Chap. IV –CMOS Operational Amplifiers · EEL 6713 - Analog Integrated Circuit Design 3 IV.1...

40
EEL 6713 - Analog Integrated Circuit Design 1 n IV.1 Introduction n IV.2 Performance parameters n IV.3 OTA (single-stage op amp) n IV.4 Cascode and folded-cascode amplifiers n IV.5 Cascade amplifiers n IV.6 Fully-differential amplifiers and common-mode feedback Chap. IV –CMOS Operational Amplifiers

Transcript of Chap. IV –CMOS Operational Amplifiers · EEL 6713 - Analog Integrated Circuit Design 3 IV.1...

Page 1: Chap. IV –CMOS Operational Amplifiers · EEL 6713 - Analog Integrated Circuit Design 3 IV.1 Introduction 22 112 1 1 11 1 11 o i v RR vRRR AR = +≅+ ++ Applications of op amps -

EEL 6713 - Analog Integrated Circuit Design 1

n IV.1 Introduction

n IV.2 Performance parameters

n IV.3 OTA (single-stage op amp)

n IV.4 Cascode and folded-cascode amplifiers

n IV.5 Cascade amplifiers

n IV.6 Fully-differential amplifiers and common-modefeedback

Chap. IV –CMOS Operational Amplifiers

Page 2: Chap. IV –CMOS Operational Amplifiers · EEL 6713 - Analog Integrated Circuit Design 3 IV.1 Introduction 22 112 1 1 11 1 11 o i v RR vRRR AR = +≅+ ++ Applications of op amps -

EEL 6713 - Analog Integrated Circuit Design 2

IV.1 IntroductionThe ideal op amp

+

vi

-

+

-

+Avi-

RS

+vo-

A→∞RS=0

+

vi

-

+

-

Gmvi GS +vo-

Gm=AGS

Page 3: Chap. IV –CMOS Operational Amplifiers · EEL 6713 - Analog Integrated Circuit Design 3 IV.1 Introduction 22 112 1 1 11 1 11 o i v RR vRRR AR = +≅+ ++ Applications of op amps -

EEL 6713 - Analog Integrated Circuit Design 3

IV.1 Introduction

2 2

1 12

1

11 1

11 1

o

i

v R Rv R RR

A R

= + ≅ + + +

Applications of op amps - 1

+vi-

-

+

R2

R1 +vo-

Inverting amplifier

2 2

1 12

1

11

1 1

o

i

v R Rv R RR

A R

= − ≅ −

+ +

-

+

R2

R1

+vi-

+vo-

Noninverting amplifier

Page 4: Chap. IV –CMOS Operational Amplifiers · EEL 6713 - Analog Integrated Circuit Design 3 IV.1 Introduction 22 112 1 1 11 1 11 o i v RR vRRR AR = +≅+ ++ Applications of op amps -

EEL 6713 - Analog Integrated Circuit Design 4

IV.1 IntroductionApplications of op amps - 2

Transimpedance amplifier

2 2 2

11

1ov A

R R Ri A A

= − ≅ − − ≅ − +

-

+

R2

i +vo-

- Continuous-time filters- SC filters- D/A & A/D converters- Sensor signal conditioning- Voltage & current references- Comparators- Nonlinear analog functions,- .......

Page 5: Chap. IV –CMOS Operational Amplifiers · EEL 6713 - Analog Integrated Circuit Design 3 IV.1 Introduction 22 112 1 1 11 1 11 o i v RR vRRR AR = +≅+ ++ Applications of op amps -

EEL 6713 - Analog Integrated Circuit Design 5

IV.1 Introduction

P. Allen and D. Holberg – CMOS Analog CircuitDesign, 2nd. Ed., Oxford, New York, 2002.

Op amp design:•Choice of architecture;•Bias currents &Transistors dimensions;•Compensation;•Simulation;•Layout;•Post-layout simulation

Op amp requirements:•Technology;•Supply voltage;•Gain, GBW, output swing,noise, offset voltage, PSRR, ICMR, ....

