t h e r e e x i s t s a n x , s a y x

    0

    a n d t w o

    d i e r e n t v a l u e s o f y , s a y y

    1

    a n d y

    2

    s u c h t h a t p ( x

    0

    ; y

    1

    ) > 0 a n d p ( x

    0

    ; y

    2

    ) > 0 . T h e n

    p ( x

    0

    ) p ( x

    0

    ; y

    1

    ) + p ( x

    0

    ; y

    2

    ) > 0 , a n d p ( y

    1

    j x

    0

    ) a n d p ( y

    2

    j x

    0

    ) a r e n o t e q u a l t o 0 o r 1 .

    T h u s

    H ( Y j X ) = ?

    X

    x

    p ( x )

    X

    y

    p ( y j x ) l o g p ( y j x ) ( 2 . 6 6 )

    p ( x

    0

    ) ( ? p ( y

    1

    j x

    0

    ) l o g p ( y

    1

    j x

    0

    ) ? p ( y

    2

    j x

    0

    ) l o g p ( y

    2

    j x

    0

    ) ) ( 2 . 6 7 )

    > > 0 ; ( 2 . 6 8 )

    s i n c e ? t l o g t 0 f o r 0 t 1 , a n d i s s t r i c t l y p o s i t i v e f o r t n o t e q u a l t o 0 o r 1 .

    T h e r e f o r e t h e c o n d i t i o n a l e n t r o p y H ( Y j X ) i s 0 i f a n d o n l y i f Y i s a f u n c t i o n o f X .

    7 . P u r e r a n d o m n e s s a n d b e n t c o i n s . L e t X

    1

    ; X

    2

    ; : : : ; X

    n

    d e n o t e t h e o u t c o m e s o f i n d e -

    p e n d e n t i p s o f a b e n t c o i n . T h u s P r f X

    i

    = : 1 g = p ; P r f X

    i

    = 0 g = 1 ? p ,

    w h e r e p i s u n k n o w n . W e w i s h t o o b t a i n a s e q u e n c e Z

    1

    ; Z

    2

    ; : : : ; Z

    K

    o f f a i r c o i n

    i p s f r o m X

    1

    ; X

    2

    ; : : : ; X

    n

    . T o w a r d t h i s e n d l e t f : X

    n

    ! f 0 ; 1 g , w h e r e f 0 ; 1 g =

    f ; 0 ; 1 ; 0 0 ; 0 1 ; : : : g i s t h e s e t o f a l l n i t e l e n g t h b i n a r y s e q u e n c e s , b e a m a p p i n g

    f ( X

    1

    ; X

    2

    ; : : : ; X

    n

    ) = ( Z

    1

    ; Z

    2

    ; : : : ; Z

    K

    ) , w h e r e Z

    i

    B e r n o u l l i (

    1

    2

    ) , a n d K m a y d e p e n d

    o n ( X

    1

    ; : : : ; X

    n

    ) . I n o r d e r t h a t t h e s e q u e n c e Z

    1

    ; Z

    2

    ; : : : a p p e a r t o b e f a i r c o i n i p s , t h e

    m a p f f r o m b e n t c o i n i p s t o f a i r i p s m u s t h a v e t h e p r o p e r t y t h a t a l l 2

    k

    s e q u e n c e s

    ( Z

    1

    ; Z

    2

    ; : : : ; Z

    k

    ) o f a g i v e n l e n g t h k h a v e e q u a l p r o b a b i l i t y ( p o s s i b l y 0 ) , f o r k = 1 ; 2 ; : : : .

    F o r e x a m p l e , f o r n = 2 , t h e m a p f ( 0 1 ) = 0 , f ( 1 0 ) = 1 , f ( 0 0 ) = f ( 1 1 ) = ( t h e n u l l

    s t r i n g ) , h a s t h e p r o p e r t y t h a t P r f Z

    1

    = 1 j K = 1 g = P r f Z

    1

    = 0 j K = 1 g =

    1

    2

    .

    G i v e r e a s o n s f o r t h e f o l l o w i n g i n e q u a l i t i e s :

    n H ( p )

    ( a )

    = H ( X

    1

    ; : : : ; X

    n

    )

    ( b )

    H ( Z

    1

    ; Z

    2

    ; : : : ; Z

    K

    ; K )

    ( c )

    = H ( K ) + H ( Z

    1

    ; : : : ; Z

    K

    j K )

    ( d )

    = H ( K ) + E ( K )

    ( e )

    E K :

    T h u s n o m o r e t h a n n H ( p ) f a i r c o i n t o s s e s c a n b e d e r i v e d f r o m ( X

    1

    ; : : : ; X

    n

    ) , o n t h e

    a v e r a g e .

    ( f ) E x h i b i t a g o o d m a p f o n s e q u e n c e s o f l e n g t h 4 .

    S o l u t i o n : P u r e r a n d o m n e s s a n d b e n t c o i n s .

  • 7/30/2019 chap2_solution manual _ elements of Information thoery,pdf

    11/32

    E n t r o p y , R e l a t i v e E n t r o p y a n d M u t u a l I n f o r m a t i o n

    1 7

    n H ( p )

    ( a )

    = H ( X

    1

    ; : : : ; X

    n

    )

    ( b )

    H ( Z

    1

    ; Z

    2

    ; : : : ; Z

    K

    )

    ( c )

    = H ( Z

    1

    ; Z

    2

    ; : : : ; Z

    K

    ; K )

    ( d )

    = H ( K ) + H ( Z

    1

    ; : : : ; Z

    K

    j K )

    ( e )

    = H ( K ) + E ( K )

    ( f )

    E K :

    ( a ) S i n c e X

    1

    ; X

    2

    ; : : : ; X

    n

    a r e i . i . d . w i t h p r o b a b i l i t y o f X

    i

    = 1 b e i n g p , t h e e n t r o p y

    H ( X

    1

    ; X

    2

    ; : : : ; X

    n

    ) i s n H ( p ) .

    ( b ) Z

    1

    ; : : : ; Z

    K

    i s a f u n c t i o n o f X

    1

    ; X

    2

    ; : : : ; X

    n

    , a n d s i n c e t h e e n t r o p y o f a f u n c t i o n o f a

    r a n d o m v a r i a b l e i s l e s s t h a n t h e e n t r o p y o f t h e r a n d o m v a r i a b l e , H ( Z

    1

    ; : : : ; Z

    K

    )

    H ( X

    1

    ; X

    2

    ; : : : ; X

    n

    ) .

    ( c ) K i s a f u n c t i o n o f Z

    1

    ; Z

    2

    ; : : : ; Z

    K

    , s o i t s c o n d i t i o n a l e n t r o p y g i v e n Z

    1

    ; Z

    2

    ; : : : ; Z

    K

    i s 0 . H e n c e H ( Z

    1

    ; Z

    2

    ; : : : ; Z

    K

    ; K ) = H ( Z

    1

    ; : : : ; Z

    K

    ) + H ( K j Z

    1

    ; Z

    2

    ; : : : ; Z

    K

    ) =

    H ( Z

    1

    ; Z

    2

    ; : : : ; Z

    K

    ) :

    ( d ) F o l l o w s f r o m t h e c h a i n r u l e f o r e n t r o p y .

    ( e ) B y a s s u m p t i o n , Z

    1

    ; Z

    2

    ; : : : ; Z

    K

    a r e p u r e r a n d o m b i t s ( g i v e n K ) , w i t h e n t r o p y 1

    b i t p e r s y m b o l . H e n c e

    H ( Z

    1

    ; Z

    2

    ; : : : ; Z

    K

    j K ) =

    X

    k

    p ( K = k ) H ( Z

    1

    ; Z

    2

    ; : : : ; Z

    k

    j K = k ) ( 2 . 6 9 )

    =

    X

    k

    p ( k ) k ( 2 . 7 0 )

    = E K : ( 2 . 7 1 )

    ( f ) F o l l o w s f r o m t h e n o n - n e g a t i v i t y o f d i s c r e t e e n t r o p y .

    ( g ) S i n c e w e d o n o t k n o w p , t h e o n l y w a y t o g e n e r a t e p u r e r a n d o m b i t s i s t o u s e

    t h e f a c t t h a t a l l s e q u e n c e s w i t h t h e s a m e n u m b e r o f o n e s a r e e q u a l l y l i k e l y . F o r

    e x a m p l e , t h e s e q u e n c e s 0 0 0 1 , 0 0 1 0 , 0 1 0 0 a n d 1 0 0 0 a r e e q u a l l y l i k e l y a n d c a n b e u s e d

    t o g e n e r a t e 2 p u r e r a n d o m b i t s . A n e x a m p l e o f a m a p p i n g t o g e n e r a t e r a n d o m

    b i t s i s

    0 0 0 0 !

    0 0 0 1 ! 0 0 0 0 1 0 ! 0 1 0 1 0 0 ! 1 0 1 0 0 0 ! 1 1

    0 0 1 1 ! 0 0 0 1 1 0 ! 0 1 1 1 0 0 ! 1 0 1 0 0 1 ! 1 1

    1 0 1 0 ! 0 0 1 0 1 ! 1

    1 1 1 0 ! 1 1 1 1 0 1 ! 1 0 1 0 1 1 ! 0 1 0 1 1 1 ! 0 0

    1 1 1 1 !

