CH15 Chemical Equilibrium

download CH15 Chemical Equilibrium

of 97

Transcript of CH15 Chemical Equilibrium

  • 8/13/2019 CH15 Chemical Equilibrium

    1/97

    Chapter 15:Chemical Equilibrium

    Chemistry: The Molecular Nature

    of Matter, 6E

    Jespersen/Brady/Hyslop

  • 8/13/2019 CH15 Chemical Equilibrium

    2/97

    Jespersen/Brady/HyslopChemistry:TheMolecularNatureofMatter,6E 2

    Dynamic Equilibrium in ChemicalSystems

    Chemical equilibrium exists when

    Rates of forward and reverse reactions are equal

    Reaction appears to stop

    [reactants] and [products] don't change overtime

    Remain constant

    Both forward and reverse reaction never cease Equilibrium signified by double arrows ( )

    or equal sign (=)

  • 8/13/2019 CH15 Chemical Equilibrium

    3/97

    Jespersen/Brady/HyslopChemistry:TheMolecularNatureofMatter,6E 3

    Dynamic Equilibrium

    N2O4 2 NO2

    Initially forward reaction rapid

    As some reacts [N2O4] so rate forward

    Initially Reverse reaction slow

    No products

    As NO2forms

    Reverse rate

    Ions collide more frequently as [ions]

    Eventually rateforward= ratereverse

    Equilibrium

  • 8/13/2019 CH15 Chemical Equilibrium

    4/97

    Jespersen/Brady/HyslopChemistry:TheMolecularNatureofMatter,6E 4

    Dynamic Equilibrium

    Almost all systems come to equilibrium

    Where equilibrium lies depends on system

    Some systems equilibrium hard to detect

    Essentially no reactants or no products present

    (Fig. 15.1)

  • 8/13/2019 CH15 Chemical Equilibrium

    5/97

    Jespersen/Brady/HyslopChemistry:TheMolecularNatureofMatter,6E 5

    Reaction ReversibilityClosed system

    Equilibrium can bereached from eitherdirection

    Independent of whetherit starts with reactantsor products

    Alwayshave the samecomposition atequilibrium under same

    conditionsN

    2O

    4 2 NO

    2

  • 8/13/2019 CH15 Chemical Equilibrium

    6/97

    Jespersen/Brady/HyslopChemistry:TheMolecularNatureofMatter,6E 6

    For given overall system composition

    Always reach same equilibrium concentrations

    Whether equilibrium is approached from forwardor

    reversedirection

    N2O4 2 NO2

    Reactants ProductsEquilibrium

  • 8/13/2019 CH15 Chemical Equilibrium

    7/97Jespersen/Brady/HyslopChemistry:TheMolecularNatureofMatter,6E 7

    Equilibrium

    Simple relationship among [reactants] and

    [products] for any chemical system atequilibrium

    Called = mass action expression

    Derived from thermodynamics Forward reaction:A B Rate = kf[A] Reverse reaction:A B Rate = kr[B]

    At equilibrium: A B kf[A] = kr[B] rate forward= rate reverse

    rearranging:constant

    [A]

    [B]

    r

    f

    k

    k

    kf

    kr

  • 8/13/2019 CH15 Chemical Equilibrium

    8/97Jespersen/Brady/HyslopChemistry:TheMolecularNatureofMatter,6E 8

    Ex: H2(g)+ I2(g) 2HI(g) 440C

    Expt

    #InitialAmts

    Equilm

    Amts

    Equilm

    [M]

    I 1.00molH2 0.222 molH2 0.0222 MH2

    10 L 1.00mol I2

    0.222 molI2

    0.0222 MI2

    0.00 mol HI 1.56 molHI 0.156 MHI

    II 0.00 molH2 0.350 molH2 0.0350 MH2

    10 L 0.100 mol I2 0.450 molI2 0.0450 MI2

    3.50mol HI 2.80 molHI 0.280 MHI

  • 8/13/2019 CH15 Chemical Equilibrium

    9/97Jespersen/Brady/HyslopChemistry:TheMolecularNatureofMatter,6E 9

    Ex: H2(g)+ I2(g) 2HI(g) 440C

    Expt#

    Initial Amts EquilmAmts

    Equilm[M]

    III 0.0150molH2 0.150 molH2 0.0150 MH2

    10 L 0.00 mol I2 0.135 molI2 0.0135 MI21.27 mol HI 1.00 molHI 0.100 MHI

    IV 0.00 molH2 0.442 molH2 0.0442 MH2

    10 L 0.00 mol I2 0.442 molI2 0.0442 MI2

    4.00mol HI 3.11 molHI 0.311 MHI

  • 8/13/2019 CH15 Chemical Equilibrium

    10/97Jespersen/Brady/HyslopChemistry:TheMolecularNatureofMatter,6E 10

    Mass Action Expression (MAE)

    Uses stoichiometric coefficients as exponent

    for each reactant

    For reaction: aA + bB cC + dD

    Reaction quotient

    Numerical value of mass action expression

    Equals Q at any time, and

    Equals K only when reaction is known to be atequilibrium

    ba

    dc

    [B][A] [D][C]Q

  • 8/13/2019 CH15 Chemical Equilibrium

    11/97Jespersen/Brady/HyslopChemistry:TheMolecularNatureofMatter,6E 11

    Mass Action Expression

    = same for all data sets at equilibrium]][I[H

    [HI]

    Q 22

    2

    ]][I[H

    [HI]Q

    22

    2

    4.49)0222.0)(0222.0(

    )156.0( 2

    8.49)0450.0)(0350.0(

    )280.0( 2

    4.49)0135.0)(0150.0(

    )100.0( 2

    5.49)0442.0)(0442.0(

    )311.0( 2

    Equilibrium Concentrations(M)