Page 6: Chap. IV –CMOS Operational Amplifiers · EEL 6713 - Analog Integrated Circuit Design 3 IV.1 Introduction 22 112 1 1 11 1 11 o i v RR vRRR AR = +≅+ ++ Applications of op amps -

EEL 6713 - Analog Integrated Circuit Design 6

IV.2 Performance parameters - 1

W.-C. S. Wu et al., Digital-Compatible High-Performance Operational Amplifier with Rail-to-Rail Input and Output Ranges, IEEE JSSC, vol. 29, no. 1, pp. 63-66, Jan. 1994.

Gate channel capacitances are used for compensation capacitors.

Page 7: Chap. IV –CMOS Operational Amplifiers · EEL 6713 - Analog Integrated Circuit Design 3 IV.1 Introduction 22 112 1 1 11 1 11 o i v RR vRRR AR = +≅+ ++ Applications of op amps -

EEL 6713 - Analog Integrated Circuit Design 7

IV.2 Performance parameters - 2

L. Moldovan and H. H. Li, A Rail-to-Rail, Constant Gain, Buffered Op-Amp for Real Time Video Applications, IEEE JSSC, vol. 32, no. 2, pp. 169-176, Feb. 1997

Op Amp fabricated by MOSIS service in 2-µm, n-well CMOS, DPDM

Page 8: Chap. IV –CMOS Operational Amplifiers · EEL 6713 - Analog Integrated Circuit Design 3 IV.1 Introduction 22 112 1 1 11 1 11 o i v RR vRRR AR = +≅+ ++ Applications of op amps -

EEL 6713 - Analog Integrated Circuit Design 8

IV.2 Performance parameters - 3

J. F. Duque-Carrillo et al., 1-V Rail-to-Rail Operational Amplifiers in Standard CMOS Technology, IEEE JSSC, vol. 35, no. 1, pp. 33-44, Jan. 1990

Page 9: Chap. IV –CMOS Operational Amplifiers · EEL 6713 - Analog Integrated Circuit Design 3 IV.1 Introduction 22 112 1 1 11 1 11 o i v RR vRRR AR = +≅+ ++ Applications of op amps -

EEL 6713 - Analog Integrated Circuit Design 9

IV.2 Performance parameters - 4

Vid(mV)

Vod(V)

VOS

Offset voltage

Systematic offset – results from circuit design and is present even when all supposedly identical devices are matched (usually can be set to a low value).

Random offset – results from mismatches in supposedly identical pairs ofdevices (depends on area and bias).

P. R. Gray and R. G. Meyer, MOS Operational Amplifier Design – A Tutorial Overview, IEEE JSSC, vo. 17, n0. 6, pp. 969-982, Dec. 1982.

Page 10: Chap. IV –CMOS Operational Amplifiers · EEL 6713 - Analog Integrated Circuit Design 3 IV.1 Introduction 22 112 1 1 11 1 11 o i v RR vRRR AR = +≅+ ++ Applications of op amps -

EEL 6713 - Analog Integrated Circuit Design 10

IV.2 Performance parameters - 5

P. R. Gray and R. G. Meyer, MOS Operational Amplifier Design – A Tutorial Overview, IEEE JSSC, vo. 17, n0. 6, pp. 969-982, Dec. 1982.

Differential voltage gain

d dBA

Extrapolated unity-gain frequency

1p−0 dB

Page 11: Chap. IV –CMOS Operational Amplifiers · EEL 6713 - Analog Integrated Circuit Design 3 IV.1 Introduction 22 112 1 1 11 1 11 o i v RR vRRR AR = +≅+ ++ Applications of op amps -

EEL 6713 - Analog Integrated Circuit Design 11

IV.2 Performance parameters - 6

P. Allen and D. Holberg – CMOS Analog Circuit Design, 2nd. Ed., Oxford, New York, 2002.

Settling time

Page 12: Chap. IV –CMOS Operational Amplifiers · EEL 6713 - Analog Integrated Circuit Design 3 IV.1 Introduction 22 112 1 1 11 1 11 o i v RR vRRR AR = +≅+ ++ Applications of op amps -

EEL 6713 - Analog Integrated Circuit Design 12

IV.2 Performance parameters - 7

CMRR, PSRR, Slew rate, Noise, Common-Mode Input Range, Output Swing, Power, Silicon Real State, ....