    ( 2 . 7 2 )

  • 7/30/2019 chap2_solution manual _ elements of Information thoery,pdf

    12/32

    1 8

    E n t r o p y , R e l a t i v e E n t r o p y a n d M u t u a l I n f o r m a t i o n

    T h e r e s u l t i n g e x p e c t e d n u m b e r o f b i t s i s

    E K = 4 p q

    3

    2 + 4 p

    2

    q

    2

    2 + 2 p

    2

    q

    2

    1 + 4 p

    3

    q 2 ( 2 . 7 3 )

    = 8 p q

    3

    + 1 0 p

    2

    q

    2

    + 8 p

    3

    q : ( 2 . 7 4 )

    F o r e x a m p l e , f o r p

    1

    2

    , t h e e x p e c t e d n u m b e r o f p u r e r a n d o m b i t s i s c l o s e t o 1 . 6 2 5 .

    T h i s i s s u b s t a n t i a l l y l e s s t h e n t h e 4 p u r e r a n d o m b i t s t h a t c o u l d b e g e n e r a t e d i f

    p w e r e e x a c t l y

    1

    2

    .

    W e w i l l n o w a n a l y z e t h e e c i e n c y o f t h i s s c h e m e o f g e n e r a t i n g r a n d o m b i t s f o r l o n g

    s e q u e n c e s o f b e n t c o i n i p s . L e t n b e t h e n u m b e r o f b e n t c o i n i p s . T h e a l g o r i t h m

    t h a t w e w i l l u s e i s t h e o b v i o u s e x t e n s i o n o f t h e a b o v e m e t h o d o f g e n e r a t i n g p u r e

    b i t s u s i n g t h e f a c t t h a t a l l s e q u e n c e s w i t h t h e s a m e n u m b e r o f o n e s a r e e q u a l l y

    l i k e l y .

    C o n s i d e r a l l s e q u e n c e s w i t h k o n e s . T h e r e a r e

    ?

    n

    k

    s u c h s e q u e n c e s , w h i c h a r e

    a l l e q u a l l y l i k e l y . I f

    ?

    n

    k

    w e r e a p o w e r o f 2 , t h e n w e c o u l d g e n e r a t e l o g

    ?

    n

    k

    p u r e

    r a n d o m b i t s f r o m s u c h a s e t . H o w e v e r , i n t h e g e n e r a l c a s e ,

    ?

    n

    k

    i s n o t a p o w e r o f

    2 a n d t h e b e s t w e c a n t o i s t h e d i v i d e t h e s e t o f

    ?

    n

    k

    e l e m e n t s i n t o s u b s e t o f s i z e s

    w h i c h a r e p o w e r s o f 2 . T h e l a r g e s t s e t w o u l d h a v e a s i z e 2

    b l o g

    (

    n

    k

    )

    c

    a n d c o u l d b e

    u s e d t o g e n e r a t e b l o g

    ?

    n

    k

    c r a n d o m b i t s . W e c o u l d d i v i d e t h e r e m a i n i n g e l e m e n t s

    i n t o t h e l a r g e s t s e t w h i c h i s a p o w e r o f 2 , e t c . T h e w o r s t c a s e w o u l d o c c u r w h e n

    ?

    n

    k

    = 2

    l + 1

    ? 1 , i n w h i c h c a s e t h e s u b s e t s w o u l d b e o f s i z e s 2

    l

    ; 2

    l ? 1

    ; 2

    l ? 2

    ; : : : ; 1 .

    I n s t e a d o f a n a l y z i n g t h e s c h e m e e x a c t l y , w e w i l l j u s t n d a l o w e r b o u n d o n n u m b e r

    o f r a n d o m b i t s g e n e r a t e d f r o m a s e t o f s i z e

    ?

    n

    k

    . L e t l = b l o g

    ?

    n

    k

    c . T h e n a t l e a s t

    h a l f o f t h e e l e m e n t s b e l o n g t o a s e t o f s i z e 2

    l

    a n d w o u l d g e n e r a t e l r a n d o m b i t s ,

    a t l e a s t

    1

    4

    t h b e l o n g t o a s e t o f s i z e 2

    l ? 1

    a n d g e n e r a t e l ? 1 r a n d o m b i t s , e t c . O n

    t h e a v e r a g e , t h e n u m b e r o f b i t s g e n e r a t e d i s

    E K j k 1 ' s i n s e q u e n c e ]

    1

    2

    l +

    1

    4

    ( l ? 1 ) + +

    1

    2

    l

    1 ( 2 . 7 5 )

    = l ?

    1

    4

    1 +

    1

    2

    +

    2

    4

    +

    3

    8

    + +

    l ? 1

    2

    l ? 2

    ( 2 . 7 6 )

    l ? 1 ; ( 2 . 7 7 )

    s i n c e t h e i n n i t e s e r i e s s u m s t o 1 .

    H e n c e t h e f a c t t h a t

    ?

    n

    k

    i s n o t a p o w e r o f 2 w i l l c o s t a t m o s t 1 b i t o n t h e a v e r a g e

    i n t h e n u m b e r o f r a n d o m b i t s t h a t a r e p r o d u c e d .

    H e n c e , t h e e x p e c t e d n u m b e r o f p u r e r a n d o m b i t s p r o d u c e d b y t h i s a l g o r i t h m i s

    E K

    n

    X

    k = 0

    n

    k

    !

    p

    k

    q

    n ? k

    b l o g

    n

    k

    !

    ? 1 c ( 2 . 7 8 )

    n

    X

    k = 0

    n

    k

    !

    p

    k

    q

    n ? k

    l o g

    n

    k

    !

    ? 2

    !

    ( 2 . 7 9 )

    =

    n

    X

    k = 0

    n

    k

    !

    p

    k

    q

    n ? k

    l o g

    n

    k

    !

    ? 2 ( 2 . 8 0 )

  • 7/30/2019 chap2_solution manual _ elements of Information thoery,pdf

    13/32

    E n t r o p y , R e l a t i v e E n t r o p y a n d M u t u a l I n f o r m a t i o n

    1 9

    X

    n ( p ? ) k n ( p + )

    n

    k

    !

    p

    k

    q

    n ? k

    l o g

    n

    k

    !

    ? 2 : ( 2 . 8 1 )

    N o w f o r s u c i e n t l y l a r g e n , t h e p r o b a b i l i t y t h a t t h e n u m b e r o f 1 ' s i n t h e s e q u e n c e

    i s c l o s e t o n p i s n e a r 1 ( b y t h e w e a k l a w o f l a r g e n u m b e r s ) . F o r s u c h s e q u e n c e s ,

    k

    n

    i s c l o s e t o p a n d h e n c e t h e r e e x i s t s a s u c h t h a t

    n

    k

    !

    2

    n ( H (

    k

    n

    ) ? )

    2

    n ( H ( p ) ? 2 )

    ( 2 . 8 2 )

    u s i n g S t i r l i n g ' s a p p r o x i m a t i o n f o r t h e b i n o m i a l c o e c i e n t s a n d t h e c o n t i n u i t y o f

    t h e e n t r o p y f u n c t i o n . I f w e a s s u m e t h a t n i s l a r g e e n o u g h s o t h a t t h e p r o b a b i l i t y

    t h a t n ( p ? ) k n ( p + ) i s g r e a t e r t h a n 1 ? , t h e n w e s e e t h a t E K

    ( 1 ? ) n ( H ( p ) ? 2 ) ? 2 , w h i c h i s v e r y g o o d s i n c e n H ( p ) i s a n u p p e r b o u n d o n t h e

    n u m b e r o f p u r e r a n d o m b i t s t h a t c a n b e p r o d u c e d f r o m t h e b e n t c o i n s e q u e n c e .

    8 . W o r l d S e r i e s . T h e W o r l d S e r i e s i s a s e v e n - g a m e s e r i e s t h a t t e r m i n a t e s a s s o o n a s e i t h e r

    t e a m w i n s f o u r g a m e s . L e t X b e t h e r a n d o m v a r i a b l e t h a t r e p r e s e n t s t h e o u t c o m e o f

    a W o r l d S e r i e s b e t w e e n t e a m s A a n d B ; p o s s i b l e v a l u e s o f X a r e A A A A , B A B A B A B ,

    a n d B B B A A A A . L e t Y b e t h e n u m b e r o f g a m e s p l a y e d , w h i c h r a n g e s f r o m 4 t o 7 .

    A s s u m i n g t h a t A a n d B a r e e q u a l l y m a t c h e d a n d t h a t t h e g a m e s a r e i n d e p e n d e n t ,

    c a l c u l a t e H ( X ) , H ( Y ) , H ( Y j X ) , a n d H ( X j Y ) .

    S o l u t i o n :

    W o r l d S e r i e s . T w o t e a m s p l a y u n t i l o n e o f t h e m h a s w o n 4 g a m e s .

    T h e r e a r e 2 ( A A A A , B B B B ) W o r l d S e r i e s w i t h 4 g a m e s . E a c h h a p p e n s w i t h p r o b a b i l i t y

    ( 1 = 2 )

    4

    .

    T h e r e a r e 8 = 2

    ?

    4

    3

    W o r l d S e r i e s w i t h 5 g a m e s . E a c h h a p p e n s w i t h p r o b a b i l i t y ( 1 = 2 )

    5

    .

    T h e r e a r e 2 0 = 2

    ?