    Expt [H2

    ] [I2

    ] [HI]

    I 0.0222 0.0222 0.156

    II 0.0350 0.0450 0.280

    III 0.0150 0.0135 0.100

    IV 0.0442 0.0442 0.311

    Average = 49.5

  • 8/13/2019 CH15 Chemical Equilibrium

    12/97Jespersen/Brady/HyslopChemistry:TheMolecularNatureofMatter,6E 12

    Equilibrium Law

    For reaction at equilibrium write the following

    Equilibrium Law (at 440 C)

    Equilibrium constant= Kc= constant at given T

    Use Kcsince usually working with concentrations inmol/L

    For chemical equilibriumto exist in reactionmixture, reaction quotient Q must be equal toequilibrium constant, Kc

    5.49]][I[H

    [HI]

    22

    2

    cK

  • 8/13/2019 CH15 Chemical Equilibrium

    13/97Jespersen/Brady/HyslopChemistry:TheMolecularNatureofMatter,6E 13

    Predicting Equilibrium Law

    For general chemical reaction:

    dD + eE fF + gG

    Where D, E, F, and Grepresent chemical formulas

    d, e, f, and gare coefficients

    Mass action expression =

    Note: Exponentsin mass action expression

    are stoichiometric coefficientsin balancedequation.

    Equilibrium lawis:

    ed

    gf

    [E][D]

    [G][F]

    ed

    gf

    [E][D]

    [G][F]cK

  • 8/13/2019 CH15 Chemical Equilibrium

    14/97Jespersen/Brady/HyslopChemistry:TheMolecularNatureofMatter,6E 14

    Predicting Equilibrium Law

    Where only concentrations that satisfy this

    equation are equilibriumconcentrations Numerator

    Multiply [products] raised to their

    stoichiometric coefficients Denominator

    Multiply [reactants] raised to their

    stoichiometric coefficients

    is scientists conventiond

    f

    cK

    ]reactants[

    ]products[

  • 8/13/2019 CH15 Chemical Equilibrium

    15/97Jespersen/Brady/HyslopChemistry:TheMolecularNatureofMatter,6E 15

    Ex. Equilibrium Law

    3 H2(g) + N2(g) 2 NH3(g)

    Kc= 4.26 x 108at 25 C

    What is equilibrium law?

    8

    23

    2

    23 1026.4][N][H

    ][NH cK

  • 8/13/2019 CH15 Chemical Equilibrium

    16/97Jespersen/Brady/HyslopChemistry:TheMolecularNatureofMatter,6E 16

    Learning Check

    Write mass action expressions for the following:

    2 NO2 (g) N2O4 (g)

    2CO (g)+ O2 (g) 2 CO2 (g)

    22

    42

    ][NO

    ]O[NQ

    ][O[CO]

    ][COQ

    22

    22

  • 8/13/2019 CH15 Chemical Equilibrium

    17/97

  • 8/13/2019 CH15 Chemical Equilibrium

    18/97Jespersen/Brady/HyslopChemistry:TheMolecularNatureofMatter,6E 18

    Manipulating Equations for ChemicalEquilibria

    Various operations can be performed onequilibrium expressions

    1. When directionof equation is reversed,

    new equilibriumconstantis reciprocaloforiginal

    A + B C + D

    C +D A + B

    c

    c

    K

    K1

    [C][D]

    [A][B]

    [A][B]

    [C][D]cK

  • 8/13/2019 CH15 Chemical Equilibrium

    19/97Jespersen/Brady/HyslopChemistry:TheMolecularNatureofMatter,6E 19

    Ex. Manipulating Equilibria 1

    1.When directionof equation is reversed, new

    equilibriumconstantis reciprocalof original

    3 H2(g) + N2(g) 2 NH3(g) at 25C

    2 NH3(g) 3 H2(g)+ N2(g) at 25C

    9

    823

    23

    2 1035.21026.4

    11

    ][NH

    ][N][H

    c

    cK

    K

    8

    23

    2

    23 1026.4

    ][N][H][NH cK

  • 8/13/2019 CH15 Chemical Equilibrium

    20/97Jespersen/Brady/HyslopChemistry:TheMolecularNatureofMatter,6E 20

    Manipulating Equilibria 2

    2.When coefficients in equation are

    multiplied by a factor, equilibriumconstant is raisedto a powerequal to thatfactor.

    A + B C + D

    3A + 3B 3C + 3D

    [A][B]

    [C][D]cK

    3

    33

    33

    [A][B]

    [C][D]

    [A][B]

    [C][D]

    [A][B]

    [C][D]

    [B][A]

    [D][C]cc KK

  • 8/13/2019 CH15 Chemical Equilibrium

    21/97Jespersen/Brady/HyslopChemistry:TheMolecularNatureofMatter,6E 21

    Manipulating Equilibria 2

    2. When coefficients in equation are multiplied by

    factor, equilibrium constant is raisedto powerequal to that factor

    3 H2(g) + N2(g) 2 NH3(g) at 25C

    multiply by 3

    9 H2(g)+ 3 N2(g) 6 NH3(g)

    8

    23

    2

    23 1026.4][N][H

    ][NH cK

    3

    3

    2

    9

    2

    63

    ][N][H

    ][NHcc KK

  • 8/13/2019 CH15 Chemical Equilibrium

    22/97

  • 8/13/2019 CH15 Chemical Equilibrium

    23/97

    Jespersen/Brady/HyslopChemistry:TheMolecularNatureofMatter,6E 23

    3. When chemical equilibriaare added, their

    equilibriumconstantsare multiplied

    ][CO][NO

    ]][CO[NO

    ][NO

    ][NO][NO

    3

    222

    2

    3

    2 NO2(g) NO3(g)+ NO(g)

    NO3(g)+ CO(g) NO2(g)+ CO2(g)