Dynamic Range (DR)

,max

,min

20log in

in

vDR

v

=

Noise (distinguish between signal and noise)

Distortion (within acceptable level: application-dependent).

Page 13: Chap. IV –CMOS Operational Amplifiers · EEL 6713 - Analog Integrated Circuit Design 3 IV.1 Introduction 22 112 1 1 11 1 11 o i v RR vRRR AR = +≅+ ++ Applications of op amps -

EEL 6713 - Analog Integrated Circuit Design 13

IV.3 OTA (single-stage op amp) - 1Or current-mirror op amp (Johns & Martin) /symmetric OTA (Laker & Sansen)

VSS

IT

+vG1-

M1 M2

I1 I2

+vG2-

1:B CM 1:B CM

1:1 CM

CL

BI1 BI2

BI1

Io= B(I2-I1)

Page 14: Chap. IV –CMOS Operational Amplifiers · EEL 6713 - Analog Integrated Circuit Design 3 IV.1 Introduction 22 112 1 1 11 1 11 o i v RR vRRR AR = +≅+ ++ Applications of op amps -

EEL 6713 - Analog Integrated Circuit Design 14

IV.3 OTA (single-stage op amp) - 2

K. Laker and W. Sansen: Design ofAnalog Integrated Circuits and Systems, McGraw-Hill, 1994

Fig. AP6-1

Bias circuitry Cascode outputLow-gain diff. amp.

Page 15: Chap. IV –CMOS Operational Amplifiers · EEL 6713 - Analog Integrated Circuit Design 3 IV.1 Introduction 22 112 1 1 11 1 11 o i v RR vRRR AR = +≅+ ++ Applications of op amps -

EEL 6713 - Analog Integrated Circuit Design 15

IV.3 OTA (single-stage op amp) - 3

D. Johns and K. Martin, Analog Integrated Circuit Design, Wiley, 1997.

Page 16: Chap. IV –CMOS Operational Amplifiers · EEL 6713 - Analog Integrated Circuit Design 3 IV.1 Introduction 22 112 1 1 11 1 11 o i v RR vRRR AR = +≅+ ++ Applications of op amps -

EEL 6713 - Analog Integrated Circuit Design 16

IV.3 OTA (single-stage op amp) - 4Input common-mode range: see diff. amp.

( )T

L P

BISR

C C=

+

1 2id g gv v v= −

CL+CP1m idBg v−oR

+vo

-

( ) ( )1

1m o

do L P

Bg RA s

sR C C=

+ +

( )11

( )2

m

L P

BgGBW Hz

C Cπ=

+

Io= B(I2-I1)

VSS

IT

+vG1-

M1 M2

I1 I2

+vG2-

1:B CM 1:B CM

1:1 CM

BI1 BI2

BI1CL

CM delays were neglected

asymmetry

Page 17: Chap. IV –CMOS Operational Amplifiers · EEL 6713 - Analog Integrated Circuit Design 3 IV.1 Introduction 22 112 1 1 11 1 11 o i v RR vRRR AR = +≅+ ++ Applications of op amps -

EEL 6713 - Analog Integrated Circuit Design 17

IV.4 Cascode & folded-cascode amplifiers - 1

Telescopic diff. amp. with self-biased cascode CM

Telescopic diff. amp. with high-swing cascode CM

- Reduced output swing;

-Doublet !

- Not applicable to low supply voltage.

Page 18: Chap. IV –CMOS Operational Amplifiers · EEL 6713 - Analog Integrated Circuit Design 3 IV.1 Introduction 22 112 1 1 11 1 11 o i v RR vRRR AR = +≅+ ++ Applications of op amps -

EEL 6713 - Analog Integrated Circuit Design 18

IV.4 Cascode & folded-cascode amplifiers - 2

D. Johns and K. Martin, Analog Integrated Circuit Design, Wiley, 1997.

Low-gain diff. amp. High-gain diff. amp.

Page 19: Chap. IV –CMOS Operational Amplifiers · EEL 6713 - Analog Integrated Circuit Design 3 IV.1 Introduction 22 112 1 1 11 1 11 o i v RR vRRR AR = +≅+ ++ Applications of op amps -

EEL 6713 - Analog Integrated Circuit Design 19

IV.4 Cascode & folded-cascode amplifiers - 3

P.R. Gray, P.J. Hurst, S.H. Lewis, andR.G. Meyer, Analysis and Design ofAnalog Integrated Circuits, 4th. Ed.,Wiley, 2001.