    5

    3

    W o r l d S e r i e s w i t h 6 g a m e s . E a c h h a p p e n s w i t h p r o b a b i l i t y ( 1 = 2 )

    6

    .

    T h e r e a r e 4 0 = 2

    ?

    6

    3

    W o r l d S e r i e s w i t h 7 g a m e s . E a c h h a p p e n s w i t h p r o b a b i l i t y ( 1 = 2 )

    7

    .

    T h e p r o b a b i l i t y o f a 4 g a m e s e r i e s ( Y = 4 ) i s 2 ( 1 = 2 )

    4

    = 1 = 8 .

    T h e p r o b a b i l i t y o f a 5 g a m e s e r i e s ( Y = 5 ) i s 8 ( 1 = 2 )

    5

    = 1 = 4 .

    T h e p r o b a b i l i t y o f a 6 g a m e s e r i e s ( Y = 6 ) i s 2 0 ( 1 = 2 )

    6

    = 5 = 1 6 .

    T h e p r o b a b i l i t y o f a 7 g a m e s e r i e s ( Y = 7 ) i s 4 0 ( 1 = 2 )

    7

    = 5 = 1 6 .

    H ( X ) =

    X

    p ( x ) l o g

    1

    p ( x )

    = 2 ( 1 = 1 6 ) l o g 1 6 + 8 ( 1 = 3 2 ) l o g 3 2 + 2 0 ( 1 = 6 4 ) l o g 6 4 + 4 0 ( 1 = 1 2 8 ) l o g 1 2 8

    = 5 : 8 1 2 5

  • 7/30/2019 chap2_solution manual _ elements of Information thoery,pdf

    14/32

    2 0

    E n t r o p y , R e l a t i v e E n t r o p y a n d M u t u a l I n f o r m a t i o n

    H ( Y ) =

    X

    p ( y ) l o g

    1

    p ( y )

    = 1 = 8 l o g 8 + 1 = 4 l o g 4 + 5 = 1 6 l o g ( 1 6 = 5 ) + 5 = 1 6 l o g ( 1 6 = 5 )

    = 1 : 9 2 4

    Y i s a d e t e r m i n i s t i c f u n c t i o n o f X , s o i f y o u k n o w X t h e r e i s n o r a n d o m n e s s i n Y . O r ,

    H ( Y j X ) = 0 .

    S i n c e H ( X ) + H ( Y j X ) = H ( X ; Y ) = H ( Y ) + H ( X j Y ) , i t i s e a s y t o d e t e r m i n e

    H ( X j Y ) = H ( X ) + H ( Y j X ) ? H ( Y ) = 3 : 8 8 9

    9 . I n n i t e e n t r o p y . T h i s p r o b l e m s h o w s t h a t t h e e n t r o p y o f a d i s c r e t e r a n d o m v a r i a b l e c a n

    b e i n n i t e . L e t A =

    P

    1

    n = 2

    ( n l o g

    2

    n )

    ? 1

    . ( I t i s e a s y t o s h o w t h a t A i s n i t e b y b o u n d i n g

    t h e i n n i t e s u m b y t h e i n t e g r a l o f ( x l o g

    2

    x )

    ? 1

    . ) S h o w t h a t t h e i n t e g e r - v a l u e d r a n d o m

    v a r i a b l e X d e n e d b y P r ( X = n ) = ( A n l o g

    2

    n )

    ? 1

    f o r n = 2 ; 3 ; : : : h a s H ( X ) = + 1 .

    S o l u t i o n : I n n i t e e n t r o p y . B y d e n i t i o n , p

    n

    = P r ( X = n ) = 1 = A n l o g

    2

    n f o r n 2 .

    T h e r e f o r e

    H ( X ) = ?

    1

    X

    n = 2

    p ( n ) l o g p ( n )

    = ?

    1

    X

    n = 2

    1 = A n l o g

    2

    n

    l o g

    1 = A n l o g

    2

    n

    =

    1

    X

    n = 2

    l o g ( A n l o g

    2

    n )

    A n l o g

    2

    n

    =

    1

    X

    n = 2

    l o g A + l o g n + 2 l o g l o g n

    A n l o g

    2

    n

    = l o g A +

    1

    X

    n = 2

    1

    A n l o g n

    +

    1

    X

    n = 2

    2 l o g l o g n

    A n l o g

    2

    n

    :

    T h e r s t t e r m i s n i t e . F o r b a s e 2 l o g a r i t h m s , a l l t h e e l e m e n t s i n t h e s u m i n t h e l a s t

    t e r m a r e n o n n e g a t i v e . ( F o r a n y o t h e r b a s e , t h e t e r m s o f t h e l a s t s u m e v e n t u a l l y a l l

    b e c o m e p o s i t i v e . ) S o a l l w e h a v e t o d o i s b o u n d t h e m i d d l e s u m , w h i c h w e d o b y

    c o m p a r i n g w i t h a n i n t e g r a l .

    1

    X

    n = 2

    1

    A n l o g n

    >

    Z

    1

    2

    1

    A x l o g x

    d x = K l n l n x

    1

    2

    = + 1 :

    W e c o n c l u d e t h a t H ( X ) = + 1 .

    1 0 . C o n d i t i o n a l m u t u a l i n f o r m a t i o n v s . u n c o n d i t i o n a l m u t u a l i n f o r m a t i o n . G i v e e x a m p l e s

    o f j o i n t r a n d o m v a r i a b l e s X , Y a n d Z s u c h t h a t

    ( a ) I ( X ; Y j Z ) < I ( X ; Y ) ,

  • 7/30/2019 chap2_solution manual _ elements of Information thoery,pdf

    15/32

    E n t r o p y , R e l a t i v e E n t r o p y a n d M u t u a l I n f o r m a t i o n

    2 1

    ( b ) I ( X ; Y j Z ) > I ( X ; Y ) .

    S o l u t i o n : C o n d i t i o n a l m u t u a l i n f o r m a t i o n v s . u n c o n d i t i o n a l m u t u a l i n f o r m a t i o n .

    ( a ) T h e l a s t c o r o l l a r y t o T h e o r e m 2 . 8 . 1 i n t h e t e x t s t a t e s t h a t i f X ! Y ! Z t h a t

    i s , i f p ( x ; y j z ) = p ( x j z ) p ( y j z ) t h e n , I ( X ; Y ) I ( X ; Y j Z ) . E q u a l i t y h o l d s i f

    a n d o n l y i f I ( X ; Z ) = 0 o r X a n d Z a r e i n d e p e n d e n t .

    A s i m p l e e x a m p l e o f r a n d o m v a r i a b l e s s a t i s f y i n g t h e i n e q u a l i t y c o n d i t i o n s a b o v e

    i s , X i s a f a i r b i n a r y r a n d o m v a r i a b l e a n d Y = X a n d Z = Y . I n t h i s c a s e ,

    I ( X ; Y ) = H ( X ) ? H ( X j Y ) = H ( X ) = 1

    a n d ,

    I ( X ; Y j Z ) = H ( X j Z ) ? H ( X j Y ; Z ) = 0 :

    S o t h a t I ( X ; Y ) > I ( X ; Y j Z ) .

    ( b ) T h i s e x a m p l e i s a l s o g i v e n i n t h e t e x t . L e t X ; Y b e i n d e p e n d e n t f a i r b i n a r y

    r a n d o m v a r i a b l e s a n d l e t Z = X + Y . I n t h i s c a s e w e h a v e t h a t ,

    I ( X ; Y ) = 0

    a n d ,

    I ( X ; Y j Z ) = H ( X j Z ) = 1 = 2 :

    S o I ( X ; Y ) < I ( X ; Y j Z ) . N o t e t h a t i n t h i s c a s e X ; Y ; Z a r e n o t m a r k o v .

    1 1 . A v e r a g e e n t r o p y . L e t H ( p ) = ? p l o g

    2

    p ? ( 1 ? p ) l o g

    2

    ( 1 ? p ) b e t h e b i n a r y e n t r o p y

    f u n c t i o n .

    ( a ) E v a l u a t e H ( 1 = 4 ) u s i n g t h e f a c t t h a t l o g

    2

    3 1 : 5 8 4 . H i n t : C o n s i d e r a n e x p e r i -

    m e n t w i t h f o u r e q u a l l y l i k e l y o u t c o m e s , o n e o f w h i c h i s m o r e i n t e r e s t i n g t h a n t h e

    o t h e r s .

    ( b ) C a l c u l a t e t h e a v e r a g e e n t r o p y H ( p ) w h e n t h e p r o b a b i l i t y p i s c h o s e n u n i f o r m l y

    i n t h e r a n g e 0 p 1 .

    ( c ) ( O p t i o n a l ) C a l c u l a t e t h e a v e r a g e e n t r o p y H ( p

    1

    ; p

    2

    ; p

    3

    ) w h e r e ( p

    1

    ; p

    2

    ; p

    3

    ) i s a u n i -

    f o r m l y d i s t r i b u t e d p r o b a b i l i t y v e c t o r . G e n e r a l i z e t o d i m e n s i o n n .

    S o l u t i o n : A v e r a g e E n t r o p y .