    NO2(g)+ CO(g) NO(g)+ CO2(g)

    22

    3

    ][NO

    ][NO][NO1

    cK

    ][CO][NO

    ]][CO[NO

    322

    2 cK

    ][CO][NO

    ][NO][CO

    2

    23

    cK

    Therefore 321 ccc KKK

    Manipulating Equilibria 3

    ][CO][NO

    ][NO][CO

    2

    2

  • 8/13/2019 CH15 Chemical Equilibrium

    24/97

    Jespersen/Brady/HyslopChemistry:TheMolecularNatureofMatter,6E 24

    Learning CheckFor: N2(g) + 3 H2(g) 2 NH3(g)

    Kc = 500at a particular temperature.What would be Kcfor following?

    2 NH3(g) N2(g) + 3 H2(g)

    N2(g) + 3/2 H2(g) NH3(g)

    50011

    cc

    KK

    22.4

    0.002

    50021

    cc KK

  • 8/13/2019 CH15 Chemical Equilibrium

    25/97

    Jespersen/Brady/HyslopChemistry:TheMolecularNatureofMatter,6E 25

    Equilibrium Constant, Kc Constant value equal to ratio of product

    concentrations to reactant concentrationsraised to their respective exponents

    Changes with temperature (vant HoffEquation)

    Depends on solution concentrationsAssumes reactants and products are in

    solution

    d

    f

    c

    K

    ]reactants[

    ]products[

  • 8/13/2019 CH15 Chemical Equilibrium

    26/97

    Jespersen/Brady/HyslopChemistry:TheMolecularNatureofMatter,6E 26

    Equilibrium Constant, Kp Based on reactions in which substances are

    gaseous

    Assumes gas quantities are expressed inatmospheres in mass action expression

    Use partial pressures for each gas in place ofconcentrations

    Ex. N2

    (g)

    + 3 H2

    (g)

    2 NH3

    (g)

    3

    HN

    2NH

    22

    3

    PP

    PPK

  • 8/13/2019 CH15 Chemical Equilibrium

    27/97

    Jespersen/Brady/HyslopChemistry:TheMolecularNatureofMatter,6E 27

    How are Kpand Kc Related? Start with Ideal Gas Law

    PV=nRT

    Rearranging gives

    Substituting P/RTfor molar concentrationinto Kcresults in pressure-based formula

    n = moles of gas in productmoles ofgas in reactant

    ncp RTKK

    )(

    MRTRTV

    nP

  • 8/13/2019 CH15 Chemical Equilibrium

    28/97

    Jespersen/Brady/HyslopChemistry:TheMolecularNatureofMatter,6E 28

    Learning Check

    Consider the reaction: 2NO2(g) N2O4(g)

    If Kp=0.480for the reaction at 25C, what isvalue of Kcat same temperature?

    n = nproductsnreactants= 12 =1n

    cp (RT)KK

    1np

    c)2980821.0(

    480.0(RT)

    KK

    K

    Kc= 11.7

  • 8/13/2019 CH15 Chemical Equilibrium

    29/97

    Jespersen/Brady/HyslopChemistry:TheMolecularNatureofMatter,6E

    Your Turn!Consider the reactionA(g)+ 2B(g) 4C(g)

    If the Kcfor the reaction is 0.99 at 25C, whatwould be the Kp?

    A. 0.99

    B. 2.0C. 24.

    D. 2400

    E. None of these

    n=(4

    3)=1

    Kp= Kc(RT)n

    Kp= 0.99*(0.082057*298.15)1

    Kp= 24

    29

  • 8/13/2019 CH15 Chemical Equilibrium

    30/97

    Jespersen/Brady/HyslopChemistry:TheMolecularNatureofMatter,6E 30

    Homogeneous reaction/equilibrium

    All reactants and products in same phase

    Can mix freely

    Heterogeneous reaction/equilibrium

    Reactants and products in different phases

    Cant mix freely

    Solutions are expressed in M

    Gases are expressed in M

    Governed by Kc

  • 8/13/2019 CH15 Chemical Equilibrium

    31/97

    Jespersen/Brady/HyslopChemistry:TheMolecularNatureofMatter,6E 31

    Heterogeneous Equilibria

    2NaHCO3(s) Na2CO3(s)+ H2O(g)+ CO2(g)

    Equilibrium Law =

    Can write in simpler form

    For any pure liquid or solid, ratio of moles tovolume of substance (M) is constant

    Ex. 1 mol NaHCO3occupies 38.9 cm3

    2 mol NaHCO3occupies 77.8 cm3

    2)(3

    )(2)(2)(32

    ][

    ]][][[

    s

    ggs

    NaHCO

    COOHCONaK

    MM 7.25L0.0389

    NaHCOmol1 3

    MM 7.25L0.0778

    NaHCOmol2 3

  • 8/13/2019 CH15 Chemical Equilibrium

    32/97

    Jespersen/Brady/HyslopChemistry:TheMolecularNatureofMatter,6E 32

    Heterogeneous Equilibria2NaHCO3(s) Na2CO3(s)+ H2O(g)+ CO2(g)

    Ratio (n/V) or M of NaHCO3is constant (25.7 mol/L)regardless of sample size

    Likewise can show that molar concentration ofNa

    2

    CO3

    solid is constant regardless of sample size

    So concentrations of pure solids and liquidscan be incorporated into equilibrium constant,Kc