Page 20: Chap. IV –CMOS Operational Amplifiers · EEL 6713 - Analog Integrated Circuit Design 3 IV.1 Introduction 22 112 1 1 11 1 11 o i v RR vRRR AR = +≅+ ++ Applications of op amps -

EEL 6713 - Analog Integrated Circuit Design 20

IV.4 Cascode & folded-cascode amplifiers - 4

IT

IT/2

IT

IT/2

IT/2IT/2

IT∆i ∆i∆i

∆i

∆i2∆i

P.R. Gray, P.J. Hurst, S.H. Lewis, and R.G. Meyer, Analysis and Design of Analog Integrated Circuits, 4th. Ed., Wiley, 2001.

Can be changed toincrease positive output swing

Folded-cascode amplifier - 1

Page 21: Chap. IV –CMOS Operational Amplifiers · EEL 6713 - Analog Integrated Circuit Design 3 IV.1 Introduction 22 112 1 1 11 1 11 o i v RR vRRR AR = +≅+ ++ Applications of op amps -

EEL 6713 - Analog Integrated Circuit Design 21

IV.4 Cascode & folded-cascode amplifiers - 5

0

01d

dL

AA

sC R≅

+

P.R. Gray, P.J. Hurst, S.H. Lewis, and R.G. Meyer, Analysis and Design of Analog Integrated Circuits, 4th. Ed., Wiley, 2001.

Folded-cascode amplifier - 2ICMR : Exercise

Output swing : ExerciseNote: The output swing can be around

-VSS+2VDSsatp to VDD-2VSDsatp for high-

swing current mirror and optimized bias.Ro

T

L

ISR

C± = ±

0d m oA G R=

& doublet

1m mG g=

( )

44

4

212 2

2

1 ds Ao ds

o ms A

ds Ads ds

ms A

gG g

R g

gg g

g

= =

+ +High-swing current mirror

Page 22: Chap. IV –CMOS Operational Amplifiers · EEL 6713 - Analog Integrated Circuit Design 3 IV.1 Introduction 22 112 1 1 11 1 11 o i v RR vRRR AR = +≅+ ++ Applications of op amps -

EEL 6713 - Analog Integrated Circuit Design 22

IV.4 Cascode & folded-cascode amplifiers - 6

K. Bult & G.J.G.M. Geelen, A fast-settling CMOS opamp for SC circuits with 90-dB DC gain, IEEE JSSC, no.6, pp. 1379-1384, Dec. 1990.

The gain-boost technique - 1

Stacked devices reduce output swing.Cascade amplifiers: stability?

1 22

2 2

2 1 2 1

1 1ds ds

mg ddmg dd mg

ods ds ds ds

g gg n A

g A gR

g g g g

++ +

= ≅

Page 23: Chap. IV –CMOS Operational Amplifiers · EEL 6713 - Analog Integrated Circuit Design 3 IV.1 Introduction 22 112 1 1 11 1 11 o i v RR vRRR AR = +≅+ ++ Applications of op amps -

EEL 6713 - Analog Integrated Circuit Design 23

IV.4 Cascode & folded-cascode amplifiers - 7The gain-boost technique - 2

P.R. Gray, P.J. Hurst, S.H. Lewis, and R.G. Meyer, Analysis and Design of Analog Integrated Circuits, 4th. Ed., Wiley, 2001.

Page 24: Chap. IV –CMOS Operational Amplifiers · EEL 6713 - Analog Integrated Circuit Design 3 IV.1 Introduction 22 112 1 1 11 1 11 o i v RR vRRR AR = +≅+ ++ Applications of op amps -

EEL 6713 - Analog Integrated Circuit Design 24

IV.4 Cascode & folded-cascode amplifiers - 8The gain-boost technique - 3

P.R. Gray, P.J. Hurst, S.H. Lewis, and R.G. Meyer, Analysis and Design of Analog Integrated Circuits, 4th. Ed., Wiley, 2001.