    ( a ) W e c a n g e n e r a t e t w o b i t s o f i n f o r m a t i o n b y p i c k i n g o n e o f f o u r e q u a l l y l i k e l y

    a l t e r n a t i v e s . T h i s s e l e c t i o n c a n b e m a d e i n t w o s t e p s . F i r s t w e d e c i d e w h e t h e r t h e

    r s t o u t c o m e o c c u r s . S i n c e t h i s h a s p r o b a b i l i t y 1 = 4 , t h e i n f o r m a t i o n g e n e r a t e d

    i s H ( 1 = 4 ) . I f n o t t h e r s t o u t c o m e , t h e n w e s e l e c t o n e o f t h e t h r e e r e m a i n i n g

    o u t c o m e s ; w i t h p r o b a b i l i t y 3 = 4 , t h i s p r o d u c e s l o g

    2

    3 b i t s o f i n f o r m a t i o n . T h u s

    H ( 1 = 4 ) + ( 3 = 4 ) l o g

    2

    3 = 2

    a n d s o H ( 1 = 4 ) = 2 ? ( 3 = 4 ) l o g

    2

    3 = 2 ? ( : 7 5 ) ( 1 : 5 8 5 ) = 0 : 8 1 1 b i t s .

  • 7/30/2019 chap2_solution manual _ elements of Information thoery,pdf

    16/32

    2 2

    E n t r o p y , R e l a t i v e E n t r o p y a n d M u t u a l I n f o r m a t i o n

    ( b ) I f p i s c h o s e n u n i f o r m l y i n t h e r a n g e 0 p 1 , t h e n t h e a v e r a g e e n t r o p y ( i n

    n a t s ) i s

    ?

    Z

    1

    0

    p l n p + ( 1 ? p ) l n ( 1 ? p ) d p = ? 2

    Z

    1

    0

    x l n x d x = ? 2

    x

    2

    2

    l n x +

    x

    2

    4

    !

    1

    0

    =

    1

    2

    :

    T h e r e f o r e t h e a v e r a g e e n t r o p y i s

    1

    2

    l o g

    2

    e = 1 = ( 2 l n 2 ) = : 7 2 1 b i t s .

    ( c ) C h o o s i n g a u n i f o r m l y d i s t r i b u t e d p r o b a b i l i t y v e c t o r ( p

    1

    ; p

    2

    ; p

    3

    ) i s e q u i v a l e n t t o

    c h o o s i n g a p o i n t ( p

    1

    ; p

    2

    ) u n i f o r m l y f r o m t h e t r i a n g l e 0 p

    1

    1 , p

    1

    p

    2

    1 .

    T h e p r o b a b i l i t y d e n s i t y f u n c t i o n h a s t h e c o n s t a n t v a l u e 2 b e c a u s e t h e a r e a o f t h e

    t r i a n g l e i s 1 / 2 . S o t h e a v e r a g e e n t r o p y H ( p

    1

    ; p

    2

    ; p

    3

    ) i s

    ? 2

    Z

    1

    0

    Z

    1

    p

    1

    p

    1

    l n p

    1

    + p

    2

    l n p

    2

    + ( 1 ? p

    1

    ? p

    2

    ) l n ( 1 ? p

    1

    ? p

    2

    ) d p

    2

    d p

    1

    :

    A f t e r s o m e e n j o y a b l e c a l c u l u s , w e o b t a i n t h e n a l r e s u l t 5 = ( 6 l n 2 ) = 1 : 2 0 2 b i t s .

    1 2 . V e n n d i a g r a m s . U s i n g V e n n d i a g r a m s , w e c a n s e e t h a t t h e m u t u a l i n f o r m a t i o n c o m m o n

    t o t h r e e r a n d o m v a r i a b l e s X , Y a n d Z s h o u l d b e d e n e d b y

    I ( X ; Y ; Z ) = I ( X ; Y ) ? I ( X ; Y j Z ) :

    T h i s q u a n t i t y i s s y m m e t r i c i n X , Y a n d Z , d e s p i t e t h e p r e c e d i n g a s y m m e t r i c d e -

    n i t i o n . U n f o r t u n a t e l y , I ( X ; Y ; Z ) i s n o t n e c e s s a r i l y n o n n e g a t i v e . F i n d X , Y a n d Z

    s u c h t h a t I ( X ; Y ; Z ) < 0 , a n d p r o v e t h e f o l l o w i n g t w o i d e n t i t i e s :

    I ( X ; Y ; Z ) = H ( X ; Y ; Z ) ? H ( X ) ? H ( Y ) ? H ( Z ) + I ( X ; Y ) + I ( Y ; Z ) + I ( Z ; X )

    I ( X ; Y ; Z ) = H ( X ; Y ; Z ) ? H ( X ; Y ) ? H ( Y ; Z ) ? H ( Z ; X ) + H ( X ) + H ( Y ) + H ( Z )

    T h e r s t i d e n t i t y c a n b e u n d e r s t o o d u s i n g t h e V e n n d i a g r a m a n a l o g y f o r e n t r o p y a n d

    m u t u a l i n f o r m a t i o n . T h e s e c o n d i d e n t i t y f o l l o w s e a s i l y f r o m t h e r s t .

    S o l u t i o n : V e n n D i a g r a m s . T o s h o w t h e r s t i d e n t i t y ,

    I ( X ; Y ; Z ) = I ( X ; Y ) ? I ( X ; Y j Z ) b y d e n i t i o n

    = I ( X ; Y ) ? ( I ( X ; Y ; Z ) ? I ( X ; Z ) ) b y c h a i n r u l e

    = I ( X ; Y ) + I ( X ; Z ) ? I ( X ; Y ; Z )

    = I ( X ; Y ) + I ( X ; Z ) ? ( H ( X ) + H ( Y ; Z ) ? H ( X ; Y ; Z ) )

    = I ( X ; Y ) + I ( X ; Z ) ? H ( X ) + H ( X ; Y ; Z ) ? H ( Y ; Z )

    = I ( X ; Y ) + I ( X ; Z ) ? H ( X ) + H ( X ; Y ; Z ) ? ( H ( Y ) + H ( Z ) ? I ( Y ; Z ) )

    = I ( X ; Y ) + I ( X ; Z ) + I ( Y ; Z ) + H ( X ; Y ; Z ) ? H ( X ) ? H ( Y ) ? H ( Z ) :

    T o s h o w t h e s e c o n d i d e n t i t y , s i m p l y s u b s t i t u t e f o r I ( X ; Y ) , I ( X ; Z ) , a n d I ( Y ; Z )

    u s i n g e q u a t i o n s l i k e

    I ( X ; Y ) = H ( X ) + H ( Y ) ? H ( X ; Y ) :

    T h e s e t w o i d e n t i t i e s s h o w t h a t I ( X ; Y ; Z ) i s a s y m m e t r i c ( b u t n o t n e c e s s a r i l y n o n n e g -

    a t i v e ) f u n c t i o n o f t h r e e r a n d o m v a r i a b l e s .

  • 7/30/2019 chap2_solution manual _ elements of Information thoery,pdf

    17/32

    E n t r o p y , R e l a t i v e E n t r o p y a n d M u t u a l I n f o r m a t i o n

    2 3

    1 3 . C o i n w e i g h i n g . S u p p o s e o n e h a s n c o i n s , a m o n g w h i c h t h e r e m a y o r m a y n o t b e o n e

    c o u n t e r f e i t c o i n . I f t h e r e i s a c o u n t e r f e i t c o i n , i t m a y b e e i t h e r h e a v i e r o r l i g h t e r t h a n

    t h e o t h e r c o i n s . T h e c o i n s a r e t o b e w e i g h e d b y a b a l a n c e .

    ( a ) F i n d a n u p p e r b o u n d o n t h e n u m b e r o f c o i n s n s o t h a t k w e i g h i n g s w i l l n d t h e

    c o u n t e r f e i t c o i n ( i f a n y ) a n d c o r r e c t l y d e c l a r e i t t o b e h e a v i e r o r l i g h t e r .

    ( b ) ( D i c u l t ) W h a t i s t h e c o i n w e i g h i n g s t r a t e g y f o r k = 3 w e i g h i n g s a n d 1 2 c o i n s ?

    S o l u t i o n : C o i n w e i g h i n g .

    ( a ) F o r n c o i n s , t h e r e a r e 2 n + 1 p o s s i b l e s i t u a t i o n s o r \ s t a t e s " .

    O n e o f t h e n c o i n s i s h e a v i e r .

    O n e o f t h e n c o i n s i s l i g h t e r .

    T h e y a r e a l l o f e q u a l w e i g h t .

    E a c h w e i g h i n g h a s t h r e e p o s s i b l e o u t c o m e s - e q u a l , l e f t p a n h e a v i e r o r r i g h t p a n

    h e a v i e r . H e n c e w i t h k w e i g h i n g s , t h e r e a r e 3

    k

    p o s s i b l e o u t c o m e s a n d h e n c e w e

    c a n d i s t i n g u i s h b e t w e e n a t m o s t 3

    k

    d i e r e n t \ s t a t e s " . H e n c e 2 n + 1 3

    k

    o r

    n ( 3

    k

    ? 1 ) = 2 .