    Equilibrium law for heterogeneous system writtenwithout concentrations of pure solids or liquids

    ]CO][OH[]NaHCO[

    ]CONa[)(2)(22

    )(3

    )(

    32 ggs

    s

    c KK

  • 8/13/2019 CH15 Chemical Equilibrium

    33/97

    Jespersen/Brady/HyslopChemistry:TheMolecularNatureofMatter,6E 33

    Learning Check

    Write equilibrium laws for the following:

    Ag+(aq)+ Cl(aq) AgCl(s)

    H3PO4(aq)+ H2O() H3O+(aq)+ H2PO4

    (aq)

    ]][Cl[Ag

    1

    cK

    ]PO[H

    ]PO][HO[H

    43

    423

    cK

  • 8/13/2019 CH15 Chemical Equilibrium

    34/97

    Jespersen/Brady/HyslopChemistry:TheMolecularNatureofMatter,6E

    Your Turn!Given the reaction:

    3Ca2+(aq) + 2PO43(aq) Ca3(PO4)2(s)What is the mass action expression?

    23

    4

    32

    234

    32243

    234

    32

    243

    234

    32

    ][PO][Ca

    ]1[QD.

    ][PO][Ca])(POCa[QC.

    ]1[

    ][PO][CaQB.

    ])PO([Ca

    ]PO[][CaQA.

    34

  • 8/13/2019 CH15 Chemical Equilibrium

    35/97

    Jespersen/Brady/HyslopChemistry:TheMolecularNatureofMatter,6E

    Your Turn!Given the reaction:

    3Ca2+(aq) + 2PO43(aq) Ca3(PO4)2(s)What is mass action expressionfor the reverse

    reaction?

    23432

    234

    32

    243

    234

    32

    243

    234

    32

    ]PO[]Ca[

    ]1[QD.

    ]PO[]Ca[

    ])(PO[CaQC.

    ]1[

    ]PO[]Ca[QB.

    ])(PO[Ca

    ]PO[]Ca[

    QA.

    35

  • 8/13/2019 CH15 Chemical Equilibrium

    36/97

    Jespersen/Brady/HyslopChemistry:TheMolecularNatureofMatter,6E 36

    Interpreting KC

    Large K (K>>1)

    Means product rich mixture

    Reaction goes far towardcompletion

    Ex.

    2SO2(g) + O2(g) 2SO3(g)

    Kc= 7.0 1025at 25 C

    1

    100.7

    ][O][SO

    ][SO 25

    2

    2

    2

    23 cK

  • 8/13/2019 CH15 Chemical Equilibrium

    37/97

    Jespersen/Brady/HyslopChemistry:TheMolecularNatureofMatter,6E 37

    Interpreting KC

    Small K (K

  • 8/13/2019 CH15 Chemical Equilibrium

    38/97

    Jespersen/Brady/HyslopChemistry:TheMolecularNatureofMatter,6E 38

    Interpreting KC

    K1

    Means product andreactant concentrations

    close to equal Reaction goes only ~

    halfway

  • 8/13/2019 CH15 Chemical Equilibrium

    39/97

    Jespersen/Brady/HyslopChemistry:TheMolecularNatureofMatter,6E 39

    Size of K gives measure of howreaction proceeds

    K >> 1 [products] >> [reactants]

    K = 1 [products] = [reactants]

    K

  • 8/13/2019 CH15 Chemical Equilibrium

    40/97

    Jespersen/Brady/HyslopChemistry:TheMolecularNatureofMatter,6E 40

    Learning Check

    Consider the reaction of 2NO2(g) N2O4(g)

    If Kp= 0.480 at 25C, does the reaction favorproduct or reactant?

    Kis small (K < 1)

    Reaction favors reactantSince K is close to 1, significant amounts of

    bothreactant and product are present

    ilib i i i d Shif

  • 8/13/2019 CH15 Chemical Equilibrium

    41/97

    Jespersen/Brady/HyslopChemistry:TheMolecularNatureofMatter,6E 41

    Equilibrium Positions and Shifts

    Equilibrium positions

    Combination of concentrations that allow Q = K

    Infinite number of possible equilibrium positions

    Le Chteliers principle System at equilibrium (Q = K) when upset by

    disturbance (Q K) will shift to offset stress

    System said toshift to rightwhen

    forwardreaction is dominant (Q < K) System said toshift to leftwhen reverse

    direction is dominant (Q > K)

    R l ti hi B t Q d K

  • 8/13/2019 CH15 Chemical Equilibrium

    42/97

    Jespersen/Brady/HyslopChemistry:TheMolecularNatureofMatter,6E 42

    Relationship Between Q and K

    Q = K reaction at equilibrium

    Q < K reactants products Too many reactants

    Must convert some reactant to product to movereaction toward equilibrium

    Q > K reactants products Too many products Must convert some product to reactant to move