Page 25: Chap. IV –CMOS Operational Amplifiers · EEL 6713 - Analog Integrated Circuit Design 3 IV.1 Introduction 22 112 1 1 11 1 11 o i v RR vRRR AR = +≅+ ++ Applications of op amps -

EEL 6713 - Analog Integrated Circuit Design 25

IV.5 Cascade amplifiersTwo-stage amplifiers - 1

ICMR: see diff. amp.VDD

Output swing:

4 5DD DSsat o SS DSsatV V V V V− > > +

Low-voltage gain:

1 6

2 2 6 7

o m mdo

i ds ds ds dsLF

v g gA

v g g g g= = −

+ +

CL

VSS

M4M3

M1 M2

M8 M5

M7

M6

IT vi

+

-

CC

vo

1:1 1:B

1:1 1:2B

inv noninv

For systematic offset → 0. “Early” effect at the output

1:2B

Page 26: Chap. IV –CMOS Operational Amplifiers · EEL 6713 - Analog Integrated Circuit Design 3 IV.1 Introduction 22 112 1 1 11 1 11 o i v RR vRRR AR = +≅+ ++ Applications of op amps -

EEL 6713 - Analog Integrated Circuit Design 26

IV.5 Cascade amplifiers

( )1

2 12 1

o x o o To C C

C

o o o oo o L

L

d v v dv dv II C C

dt dt dt C

dv dv I II I C

dt dt C

−= ≅ → =

−= + → =

Two-stage amplifiers - 2CC

CL

voGmI -AdII

Io1

Io2

vi

+

-

vx

T

C

ISR

C± = ±

6max ( 1) Bext

L

I B ISR SR

C+ +− +

≅ >

( 1) Text

L

B ISR

C− −

= −The output node can be the SR limiting node*

*For a discussion, see Laker & Sansen, pp. 510-512

Page 27: Chap. IV –CMOS Operational Amplifiers · EEL 6713 - Analog Integrated Circuit Design 3 IV.1 Introduction 22 112 1 1 11 1 11 o i v RR vRRR AR = +≅+ ++ Applications of op amps -

EEL 6713 - Analog Integrated Circuit Design 27

IV.5 Cascade amplifiers

0 0max

; sin ; o oo

dv dvSR v A t A SR

dt dtω ω≤ = = ≤

Two-stage amplifiers - 3Amplitude x frequency limitation due to SR

J. Dostál, Operational Amplifiers, 2nd. Ed., Butterworth-Heinemann, Boston, 1993.

Amplitude limitation

SR-limited slope

Page 28: Chap. IV –CMOS Operational Amplifiers · EEL 6713 - Analog Integrated Circuit Design 3 IV.1 Introduction 22 112 1 1 11 1 11 o i v RR vRRR AR = +≅+ ++ Applications of op amps -

EEL 6713 - Analog Integrated Circuit Design 28

IV.5 Cascade amplifiersTwo-stage amplifiers - 4

( ) ( )( ) ( )1

=+

o

in

A sVs

V A s F s

Determines the poles ofthe closed-loop system

Allen & Holberg, 1st ed.

Page 29: Chap. IV –CMOS Operational Amplifiers · EEL 6713 - Analog Integrated Circuit Design 3 IV.1 Introduction 22 112 1 1 11 1 11 o i v RR vRRR AR = +≅+ ++ Applications of op amps -

EEL 6713 - Analog Integrated Circuit Design 29

IV.5 Cascade amplifiersTwo-stage amplifiers - 5

x x x x1

I IR C−

1

II IIR C− 1p2p

σ

s-plane

The op amp design must take into account both load and feedback loop

φM

Allen & Holberg, 1st ed.

Page 30: Chap. IV –CMOS Operational Amplifiers · EEL 6713 - Analog Integrated Circuit Design 3 IV.1 Introduction 22 112 1 1 11 1 11 o i v RR vRRR AR = +≅+ ++ Applications of op amps -

EEL 6713 - Analog Integrated Circuit Design 30

IV.5 Cascade amplifiersTwo-stage amplifiers - 6

Response of second order system with various phase margins

Allen & Holberg, 1st ed.