    L o o k i n g a t i t f r o m a n i n f o r m a t i o n t h e o r e t i c v i e w p o i n t , e a c h w e i g h i n g g i v e s a t m o s t

    l o g

    2

    3 b i t s o f i n f o r m a t i o n . T h e r e a r e 2 n + 1 p o s s i b l e \ s t a t e s " , w i t h a m a x i m u m

    e n t r o p y o f l o g

    2

    ( 2 n + 1 ) b i t s . H e n c e i n t h i s s i t u a t i o n , o n e w o u l d r e q u i r e a t l e a s t

    l o g

    2

    ( 2 n + 1 ) = l o g

    2

    3 w e i g h i n g s t o e x t r a c t e n o u g h i n f o r m a t i o n f o r d e t e r m i n a t i o n o f

    t h e o d d c o i n , w h i c h g i v e s t h e s a m e r e s u l t a s a b o v e .

    ( b ) T h e r e a r e m a n y s o l u t i o n s t o t h i s p r o b l e m . W e w i l l g i v e o n e w h i c h i s b a s e d o n t h e

    t e r n a r y n u m b e r s y s t e m .

    W e m a y e x p r e s s t h e n u m b e r s f ? 1 2 ; ? 1 1 ; : : : ; ? 1 ; 0 ; 1 ; : : : ; 1 2 g i n a t e r n a r y n u m b e r

    s y s t e m w i t h a l p h a b e t f ? 1 ; 0 ; 1 g . F o r e x a m p l e , t h e n u m b e r 8 i s ( - 1 , 0 , 1 ) w h e r e

    ? 1 3

    0

    + 0 3

    1

    + 1 3

    2

    = 8 . W e f o r m t h e m a t r i x w i t h t h e r e p r e s e n t a t i o n o f t h e

    p o s i t i v e n u m b e r s a s i t s c o l u m n s .

    1 2 3 4 5 6 7 8 9 1 0 1 1 1 2

    3

    0

    1 - 1 0 1 - 1 0 1 - 1 0 1 - 1 0

    1

    = 0

    3

    1

    0 1 1 1 - 1 - 1 - 1 0 0 0 1 1

    2

    = 2

    3

    2

    0 0 0 0 1 1 1 1 1 1 1 1

    3

    = 8

    N o t e t h a t t h e r o w s u m s a r e n o t a l l z e r o . W e c a n n e g a t e s o m e c o l u m n s t o m a k e

    t h e r o w s u m s z e r o . F o r e x a m p l e , n e g a t i n g c o l u m n s 7 , 9 , 1 1 a n d 1 2 , w e o b t a i n

    1 2 3 4 5 6 7 8 9 1 0 1 1 1 2

    3

    0

    1 - 1 0 1 - 1 0 - 1 - 1 0 1 1 0

    1

    = 0

    3

    1

    0 1 1 1 - 1 - 1 1 0 0 0 - 1 - 1

    2

    = 0

    3

    2

    0 0 0 0 1 1 - 1 1 - 1 1 - 1 - 1

    3

    = 0

    N o w p l a c e t h e c o i n s o n t h e b a l a n c e a c c o r d i n g t o t h e f o l l o w i n g r u l e : F o r w e i g h i n g

    # i , p l a c e c o i n n

    O n l e f t p a n , i f n

    i

    = ? 1 .

    A s i d e , i f n

    i

    = 0 .

  • 7/30/2019 chap2_solution manual _ elements of Information thoery,pdf

    18/32

    2 4

    E n t r o p y , R e l a t i v e E n t r o p y a n d M u t u a l I n f o r m a t i o n

    O n r i g h t p a n , i f n

    i

    = 1 .

    T h e o u t c o m e o f t h e t h r e e w e i g h i n g s w i l l n d t h e o d d c o i n i f a n y a n d t e l l w h e t h e r

    i t i s h e a v y o r l i g h t . T h e r e s u l t o f e a c h w e i g h i n g i s 0 i f b o t h p a n s a r e e q u a l , - 1 i f

    t h e l e f t p a n i s h e a v i e r , a n d 1 i f t h e r i g h t p a n i s h e a v i e r . T h e n t h e t h r e e w e i g h i n g s

    g i v e t h e t e r n a r y e x p a n s i o n o f t h e i n d e x o f t h e o d d c o i n . I f t h e e x p a n s i o n i s t h e

    s a m e a s t h e e x p a n s i o n i n t h e m a t r i x , i t i n d i c a t e s t h a t t h e c o i n i s h e a v i e r . I f

    t h e e x p a n s i o n i s o f t h e o p p o s i t e s i g n , t h e c o i n i s l i g h t e r . F o r e x a m p l e , ( 0 , - 1 , - 1 )

    i n d i c a t e s ( 0 ) 3

    0

    + ( ? 1 ) 3 + ( ? 1 ) 3

    2

    = ? 1 2 , h e n c e c o i n # 1 2 i s h e a v y , ( 1 , 0 , - 1 ) i n d i c a t e s

    # 8 i s l i g h t , ( 0 , 0 , 0 ) i n d i c a t e s n o o d d c o i n .

    W h y d o e s t h i s s c h e m e w o r k ? I t i s a s i n g l e e r r o r c o r r e c t i n g H a m m i n g c o d e f o r t h e

    t e r n a r y a l p h a b e t ( d i s c u s s e d i n S e c t i o n 8 . 1 1 i n t h e b o o k ) . H e r e a r e s o m e d e t a i l s .

    F i r s t n o t e a f e w p r o p e r t i e s o f t h e m a t r i x a b o v e t h a t w a s u s e d f o r t h e s c h e m e .

    A l l t h e c o l u m n s a r e d i s t i n c t a n d n o t w o c o l u m n s a d d t o ( 0 , 0 , 0 ) . A l s o i f a n y c o i n

    i s h e a v i e r , i t w i l l p r o d u c e t h e s e q u e n c e o f w e i g h i n g s t h a t m a t c h e s i t s c o l u m n i n

    t h e m a t r i x . I f i t i s l i g h t e r , i t p r o d u c e s t h e n e g a t i v e o f i t s c o l u m n a s a s e q u e n c e

    o f w e i g h i n g s . C o m b i n i n g a l l t h e s e f a c t s , w e c a n s e e t h a t a n y s i n g l e o d d c o i n w i l l

    p r o d u c e a u n i q u e s e q u e n c e o f w e i g h i n g s , a n d t h a t t h e c o i n c a n b e d e t e r m i n e d f r o m

    t h e s e q u e n c e .

    O n e o f t h e q u e s t i o n s t h a t m a n y o f y o u h a d w h e t h e r t h e b o u n d d e r i v e d i n p a r t ( a )

    w a s a c t u a l l y a c h i e v a b l e . F o r e x a m p l e , c a n o n e d i s t i n g u i s h 1 3 c o i n s i n 3 w e i g h i n g s ?

    N o , n o t w i t h a s c h e m e l i k e t h e o n e a b o v e . Y e s , u n d e r t h e a s s u m p t i o n s u n d e r

    w h i c h t h e b o u n d w a s d e r i v e d . T h e b o u n d d i d n o t p r o h i b i t t h e d i v i s i o n o f c o i n s

    i n t o h a l v e s , n e i t h e r d i d i t d i s a l l o w t h e e x i s t e n c e o f a n o t h e r c o i n k n o w n t o b e

    n o r m a l . U n d e r b o t h t h e s e c o n d i t i o n s , i t i s p o s s i b l e t o n d t h e o d d c o i n o f 1 3 c o i n s

    i n 3 w e i g h i n g s . Y o u c o u l d t r y m o d i f y i n g t h e a b o v e s c h e m e t o t h e s e c a s e s .

    1 4 . D r a w i n g w i t h a n d w i t h o u t r e p l a c e m e n t . A n u r n c o n t a i n s r r e d , w w h i t e , a n d b b l a c k

    b a l l s . W h i c h h a s h i g h e r e n t r o p y , d r a w i n g k 2 b a l l s f r o m t h e u r n w i t h r e p l a c e m e n t

    o r w i t h o u t r e p l a c e m e n t ? S e t i t u p a n d s h o w w h y . ( T h e r e i s b o t h a h a r d w a y a n d a

    r e l a t i v e l y s i m p l e w a y t o d o t h i s . )

    S o l u t i o n : D r a w i n g w i t h a n d w i t h o u t r e p l a c e m e n t . I n t u i t i v e l y , i t i s c l e a r t h a t i f t h e

    b a l l s a r e d r a w n w i t h r e p l a c e m e n t , t h e n u m b e r o f p o s s i b l e c h o i c e s f o r t h e i - t h b a l l i s

    l a r g e r , a n d t h e r e f o r e t h e c o n d i t i o n a l e n t r o p y i s l a r g e r . B u t c o m p u t i n g t h e c o n d i t i o n a l

    d i s t r i b u t i o n s i s s l i g h t l y i n v o l v e d . I t i s e a s i e r t o c o m p u t e t h e u n c o n d i t i o n a l e n t r o p y .