    reaction toward equilibrium

    E l f L Cht li P i i l

  • 8/13/2019 CH15 Chemical Equilibrium

    43/97

    Jespersen/Brady/HyslopChemistry:TheMolecularNatureofMatter,6E 43

    Examples of Le Chteliers Principle

    Lets see how this works with changes in

    1. Concentration

    2. Pressure and volume

    3. Temperature

    4. Catalysts

    5. Adding inert gas to system at constant

    volume

    1 Eff t f Ch i C t ti

  • 8/13/2019 CH15 Chemical Equilibrium

    44/97

    Jespersen/Brady/HyslopChemistry:TheMolecularNatureofMatter,6E 44

    1. Effect of Change in ConcentrationCu(H2O)4

    2+(aq)+ 4Cl(aq) CuCl42(aq)+ 4H2O

    blue yellow Equilibrium mixture is blue-green

    Add excess Cl(conc HCl) Equilibrium shifts to products

    Makes more yellow CuCl42

    Solution becomes green

    4)()(

    2

    42

    42)(

    24

    ]Cl][O)Cu(H[

    ]OH][CuCl[

    aqaq

    aqcK

    4)()(

    242

    )(24

    42 ]Cl][O)Cu(H[

    ]CuCl[

    ]OH[ aqaq

    aqcc

    KK

    1 Eff t f Ch i C t ti

  • 8/13/2019 CH15 Chemical Equilibrium

    45/97

    Jespersen/Brady/HyslopChemistry:TheMolecularNatureofMatter,6E 45

    1. Effect of Change in Concentration

    Cu(H2O)42+(aq)+ 4Cl(aq) CuCl4

    2(aq)+ 4H2O

    blue yellow

    Add Ag+ Removes Cl: Ag+(aq)+ Cl(aq) AgCl(s) Equilibrium shifts to reactants

    Makes more blue Cu(H2O)42+

    Solution becomes bluer

    Add H2O?

    4)()(

    242

    )(24

    ]Cl][O)Cu(H[

    ]CuCl[

    aqaq

    aqcK

    Effect of Change in Concentration

  • 8/13/2019 CH15 Chemical Equilibrium

    46/97

    Jespersen/Brady/HyslopChemistry:TheMolecularNatureofMatter,6E

    Effect of Change in Concentration 2SO2(g) + O2(g) 2SO3(g)

    Kc= 2.4 x 10-3 at 700 oC Which direction will the reaction move if

    0.125 moles of O2is added to an equilibrium

    mixture ?A. Towards the products

    B. Towards the reactants

    C. No change will occur

    46

    Eff t f Ch i C t ti

  • 8/13/2019 CH15 Chemical Equilibrium

    47/97

    Jespersen/Brady/HyslopChemistry:TheMolecularNatureofMatter,6E 47

    Effect of Change in Concentration

    When changing concentrations of reactants

    or products Equilibrium shifts to removereactants or

    products that have been added

    Equilibrium shifts to replacereactants orproducts that have been removed

    Eff t f P d V l Ch

  • 8/13/2019 CH15 Chemical Equilibrium

    48/97

    Jespersen/Brady/HyslopChemistry:TheMolecularNatureofMatter,6E 48

    Effect of Pressure and Volume Changes

    Consider gaseous system at constant Tand n

    3H2(g) + N2(g) 2NH3(g) If reduce volume (V)

    Expect Pressure to increase (P) To reduce pressure, look at each side of reaction Which has less moles of gas

    Reactants = 3 + 1 = 4 moles gas

    Products = 2 moles gas Reaction favors products (shifts to right)

    3HN

    2NH

    22

    3

    PP

    PKP

    Eff t f P d V Ch

  • 8/13/2019 CH15 Chemical Equilibrium

    49/97

    Jespersen/Brady/HyslopChemistry:TheMolecularNatureofMatter,6E 49

    Effect of P and V Changes

    Consider gaseous system at constant Tand n

    Ex. H2(g) + I2(g) 2 HI(g)

    If pressure is increased, what is the effect onequilibrium?

    nreactant= 1 + 1 = 2

    nproduct= 2

    Predict no change or shift in equilibrium

    22 IH

    2HI

    PP

    PKP

    Eff t f P d V Ch

  • 8/13/2019 CH15 Chemical Equilibrium

    50/97

    Jespersen/Brady/HyslopChemistry:TheMolecularNatureofMatter,6E 50

    2NaHSO3(s) NaSO3(s)+ H2O(g)+ SO2(g)

    If you decrease volume of reaction, what is

    the effect on equilibrium? Reactants: no moles gas = all solids

    Products: 2 moles gas

    V, causes P Reaction shifts to left (reactants), as this has

    fewer moles of gas

    Effect of P and V Changes

    22 SOOH PPKP

    Effect of P and V Changes

  • 8/13/2019 CH15 Chemical Equilibrium

    51/97

    Jespersen/Brady/HyslopChemistry:TheMolecularNatureofMatter,6E 51

    Reducing volume of gaseous reaction

    mixture causes reaction to decrease numberof molecules of gas, if it can

    Increasing pressure

    Moderate pressure changes have negligibleeffect on reactions involving only liquidsand/or solids

    Substances are already almost incompressible Changes in V, P and [X] effect position of

    equilibrium (Q), but not K

    Effect of P and V Changes

    Effect of Change in Temperature

  • 8/13/2019 CH15 Chemical Equilibrium

    52/97

    Jespersen/Brady/HyslopChemistry:TheMolecularNatureofMatter,6E

    Effect of Change in Temperature

    Cu(H2O)42+(aq)+ 4Cl(aq) CuCl4

    2(aq)+ 4H2O

    blue yellow Reaction endothermic

    Adding heat shifts equilibrium toward products

    Cooling shifts equilibrium toward reactants 52

    Ice

    water

    Boiling

    water

    Effect of Temperature Changes

  • 8/13/2019 CH15 Chemical Equilibrium

    53/97

    Jespersen/Brady/HyslopChemistry:TheMolecularNatureofMatter,6E 53

    Effect of Temperature ChangesH2O(s) H2O() H=+6 kJ (at 0 C)

    Energy + H2O(s) H2O()