Page 31: Chap. IV –CMOS Operational Amplifiers · EEL 6713 - Analog Integrated Circuit Design 3 IV.1 Introduction 22 112 1 1 11 1 11 o i v RR vRRR AR = +≅+ ++ Applications of op amps -

EEL 6713 - Analog Integrated Circuit Design 31

IV.5 Cascade amplifiersTwo-stage amplifiers - 7

Equivalent differential circuit

+

vin

-

RIgmIvinCI

+

vI

-

gmIIvIRII CII

+

vo

-

CC

1mI mg g=

( ) 12 4

2 4 6 6

I ds ds

I db db gb gs

R g g

C C C C C

−= +

= + + +

6mII mg g=

( ) 16 7

6 7

II ds ds

II db db L

R g g

C C C C

−= +

= + +

If CC→0, then

( ) ( ) ( )1 1o mI mII I II

in I I II II

V g g R Rs

V sR C sR C≅ −

+ +

Poles relatively close → phase margin can be low or even negative !!!

Exercise: Derive the transfer function Ad(s) of the compensated operational amplifier

Page 32: Chap. IV –CMOS Operational Amplifiers · EEL 6713 - Analog Integrated Circuit Design 3 IV.1 Introduction 22 112 1 1 11 1 11 o i v RR vRRR AR = +≅+ ++ Applications of op amps -

EEL 6713 - Analog Integrated Circuit Design 32

IV.5 Cascade amplifiersTwo-stage amplifiers - 8

( ) ( ) ( )( )( )

0

1 2

11 / 1 /

dod

in

A s zVA s s

V s p s p−

= = −− −

Compensated operational amplifier

0d mI mII I IIA g g R R=

( ) ( )1

1 1

I I C II II C mII I II c mII I II c

pR C C R C C g R R C g R R C

≅ − ≅ −+ + + +

( )2mII c

I II

mII

I I IC II

g Cp

C C C C CgC

−≅ − ≅+ +

mII

c

gz

C=

x x x x

s plane

pole splitting

mII

c

gz

C=1

I IR C−

1

II IIR C− 1p2p

σ

Note: 0 12 /d mI CGBW A p g Cπ = =

/T CSR I C=( ) ( )/ 1 1

2 T mI t f

SRI g n i

GBWφ

π= = + +

Page 33: Chap. IV –CMOS Operational Amplifiers · EEL 6713 - Analog Integrated Circuit Design 3 IV.1 Introduction 22 112 1 1 11 1 11 o i v RR vRRR AR = +≅+ ++ Applications of op amps -

EEL 6713 - Analog Integrated Circuit Design 33

IV.5 Cascade amplifiersTwo-stage amplifiers - 9

x x

s-plane

mII

c

gz

C=

1p

2p

σ

To avoid low phase margin,choose 2 , 2π>p z GBW

12π ≅ m

C

gGBW

C

1 1

2

2 2tan tan

2π π π

φ − − ≅ − − − M

GBW GBWp z

1 1

6 6

( / )

+ +

m I II C I II m

m C m

g C C C C C gg C g

Page 34: Chap. IV –CMOS Operational Amplifiers · EEL 6713 - Analog Integrated Circuit Design 3 IV.1 Introduction 22 112 1 1 11 1 11 o i v RR vRRR AR = +≅+ ++ Applications of op amps -

EEL 6713 - Analog Integrated Circuit Design 34

IV.5 Cascade amplifiersTwo-stage amplifiers - 10

Laker & Sansen’s book

Simplified model for noise analysis(input-referred noise current source not accounted for)

2 22

2 22

oI nId

oII nIIvII

v eA

f f

v eA

f f

=∆ ∆

=∆ ∆

Ad is the op amp voltage gain

AvII is the voltage gain relative to the second noise source. For the calculation, account for the output impedance of the first stage and compensation network)

2nIe

compensation

2nIIe

ov

Page 35: Chap. IV –CMOS Operational Amplifiers · EEL 6713 - Analog Integrated Circuit Design 3 IV.1 Introduction 22 112 1 1 11 1 11 o i v RR vRRR AR = +≅+ ++ Applications of op amps -

EEL 6713 - Analog Integrated Circuit Design 35

IV.5 Cascade amplifiersTwo-stage amplifiers - 11

NOTE: white noise onlyK. Laker and W. Sansen: Design ofAnalog Integrated Circuits and Systems, McGraw-Hill, 1994