    W i t h r e p l a c e m e n t . I n t h i s c a s e t h e c o n d i t i o n a l d i s t r i b u t i o n o f e a c h d r a w i s t h e

    s a m e f o r e v e r y d r a w . T h u s

    X

    i

    =

    8

    >

    <

    >

    :

    r e d w i t h p r o b .

    r

    r + w + b

    w h i t e w i t h p r o b .

    w

    r + w + b

    b l a c k w i t h p r o b .

    b

    r + w + b

    ( 2 . 8 3 )

    a n d t h e r e f o r e

    H ( X

    i

    j X

    i ? 1

    ; : : : ; X

    1

    ) = H ( X

    i

    ) ( 2 . 8 4 )

  • 7/30/2019 chap2_solution manual _ elements of Information thoery,pdf

    19/32

    E n t r o p y , R e l a t i v e E n t r o p y a n d M u t u a l I n f o r m a t i o n

    2 5

    = l o g ( r + w + b ) ?

    r

    r + w + b

    l o g r ?

    w

    r + w + b

    l o g w ?

    b

    r + w + b

    l o g b :( 2 . 8 5 )

    W i t h o u t r e p l a c e m e n t . T h e u n c o n d i t i o n a l p r o b a b i l i t y o f t h e i - t h b a l l b e i n g r e d i s

    s t i l l r = ( r + w + b ) , e t c . T h u s t h e u n c o n d i t i o n a l e n t r o p y H ( X

    i

    ) i s s t i l l t h e s a m e a s

    w i t h r e p l a c e m e n t . T h e c o n d i t i o n a l e n t r o p y H ( X

    i

    j X

    i ? 1

    ; : : : ; X

    1

    ) i s l e s s t h a n t h e

    u n c o n d i t i o n a l e n t r o p y , a n d t h e r e f o r e t h e e n t r o p y o f d r a w i n g w i t h o u t r e p l a c e m e n t

    i s l o w e r .

    1 5 . A m e t r i c . A f u n c t i o n ( x ; y ) i s a m e t r i c i f f o r a l l x ; y ,

    ( x ; y ) 0

    ( x ; y ) = ( y ; x )

    ( x ; y ) = 0 i f a n d o n l y i f x = y

    ( x ; y ) + ( y ; z ) ( x ; z ) .

    ( a ) S h o w t h a t ( X ; Y ) = H ( X j Y ) + H ( Y j X ) h a s t h e a b o v e p r o p e r t i e s , a n d i s t h e r e f o r e

    a m e t r i c . N o t e t h a t ( X ; Y ) i s t h e n u m b e r o f b i t s n e e d e d f o r X a n d Y t o

    c o m m u n i c a t e t h e i r v a l u e s t o e a c h o t h e r .

    ( b ) V e r i f y t h a t ( X ; Y ) c a n a l s o b e e x p r e s s e d a s

    ( X ; Y ) = H ( X ) + H ( Y ) ? 2 I ( X ; Y ) ( 2 . 8 6 )

    = H ( X ; Y ) ? I ( X ; Y ) ( 2 . 8 7 )

    = 2 H ( X ; Y ) ? H ( X ) ? H ( Y ) : ( 2 . 8 8 )

    S o l u t i o n : A m e t r i c

    ( a ) L e t

    ( X ; Y ) = H ( X j Y ) + H ( Y j X ) : ( 2 . 8 9 )

    T h e n

    S i n c e c o n d i t i o n a l e n t r o p y i s a l w a y s 0 , ( X ; Y ) 0 .

    T h e s y m m e t r y o f t h e d e n i t i o n i m p l i e s t h a t ( X ; Y ) = ( Y ; X ) .

    B y p r o b l e m 2 . 6 , i t f o l l o w s t h a t H ( Y j X ) i s 0 i Y i s a f u n c t i o n o f X a n d

    H ( X j Y ) i s 0 i X i s a f u n c t i o n o f Y . T h u s ( X ; Y ) i s 0 i X a n d Y

    a r e f u n c t i o n s o f e a c h o t h e r - a n d t h e r e f o r e a r e e q u i v a l e n t u p t o a r e v e r s i b l e

    t r a n s f o r m a t i o n .

    C o n s i d e r t h r e e r a n d o m v a r i a b l e s X , Y a n d Z . T h e n

    H ( X j Y ) + H ( Y j Z ) H ( X j Y ; Z ) + H ( Y j Z ) ( 2 . 9 0 )

    = H ( X ; Y j Z ) ( 2 . 9 1 )

    = H ( X j Z ) + H ( Y j X ; Z ) ( 2 . 9 2 )

    H ( X j Z ) ; ( 2 . 9 3 )

  • 7/30/2019 chap2_solution manual _ elements of Information thoery,pdf

    20/32

    2 6

    E n t r o p y , R e l a t i v e E n t r o p y a n d M u t u a l I n f o r m a t i o n

    f r o m w h i c h i t f o l l o w s t h a t

    ( X ; Y ) + ( Y ; Z ) ( X ; Z ) : ( 2 . 9 4 )

    N o t e t h a t t h e i n e q u a l i t y i s s t r i c t u n l e s s X ! Y ! Z f o r m s a M a r k o v C h a i n

    a n d Y i s a f u n c t i o n o f X a n d Z .

    ( b ) S i n c e H ( X j Y ) = H ( X ) ? I ( X ; Y ) , t h e r s t e q u a t i o n f o l l o w s . T h e s e c o n d r e l a t i o n

    f o l l o w s f r o m t h e r s t e q u a t i o n a n d t h e f a c t t h a t H ( X ; Y ) = H ( X ) + H ( Y ) ?

    I ( X ; Y ) . T h e t h i r d f o l l o w s o n s u b s t i t u t i n g I ( X ; Y ) = H ( X ) + H ( Y ) ? H ( X ; Y ) .

    1 6 . E x a m p l e o f j o i n t e n t r o p y . L e t p ( x ; y ) b e g i v e n b y

    @

    @

    @

    X

    Y

    0 1

    0

    1

    3

    1

    3

    1 0

    1

    3

    F i n d

    ( a ) H ( X ) ; H ( Y ) :

    ( b ) H ( X j Y ) ; H ( Y j X ) :

    ( c ) H ( X ; Y ) :

    ( d ) H ( Y ) ? H ( Y j X ) :

    ( e ) I ( X ; Y ) .

    ( f ) D r a w a V e n n d i a g r a m f o r t h e q u a n t i t i e s i n ( a ) t h r o u g h ( e ) .

    S o l u t i o n : E x a m p l e o f j o i n t e n t r o p y

    ( a ) H ( X ) =

    2

    3

    l o g

    3

    2

    +

    1

    3

    l o g 3 = 0 : 9 1 8 b i t s = H ( Y ) .

    ( b ) H ( X j Y ) =

    1

    3

    H ( X j Y = 0 ) +

    2

    3

    H ( X j Y = 1 ) = 0 : 6 6 7 b i t s = H ( Y j X ) .

    ( c ) H ( X ; Y ) = 3

    1

    3

    l o g 3 = 1 : 5 8 5 b i t s .

    ( d ) H ( Y ) ? H ( Y j X ) = 0 : 2 5 1 b i t s .

    ( e ) I ( X ; Y ) = H ( Y ) ? H ( Y j X ) = 0 : 2 5 1 b i t s .

    ( f ) S e e F i g u r e 1 .

    1 7 . I n e q u a l i t y . S h o w l n x 1 ?

    1

    x

    f o r x > 0 :

    S o l u t i o n : I n e q u a l i t y . U s i n g t h e R e m a i n d e r f o r m o f t h e T a y l o r e x p a n s i o n o f l n ( x )

    a b o u t x = 1 , w e h a v e f o r s o m e c b e t w e e n 1 a n d x

    l n ( x ) = l n ( 1 ) +

    1

    t

    t = 1

    ( x ? 1 ) +

    ? 1

    t

    2

    t = c

    ( x ? 1 )

    2

    2

    x ? 1

  • 7/30/2019 chap2_solution manual _ elements of Information thoery,pdf

    21/32

    E n t r o p y , R e l a t i v e E n t r o p y a n d M u t u a l I n f o r m a t i o n

    2 7

    F i g u r e 2 . 1 : V e n n d i a g r a m t o i l l u s t r a t e t h e r e l a t i o n s h i p s o f e n t r o p y a n d r e l a t i v e e n t r o p y

    H(X|Y) I(X;Y)H(Y|X)

    H(Y)

    H(X)

    s i n c e t h e s e c o n d t e r m i s a l w a y s n e g a t i v e . H e n c e l e t t i n g y = 1 = x , w e o b t a i n

    ? l n y

    1

    y

    ? 1

    o r

    l n y 1 ?

    1

    y

    w i t h e q u a l i t y i y = 1 .

    1 8 . E n t r o p y o f a s u m . L e t X a n d Y b e r a n d o m v a r i a b l e s t h a t t a k e o n v a l u e s x

    1

    ; x

    2

    ; : : : ; x

    r

    a n d y

    1

    ; y

    2

    ; : : : ; y

    s

    , r e s p e c t i v e l y . L e t Z = X + Y :

    ( a ) S h o w t h a t H ( Z j X ) = H ( Y j X ) : A r g u e t h a t i f X ; Y a r e i n d e p e n d e n t , t h e n H ( Y )

    H ( Z ) a n d H ( X ) H ( Z ) : T h u s t h e a d d i t i o n o f i n d e p e n d e n t r a n d o m v a r i a b l e s

    a d d s u n c e r t a i n t y .

    ( b ) G i v e a n e x a m p l e ( o f n e c e s s a r i l y d e p e n d e n t r a n d o m v a r i a b l e s ) i n w h i c h H ( X ) >

    H ( Z ) a n d H ( Y ) > H ( Z ) :

    ( c ) U n d e r w h a t c o n d i t i o n s d o e s H ( Z ) = H ( X ) + H ( Y ) ?

    S o l u t i o n : E n t r o p y o f a s u m .