    Energy is reactant

    Add heat, shift reaction right

    3H2(g)+ N2(g) 2NH3(g) Hf=47.19 kJ

    3 H2(g)+ N2(g) 2 NH3(g)+ energy

    Energy is product Add heat, shift reaction left

    Effect of Temperature Changes

  • 8/13/2019 CH15 Chemical Equilibrium

    54/97

    Jespersen/Brady/HyslopChemistry:TheMolecularNatureofMatter,6E 54

    Effect of Temperature Changes

    Tshifts reaction in direction that producesendothermic(heat absorbing) change

    T shifts reaction in direction that producesexothermic(heat releasing) change

    Changes in T change value of mass actionexpression at equilibrium, so K changed

    K depends on T

    T of exothermic reaction makes K smaller

    More heat (product) forces equilibrium to reactants

    T of endothermic reaction makes K larger

    More heat (reactant) forces equilibrium to products

    Catalysts And Equilibrium

  • 8/13/2019 CH15 Chemical Equilibrium

    55/97

    Jespersen/Brady/HyslopChemistry:TheMolecularNatureofMatter,6E 55

    Catalysts And Equilibrium

    Catalyst lowers Ea

    for both forwardand reversereaction

    Change in Eaaffects rates krand kfequally

    Catalysts have noeffect onequilibrium

    Effect of Adding Inert Gas

  • 8/13/2019 CH15 Chemical Equilibrium

    56/97

    Jespersen/Brady/HyslopChemistry:TheMolecularNatureofMatter,6E 56

    Effect of Adding Inert Gas

    Inert gas

    One that does not react with components ofreaction

    Ex. Argon, Helium, Neon, usually N2

    Adding inert gas to reaction at fixedV(n andT), Pof all reactants and products

    Since it doesnt react with anything

    No change in concentrations of reactants orproducts

    No net effect on reaction

    How to Use Le Chteliers Principle

  • 8/13/2019 CH15 Chemical Equilibrium

    57/97

    Jespersen/Brady/HyslopChemistry:TheMolecularNatureofMatter,6E 57

    How to Use Le Chtelier s Principle

    1. Write mass action expression for reaction

    2. Examine relationship between affectedconcentration and Q (direct or indirect)

    3. Compare Q to K

    If change makes Q > K, shifts Left

    If change makes Q < K, shifts Right

    If change has no effect on Q, no shift expected

    Learning Check:

  • 8/13/2019 CH15 Chemical Equilibrium

    58/97

    Jespersen/Brady/HyslopChemistry:TheMolecularNatureofMatter,6E 58

    Learning Check:

    Consider:

    H3PO4(aq)+ 3OH(aq) 3H2O()+ PO43(aq)

    What will happen if PO43is removed?

    Q is proportional to [PO43

    ] [PO4

    3], Q

    Q < K equilibrium shifts to right

    ]POH[]OH[

    ]PO[Q

    433

    34

    Learning Check:

  • 8/13/2019 CH15 Chemical Equilibrium

    59/97

    Jespersen/Brady/HyslopChemistry:TheMolecularNatureofMatter,6E 59

    Learning Check:The reaction

    H3PO4(aq)

    + 3OH

    (aq)

    3H2O(aq)

    + PO43(aq)

    is exothermic.

    What will happen if system is cooled?

    Since reaction is exothermic, heat is product

    Heat is directly proportional to Q

    T, Q

    Q < K equilibrium shifts to right

    heat

    ]POH[]OH[]PO[Q

    433

    34

    Your Turn!

  • 8/13/2019 CH15 Chemical Equilibrium

    60/97

    Jespersen/Brady/HyslopChemistry:TheMolecularNatureofMatter,6E

    Your Turn!The equilibrium between aqueous cobalt ion

    and the chlorine ion is shown:[Co(H2O)6]

    2+(aq) + 4Cl(aq) [Co(Cl)4]2(aq) + 6H2O()

    pink blue

    It is noted that heating a pink sample causes itto turn violet.

    The reaction is:

    A. endothermicB. exothermic

    C. cannot tell from the given

    information 60

    Your Turn!

  • 8/13/2019 CH15 Chemical Equilibrium

    61/97

    Jespersen/Brady/HyslopChemistry:TheMolecularNatureofMatter,6E

    Your Turn!

    The following are equilibrium constants for the

    reaction of acids in water, Ka. Which is themost efficient reaction?

    A. Ka= 2.2103

    B. Ka= 1.8105

    C. Ka= 4.01010

    D. Ka= 6.3103

    61

    Equilibrium Calculations

  • 8/13/2019 CH15 Chemical Equilibrium

    62/97

    Jespersen/Brady/HyslopChemistry:TheMolecularNatureofMatter,6E 62

    Equilibrium Calculations

    For gaseous reactions, use either KPor KC

    For solution reactions, must use KC

    Either way, two basic categories ofcalculations

    1. Calculate Kfrom known equilibriumconcentrations or partial pressures

    2. Calculate one or more equilibrium

    concentrations or partial pressures usingknown KPor KC

    Calculating KC from Equilibrium

  • 8/13/2019 CH15 Chemical Equilibrium

    63/97

    Jespersen/Brady/HyslopChemistry:TheMolecularNatureofMatter,6E 63

    Calculating KCfrom EquilibriumConcentrations

    When all concentrations at equilibrium areknown

    Use mass action expression to relateconcentrations to KC

    Two common types of calculationsA. Given equilibrium concentrations, calculate K

    B. Given initial concentrations and one final

    concentration Calculate equilibrium concentration of

    all other species

    Then calculate K

    Calculating KC Given Equilibrium

  • 8/13/2019 CH15 Chemical Equilibrium

    64/97

    Jespersen/Brady/HyslopChemistry:TheMolecularNatureofMatter,6E 64

    Calculating KCGiven EquilibriumConcentrations

    Ex. 1 N2O4(g) 2NO2(g) If you place 0.0350 mol N2O4in 1 L flask at

    equilibrium, what is KC?