Open-loop output noise of a Miller OTA

1st stage

2nd stageAvII

Ad

Page 36: Chap. IV –CMOS Operational Amplifiers · EEL 6713 - Analog Integrated Circuit Design 3 IV.1 Introduction 22 112 1 1 11 1 11 o i v RR vRRR AR = +≅+ ++ Applications of op amps -

EEL 6713 - Analog Integrated Circuit Design 36

IV.5 Cascade amplifiersTwo-stage amplifiers - 12

Two-stage CMOS op amp with a cascode current mirror load in the input stage

P.R. Gray, P.J. Hurst, S.H. Lewis, and R.G. Meyer, Analysis and Design of Analog Integrated Circuits, 4th. Ed., Wiley, 2001.

This connection reduces the feedforward current through Cwhen comparing to connectingC to node Y

Page 37: Chap. IV –CMOS Operational Amplifiers · EEL 6713 - Analog Integrated Circuit Design 3 IV.1 Introduction 22 112 1 1 11 1 11 o i v RR vRRR AR = +≅+ ++ Applications of op amps -

EEL 6713 - Analog Integrated Circuit Design 37

IV.5 Cascade amplifiersTwo-stage amplifiers - 13

P. Allen and D. Holberg – CMOSAnalog Circuit Design, 2nd. Ed., Oxford, New York, 2002.

CMOS two-stage op amp using nulling resistor compensation

Page 38: Chap. IV –CMOS Operational Amplifiers · EEL 6713 - Analog Integrated Circuit Design 3 IV.1 Introduction 22 112 1 1 11 1 11 o i v RR vRRR AR = +≅+ ++ Applications of op amps -

EEL 6713 - Analog Integrated Circuit Design 38

IV.5 Cascade amplifiersTwo-stage amplifiers - 14

CMOS two-stage op amp using nulling resistor compensation

P. Allen and D. Holberg – CMOSAnalog Circuit Design, 2nd. Ed., Oxford, New York, 2002.

1

1

mII I II c

pg R R C

≅ −

( )2mII c

I II

mII

I I IC II

g Cp

C C C C CgC

−≅ − ≅+ + ( )6

11/c z m

zC R g

= −−

3

1

z I

pR C

= −

Placing z on top of p2:6 6

11 c IIz

m c

c L

m c

CC

CR

g CC

gC +

= ≅

+

High-frequency pole

Determined by source/drain and gate voltages, and W/L

Page 39: Chap. IV –CMOS Operational Amplifiers · EEL 6713 - Analog Integrated Circuit Design 3 IV.1 Introduction 22 112 1 1 11 1 11 o i v RR vRRR AR = +≅+ ++ Applications of op amps -

EEL 6713 - Analog Integrated Circuit Design 39

IV.5 Cascade amplifiersTwo-stage amplifier: design equations - 1

0 1 2

11

2 4

62

6 7

d d d

md

ds ds

md

ds ds

A A A

gA

g g

gA

g g

=

=+

=+

( )2mII c

I II

mII

I I IC II

g Cp

C C C C CgC

−≅ − ≅+ +

mII

c

gz

C=

0 12 /d mI CGBW A p g Cπ = =

/T CSR I C=

CL

VSS

M4M3

M1 M2

M8 M5

M7

M6

IT vi

+

-

CC

vo

1:1 1:B

1:1 1:2B

inv noninv

VDD

Page 40: Chap. IV –CMOS Operational Amplifiers · EEL 6713 - Analog Integrated Circuit Design 3 IV.1 Introduction 22 112 1 1 11 1 11 o i v RR vRRR AR = +≅+ ++ Applications of op amps -

EEL 6713 - Analog Integrated Circuit Design 40

IV.5 Cascade amplifiersTwo-stage amplifier: design equations - 2

7 7SS DSsat o DD DSsatV V V V V− + < < −

max

min

ICM

ICM

V

V

=

=See diff. amp.

CMRR, noise (white & 1/f), PSRR±, (random) offset voltage,

CL

VSS

M4M3

M1 M2

M8 M5

M7

M6

IT vi

+

-

CC

vo

1:1 1:B

1:1 1:2B

inv noninv

VDD