    ( a ) Z = X + Y . H e n c e p ( Z = z j X = x ) = p ( Y = z ? x j X = x ) .

    H ( Z j X ) =

    X

    p ( x ) H ( Z j X = x )

    = ?

    X

    x

    p ( x )

    X

    z

    p ( Z = z j X = x ) l o g p ( Z = z j X = x )

    =

    X

    x

    p ( x )

    X

    y

    p ( Y = z ? x j X = x ) l o g p ( Y = z ? x j X = x )

    =

    X

    p ( x ) H ( Y j X = x )

    = H ( Y j X ) :

    I f X a n d Y a r e i n d e p e n d e n t , t h e n H ( Y j X ) = H ( Y ) . S i n c e I ( X ; Z ) 0 ,

    w e h a v e H ( Z ) H ( Z j X ) = H ( Y j X ) = H ( Y ) . S i m i l a r l y w e c a n s h o w t h a t

    H ( Z ) H ( X ) .

  • 7/30/2019 chap2_solution manual _ elements of Information thoery,pdf

    22/32

    2 8

    E n t r o p y , R e l a t i v e E n t r o p y a n d M u t u a l I n f o r m a t i o n

    ( b ) C o n s i d e r t h e f o l l o w i n g j o i n t d i s t r i b u t i o n f o r X a n d Y L e t

    X = ? Y =

    (

    1 w i t h p r o b a b i l i t y 1 = 2

    0 w i t h p r o b a b i l i t y 1 = 2

    T h e n H ( X ) = H ( Y ) = 1 , b u t Z = 0 w i t h p r o b . 1 a n d h e n c e H ( Z ) = 0 .

    ( c ) W e h a v e

    H ( Z ) H ( X ; Y ) H ( X ) + H ( Y )

    b e c a u s e Z i s a f u n c t i o n o f ( X ; Y ) a n d H ( X ; Y ) = H ( X ) + H ( Y j X ) H ( X ) +

    H ( Y ) . W e h a v e e q u a l i t y i ( X ; Y ) i s a f u n c t i o n o f Z a n d H ( Y ) = H ( Y j X ) , i . e . ,

    X a n d Y a r e i n d e p e n d e n t .

    1 9 . E n t r o p y o f a d i s j o i n t m i x t u r e . L e t X

    1

    a n d X

    2

    b e d i s c r e t e r a n d o m v a r i a b l e s d r a w n

    a c c o r d i n g t o p r o b a b i l i t y m a s s f u n c t i o n s p

    1

    ( ) a n d p

    2

    ( ) o v e r t h e r e s p e c t i v e a l p h a b e t s

    X

    1

    = f 1 ; 2 ; : : : ; m g a n d X

    2

    = f m + 1 ; : : : ; n g : L e t

    X =

    (

    X

    1

    ; w i t h p r o b a b i l i t y ;

    X

    2

    ; w i t h p r o b a b i l i t y 1 ? :

    ( a ) F i n d H ( X ) i n t e r m s o f H ( X

    1

    ) a n d H ( X

    2

    ) a n d :

    ( b ) M a x i m i z e o v e r t o s h o w t h a t 2

    H ( X )

    2

    H ( X

    1

    )

    + 2

    H ( X

    2

    )

    a n d i n t e r p r e t u s i n g t h e

    n o t i o n t h a t 2

    H ( X )

    i s t h e e e c t i v e a l p h a b e t s i z e .

    S o l u t i o n : E n t r o p y . W e c a n d o t h i s p r o b l e m b y w r i t i n g d o w n t h e d e n i t i o n o f e n t r o p y

    a n d e x p a n d i n g t h e v a r i o u s t e r m s . I n s t e a d , w e w i l l u s e t h e a l g e b r a o f e n t r o p i e s f o r a

    s i m p l e r p r o o f .

    S i n c e X

    1

    a n d X

    2

    h a v e d i s j o i n t s u p p o r t s e t s , w e c a n w r i t e

    X =

    (

    X

    1

    w i t h p r o b a b i l i t y

    X

    2

    w i t h p r o b a b i l i t y 1 ?

    D e n e a f u n c t i o n o f X ,

    = f ( X ) =

    (

    1 w h e n X = X

    1

    2 w h e n X = X

    2

    T h e n a s i n p r o b l e m 1 , w e h a v e

    H ( X ) = H ( X ; f ( X ) ) = H ( ) + H ( X j )

    = H ( ) + p ( = 1 ) H ( X j = 1 ) + p ( = 2 ) H ( X j = 2 )

    = H ( ) + H ( X

    1

    ) + ( 1 ? ) H ( X

    2

    )

    w h e r e H ( ) = ? l o g ? ( 1 ? ) l o g ( 1 ? ) .

  • 7/30/2019 chap2_solution manual _ elements of Information thoery,pdf

    23/32

    E n t r o p y , R e l a t i v e E n t r o p y a n d M u t u a l I n f o r m a t i o n

    2 9

    2 0 . A m e a s u r e o f c o r r e l a t i o n . L e t X

    1

    a n d X

    2

    b e i d e n t i c a l l y d i s t r i b u t e d , b u t n o t n e c e s s a r i l y

    i n d e p e n d e n t . L e t

    = 1 ?

    H ( X

    2

    j X

    1

    )

    H ( X

    1

    )

    :

    ( a ) S h o w =

    I ( X

    1

    ; X

    2

    )

    H ( X

    1

    )

    :

    ( b ) S h o w 0 1 :

    ( c ) W h e n i s = 0 ?

    ( d ) W h e n i s = 1 ?

    S o l u t i o n : A m e a s u r e o f c o r r e l a t i o n . X

    1

    a n d X

    2

    a r e i d e n t i c a l l y d i s t r i b u t e d a n d

    = 1 ?

    H ( X

    2

    j X

    1

    )

    H ( X

    1

    )

    ( a )

    =

    H ( X

    1

    ) ? H ( X

    2

    j X

    1

    )

    H ( X

    1

    )

    =

    H ( X

    2

    ) ? H ( X

    2

    j X

    1

    )

    H ( X

    1

    )

    ( s i n c e H ( X

    1

    ) = H ( X

    2

    ) )

    =

    I ( X

    1

    ; X

    2

    )

    H ( X

    1

    )

    :

    ( b ) S i n c e 0 H ( X

    2

    j X

    1

    ) H ( X

    2

    ) = H ( X

    1

    ) , w e h a v e

    0

    H ( X

    2

    j X

    1

    )

    H ( X

    1

    )

    1

    0 1 :

    ( c ) = 0 i I ( X

    1

    ; X

    2

    ) = 0 i X

    1

    a n d X

    2

    a r e i n d e p e n d e n t .

    ( d ) = 1 i H ( X

    2

    j X

    1

    ) = 0 i X

    2

    i s a f u n c t i o n o f X

    1

    . B y s y m m e t r y , X

    1

    i s a

    f u n c t i o n o f X

    2

    , i . e . , X

    1

    a n d X

    2

    h a v e a o n e - t o - o n e r e l a t i o n s h i p .

    2 1 . D a t a p r o c e s s i n g . L e t X

    1

    ! X

    2

    ! X

    3

    ! ! X

    n

    f o r m a M a r k o v c h a i n i n t h i s o r d e r ;

    i . e . , l e t

    p ( x

    1

    ; x

    2

    ; : : : ; x

    n

    ) = p ( x

    1

    ) p ( x

    2

    j x

    1

    ) p ( x

    n

    j x

    n ? 1

    ) :

    R e d u c e I ( X

    1

    ; X

    2

    ; : : : ; X

    n

    ) t o i t s s i m p l e s t f o r m .

    S o l u t i o n : D a t a P r o c e s s i n g . B y t h e c h a i n r u l e f o r m u t u a l i n f o r m a t i o n ,

    I ( X

    1

    ; X

    2

    ; : : : ; X

    n

    ) = I ( X

    1

    ; X

    2

    ) + I ( X

    1

    ; X

    3

    j X

    2

    ) + + I ( X

    1

    ; X

    n

    j X

    2

    ; : : : ; X

    n ? 2

    ) : ( 2 . 9 5 )

    B y t h e M a r k o v p r o p e r t y , t h e p a s t a n d t h e f u t u r e a r e c o n d i t i o n a l l y i n d e p e n d e n t g i v e n

    t h e p r e s e n t a n d h e n c e a l l t e r m s e x c e p t t h e r s t a r e z e r o . T h e r e f o r e

    I ( X

    1

    ; X

    2

    ; : : : ; X

    n

    ) = I ( X

    1

    ; X

    2

    ) : ( 2 . 9 6 )

  • 7/30/2019 chap2_solution manual _ elements of Information thoery,pdf

    24/32

    3 0

    E n t r o p y , R e l a t i v e E n t r o p y a n d M u t u a l I n f o r m a t i o n

    2 2 . B o t t l e n e c k . S u p p o s e a ( n o n - s t a t i o n a r y ) M a r k o v c h a i n s t a r t s i n o n e o f n s t a t e s , n e c k s

    d o w n t o k < n s t a t e s , a n d t h e n f a n s b a c k t o m > k s t a t e s . T h u s X

    1

    ! X

    2

    ! X

    3

    ,

    X

    1

    2 f 1 ; 2 ; : : : ; n g , X

    2

    2 f 1 ; 2 ; : : : ; k g , X

    3

    2 f 1 ; 2 ; : : : ; m g .