    [N2O4]eq= 0.0292 M [NO2]eq= 0.0116 M

    ][ ][ 42

    2

    2ONNOK

    c ]0292.0[ ]0116.0[

    2

    cK

    KC= 4.61 103

    Your Turn!

  • 8/13/2019 CH15 Chemical Equilibrium

    65/97

    Jespersen/Brady/HyslopChemistry:TheMolecularNatureofMatter,6E

    Your Turn!

    For the reaction: 2A(aq)+ B(aq) 3C(aq)

    the equilibrium concentrations are: A = 2.0 M,B = 1.0 M and C = 3.0 M. What is theexpected value of Kcat this temperature?

    A. 14B. 0.15

    C. 1.5

    D. 6.75

    [B][A]

    [C]2

    3cK

    [1.0][2.0][3.0]2

    3

    cK

    65

    Calculating KCGiven Initial Concentrations

  • 8/13/2019 CH15 Chemical Equilibrium

    66/97

    Jespersen/Brady/HyslopChemistry:TheMolecularNatureofMatter,6E 66

    g Cand One Final Concentration

    Ex. 2 2SO2(g) + O2(g) 2SO3(g) 1.000 mol SO2and 1.000 mol O2are placed in

    a 1.000 L flask at 1000 K. At equilibrium0.925 mol SO

    3

    has formed. Calculate KC

    forthis reaction.

    1stcalculate concentrations of each

    Initial

    Equilibrium

    ML

    mol

    OSO 00.100.1

    00.1

    ][][ 22

    M

    L

    molSO 925.0

    00.1

    925.0][ 3

    How to Solve:

  • 8/13/2019 CH15 Chemical Equilibrium

    67/97

    Jespersen/Brady/HyslopChemistry:TheMolecularNatureofMatter,6E 67

    How to Solve:

    Set up Concentration Table

    Based on the following: Changes in concentration must be in same ratio

    as coefficients of balanced equation

    Set up table under balanced chemical equation

    Initial concentrations Controlled by person running experiment

    Changes in concentrations

    Controlled by stoichiometry of reaction Equilibrium concentrations

    EquilibriumConcentration

    =Initial

    Concentration

    Change inConcentration

    Next Set up Concentration Table

  • 8/13/2019 CH15 Chemical Equilibrium

    68/97

    Jespersen/Brady/HyslopChemistry:TheMolecularNatureofMatter,6E 68

    Next Set up Concentration Table

    2SO2(g) + O2(g) 2SO3(g)

    Initial Conc. (M) 1.000 1.000 0.000

    Changes in Conc. (M)

    Equilibrium Conc. (M)

    [SO2] consumed = Amt of SO3formed= [SO3] at equilibrium = 0.925 M

    [O2] consumed = amt SO3formed

    = 0.925/2 = 0.462 M[SO2] at equilibrium = 1.0000.975 = 0.075

    [O2] at equilibrium = 1.000.462 = 0.538 M

    0.925 0.462 +0.925

    0.075 0.538 0.925

    Ex 2

  • 8/13/2019 CH15 Chemical Equilibrium

    69/97

    Jespersen/Brady/HyslopChemistry:TheMolecularNatureofMatter,6E 69

    Ex. 2

    Finally calculate KCat 1000 K

    ][O][SO

    ][SO

    22

    2

    23

    c K

    ]538.0[]075.0[

    ]925.0[2

    2

    cK

    Kc= 2.8 102 = 280

    Summary of Concentration Table

  • 8/13/2019 CH15 Chemical Equilibrium

    70/97

    Jespersen/Brady/HyslopChemistry:TheMolecularNatureofMatter,6E 70

    Summary of Concentration Table

    Used for most equilibrium calculations (Ch

    15, 17, and 18)1. Equilibrium concentrations are only values

    used in mass action expression

    Values in last row of table

    2. Initial value in table must be in units ofmol/L (M)

    [X]initial= those present when reactionprepared

    No reaction occurs until everything ismixed

    Summary of Concentration Table

  • 8/13/2019 CH15 Chemical Equilibrium

    71/97

    Jespersen/Brady/HyslopChemistry:TheMolecularNatureofMatter,6E 71

    Summary of Concentration Table3. Changes in concentrations always occur in

    same ratio as coefficients in balancedequation

    4. In change row be sure all [reactants]change in same directions and all [products]change in opposite direction.

    If [reactant]initial= 0, its change must be + ()because [reactant]finalnegative

    If [reactants] , all entries for reactants in changerow should have minus sign and all entries forproducts should be positive

    Calculate [X]equilibriumfrom Kc and [X]initial

  • 8/13/2019 CH15 Chemical Equilibrium

    72/97

    Jespersen/Brady/HyslopChemistry:TheMolecularNatureofMatter,6E 72

    [ ]equilibrium c [ ]initial

    When all concentrations but one are known

    Use mass action expression to relate Kcand known concentrations to obtainmissing concentrations

    Ex. 3 CH4(g)+ H2O(g) CO(g)+ 3H2(g)At 1500 C, Kc = 5.67. An equilibrium

    mixture of gases had the following

    concentrations: [CH4] = 0.400 M and[H2] = 0.800M and [CO] =0.300M.What is [H2O] at equilibrium ?