    ( a ) S h o w t h a t t h e d e p e n d e n c e o f X

    1

    a n d X

    3

    i s l i m i t e d b y t h e b o t t l e n e c k b y p r o v i n g

    t h a t I ( X

    1

    ; X

    3

    ) l o g k :

    ( b ) E v a l u a t e I ( X

    1

    ; X

    3

    ) f o r k = 1 , a n d c o n c l u d e t h a t n o d e p e n d e n c e c a n s u r v i v e s u c h

    a b o t t l e n e c k .

    S o l u t i o n :

    B o t t l e n e c k .

    ( a ) F r o m t h e d a t a p r o c e s s i n g i n e q u a l i t y , a n d t h e f a c t t h a t e n t r o p y i s m a x i m u m f o r a

    u n i f o r m d i s t r i b u t i o n , w e g e t

    I ( X

    1

    ; X

    3

    ) I ( X

    1

    ; X

    2

    )

    = H ( X

    2

    ) ? H ( X

    2

    j X

    1

    )

    H ( X

    2

    )

    l o g k :

    T h u s , t h e d e p e n d e n c e b e t w e e n X

    1

    a n d X

    3

    i s l i m i t e d b y t h e s i z e o f t h e b o t t l e n e c k .

    T h a t i s I ( X

    1

    ; X

    3

    ) l o g k .

    ( b ) F o r k = 1 , I ( X

    1

    ; X

    3

    ) l o g 1 = 0 a n d s i n c e I ( X

    1

    ; X

    3

    ) 0 , I ( X

    1

    ; X

    3

    ) = 0 .

    T h u s , f o r k = 1 , X

    1

    a n d X

    3

    a r e i n d e p e n d e n t .

    2 3 . R u n l e n g t h c o d i n g . L e t X

    1

    ; X

    2

    ; : : : ; X

    n

    b e ( p o s s i b l y d e p e n d e n t ) b i n a r y r a n d o m v a r i -

    a b l e s . S u p p o s e o n e c a l c u l a t e s t h e r u n l e n g t h s R = ( R

    1

    ; R

    2

    ; : : : ) o f t h i s s e q u e n c e ( i n

    o r d e r a s t h e y o c c u r ) . F o r e x a m p l e , t h e s e q u e n c e X = 0 0 0 1 1 0 0 1 0 0 y i e l d s r u n l e n g t h s

    R = ( 3 ; 2 ; 2 ; 1 ; 2 ) . C o m p a r e H ( X

    1

    ; X

    2

    ; : : : ; X

    n

    ) , H ( R ) a n d H ( X

    n

    ; R ) . S h o w a l l

    e q u a l i t i e s a n d i n e q u a l i t i e s , a n d b o u n d a l l t h e d i e r e n c e s .

    S o l u t i o n : R u n l e n g t h c o d i n g . S i n c e t h e r u n l e n g t h s a r e a f u n c t i o n o f X

    1

    ; X

    2

    ; : : : ; X

    n

    ,

    H ( R ) H ( X ) . A n y X

    i

    t o g e t h e r w i t h t h e r u n l e n g t h s d e t e r m i n e t h e e n t i r e s e q u e n c e

    X

    1

    ; X

    2

    ; : : : ; X

    n

    . H e n c e

    H ( X

    1

    ; X

    2

    ; : : : ; X

    n

    ) = H ( X

    i

    ; R ) ( 2 . 9 7 )

    = H ( R ) + H ( X

    i

    j R ) ( 2 . 9 8 )

    H ( R ) + H ( X

    i

    ) ( 2 . 9 9 )

    H ( R ) + 1 : ( 2 . 1 0 0 )

    2 4 . M a r k o v ' s i n e q u a l i t y f o r p r o b a b i l i t i e s . L e t p ( x ) b e a p r o b a b i l i t y m a s s f u n c t i o n . P r o v e ,

    f o r a l l d 0 ,

    P r f p ( X ) d g l o g

    1

    d

    H ( X ) : ( 2 . 1 0 1 )

  • 7/30/2019 chap2_solution manual _ elements of Information thoery,pdf

    25/32

    E n t r o p y , R e l a t i v e E n t r o p y a n d M u t u a l I n f o r m a t i o n

    3 1

    S o l u t i o n : M a r k o v i n e q u a l i t y a p p l i e d t o e n t r o p y .

    P ( p ( X ) < d ) l o g

    1

    d

    =

    X

    x : p ( x ) < d

    p ( x ) l o g

    1

    d

    ( 2 . 1 0 2 )

    X

    x : p ( x ) < d

    p ( x ) l o g

    1

    p ( x )

    ( 2 . 1 0 3 )

    X

    x

    p ( x ) l o g

    1

    p ( x )

    ( 2 . 1 0 4 )

    = H ( X ) ( 2 . 1 0 5 )

    2 5 . L o g i c a l o r d e r o f i d e a s . I d e a s h a v e b e e n d e v e l o p e d i n o r d e r o f n e e d , a n d t h e n g e n e r a l i z e d

    i f n e c e s s a r y . R e o r d e r t h e f o l l o w i n g i d e a s , s t r o n g e s t r s t , i m p l i c a t i o n s f o l l o w i n g :

    ( a ) C h a i n r u l e f o r I ( X

    1

    ; : : : ; X

    n

    ; Y ) , c h a i n r u l e f o r D ( p ( x

    1

    ; : : : ; x

    n

    ) j j q ( x

    1

    ; x

    2

    ; : : : ; x

    n

    ) ) ,

    a n d c h a i n r u l e f o r H ( X

    1

    ; X

    2

    ; : : : ; X

    n

    ) .

    ( b ) D ( f j j g ) 0 , J e n s e n ' s i n e q u a l i t y , I ( X ; Y ) 0 .

    S o l u t i o n : L o g i c a l o r d e r i n g o f i d e a s .

    ( a ) T h e f o l l o w i n g o r d e r i n g s a r e s u b j e c t i v e . S i n c e I ( X ; Y ) = D ( p ( x ; y ) j j p ( x ) p ( y ) ) i s a

    s p e c i a l c a s e o f r e l a t i v e e n t r o p y , i t i s p o s s i b l e t o d e r i v e t h e c h a i n r u l e f o r I f r o m

    t h e c h a i n r u l e f o r D .

    S i n c e H ( X ) = I ( X ; X ) , i t i s p o s s i b l e t o d e r i v e t h e c h a i n r u l e f o r H f r o m t h e

    c h a i n r u l e f o r I .

    I t i s a l s o p o s s i b l e t o d e r i v e t h e c h a i n r u l e f o r I f r o m t h e c h a i n r u l e f o r H a s w a s

    d o n e i n t h e n o t e s .

    ( b ) I n c l a s s , J e n s e n ' s i n e q u a l i t y w a s u s e d t o p r o v e t h e n o n - n e g a t i v i t y o f D . T h e

    i n e q u a l i t y I ( X ; Y ) 0 f o l l o w e d a s a s p e c i a l c a s e o f t h e n o n - n e g a t i v i t y o f D .

    2 6 . S e c o n d l a w o f t h e r m o d y n a m i c s . L e t X

    1

    ; X

    2

    ; X

    3

    : : : b e a s t a t i o n a r y r s t - o r d e r M a r k o v

    c h a i n . I n S e c t i o n 2 . 9 , i t w a s s h o w n t h a t H ( X

    n

    j X

    1

    ) H ( X

    n ? 1

    j X

    1

    ) f o r n = 2 ; 3 : : : .

    T h u s c o n d i t i o n a l u n c e r t a i n t y a b o u t t h e f u t u r e g r o w s w i t h t i m e . T h i s i s t r u e a l t h o u g h

    t h e u n c o n d i t i o n a l u n c e r t a i n t y H ( X

    n

    ) r e m a i n s c o n s t a n t . H o w e v e r , s h o w b y e x a m p l e

    t h a t H ( X

    n

    j X

    1

    = x

    1

    ) d o e s n o t n e c e s s a r i l y g r o w w i t h n f o r e v e r y x

    1

    .

    S o l u t i o n : S e c o n d l a w o f t h e r m o d y n a m i c s .

    H ( X

    n

    j X

    1

    ) H ( X

    n

    j X

    1

    ; X

    2

    ) ( C o n d i t i o n i n g r e d u c e s e n t r o p y ) ( 2 . 1 0 6 )

    = H ( X

    n

    j X

    2

    ) ( b y M a r k o v i t y ) ( 2 . 1 0 7 )

    = H ( X

    n ? 1

    j X

    1

    ) ( b y s t a t i o n a r i t y ) ( 2 . 1 0 8 )

    A l t e r n a t i v e l y , b y a n a p p l i c a t i o n o f t h e d a t a p r o c e s s i n g i n e q u a l i t y t o t h e M a r k o v c h a i n

    X

    1

    ! X

    n ? 1

    ! X

    n

    , w e h a v e

    I ( X

    1

    ; X

    n ? 1

    ) I ( X

    1

    ; X

    n

    ) : ( 2 . 1 0 9 )

  • 7/30/2019 chap2_solution manual _ elements of Information thoery,pdf

    26/32

    3 2

    E n t r o p y , R e l a t i v e E n t r o p y a n d M u t u a l I n f o r m a t i o n

    E x p a n d i n g t h e m u t u a l i n f o r m a