    Calculate [X]equilibriumfrom Kc and [X]initial

  • 8/13/2019 CH15 Chemical Equilibrium

    73/97

    Jespersen/Brady/HyslopChemistry:TheMolecularNatureofMatter,6E 73

    q

    Ex. 3CH4(g)+ H2O(g) CO(g)+ 3H2(g)Kc = 5.67

    [CH4] = 0.400 M; [H2] = 0.800M; [CO] =0.300M What is [H2O] at equilibrium?

    First, set up equilibrium

    Next, plug in equilibrium concentrations and Kc

    O]][H[CH ][CO][H 24

    3

    2cK

    [H2O] = 0.0678 M

    27.2154.0

    5.67)([0.400]800][0.300][0.O][H

    3

    2

    cK][CH][CO][HO][H

    4

    3

    22

    Calculating [X]Equilibrium from Kc

  • 8/13/2019 CH15 Chemical Equilibrium

    74/97

    Jespersen/Brady/HyslopChemistry:TheMolecularNatureofMatter,6E 74

    Calculating [X]Equilibriumfrom Kc

    When InitialConcentrations Are Given

    Write equilibrium law/mass action expression

    Set up Concentration table

    Allow reaction to proceed as expected,using x to represent change inconcentration

    Substitute equilibrium terms from table into

    mass action expression and solve

    Calculate [X]equilibrium from [X]initial and KC

  • 8/13/2019 CH15 Chemical Equilibrium

    75/97

    Jespersen/Brady/HyslopChemistry:TheMolecularNatureofMatter,6E 75

    Calculate [X]equilibriumfrom [X]initialand KC

    Ex. 4 H2(g)+ I2(g) 2HI(g) at 425 C

    KC= 55.64

    If one mole each of H2and I2are placed in a0.500 L flask at 425 C, what are the

    equilibrium concentrations of H2, I2and HI?

    Step 1. Write Equilibrium Law

    64.55]][[

    ][22

    2

    IH

    HIKc

    Ex. 4 Step 2. Concentration Table

  • 8/13/2019 CH15 Chemical Equilibrium

    76/97

    Jespersen/Brady/HyslopChemistry:TheMolecularNatureofMatter,6E 76

    Ex. 4 Step 2.Concentration Table

    Conc (M) H2(g) + I2(g) 2HI(g)

    Initial 2.00 2.00 0.000

    Change

    Equilm

    Initial [H2] = [I2] = 1.00 mol/0.500L =2.00M

    Amt of H2consumed = Amt of I2consumed = x

    Amt of HIformed = 2x

    x +2xx

    +2x2.00x2.00x

    2

    22

    )00.2(

    )2(

    )00.2)(00.2(

    )2(64.55

    x

    x

    xx

    x

    Ex. 4 Step 3. Solve for x

  • 8/13/2019 CH15 Chemical Equilibrium

    77/97

    Jespersen/Brady/HyslopChemistry:TheMolecularNatureofMatter,6E 77

    Ex. 4 Step 3. Solve for x

    Both sides are squared so we can take

    square root of both sides to simplify

    2

    2

    )00.2(

    )2(64.55

    x

    xK

    )00.2(

    2459.7

    x

    x

    xx 2)00.2(459.7

    xx 2459.7918.14

    58.1459.9

    918.14x

    x459.9918.14

    Ex. 4 Step 4. Equilibrium Concentrations

  • 8/13/2019 CH15 Chemical Equilibrium

    78/97

    Jespersen/Brady/HyslopChemistry:TheMolecularNatureofMatter,6E 78

    Conc (M) H2(g) + I2(g) 2HI(g)

    Initial 2.00 2.00 0.00

    Change

    Equilm

    [H2]equil= [I2]equil= 2.001.58 = 0.42 M

    [HI]equil= 2x = 2(1.58) = 3.16

    1.58 +3.161.58

    +3.160.420.42

    Calculate [X]equilibriumfrom [X]initialand KC

  • 8/13/2019 CH15 Chemical Equilibrium

    79/97

    Jespersen/Brady/HyslopChemistry:TheMolecularNatureofMatter,6E 79

    [ ]equilibrium [ ]initial C

    Ex. 5 H2(g)+ I2(g) 2HI(g) at 425 C

    KC= 55.64

    If one mole each of H2, I2and HIare placedin a 0.500 L flask at 425 C, what are the

    equilibrium concentrations of H2, I2and HI?

    Now have product as well as reactants initially

    Step 1.Write Equilibrium Law

    64.55]][[

    ][

    22

    2

    IH

    HIKc

    Ex. 5 Step 2. Concentration Table

  • 8/13/2019 CH15 Chemical Equilibrium

    80/97

    Jespersen/Brady/HyslopChemistry:TheMolecularNatureofMatter,6E 80

    p

    Conc (M) H2(g) + I2(g) 2HI(g)

    Initial 2.00 2.00 2.00

    Change

    Equilm

    x +2xx

    2.00 + 2x2.00x2.00x

    2

    22

    )00.2(

    )200.2(

    )00.2)(00.2(

    )200.2(64.55

    x

    x

    xx

    x

    2

    2

    )00.2(

    )200.2(64.55

    x

    xK

    Ex. 5 Step 3. Solve for x

  • 8/13/2019 CH15 Chemical Equilibrium

    81/97

    Jespersen/Brady/HyslopChemistry:TheMolecularNatureofMatter,6E 81

    Ex. 5 Step 3.Solve for x

    )00.2(

    200.2459.7

    x

    x

    xx 200.2)00.2(459.7

    xx 200.2459.7918.14

    37.1459.9

    918.12

    x

    x459.9918.12 [H2]equil= [I2]equil= 2.00 x =2.00 1.37 = 0.63 M

    [HI]equil= 2.00 + 2x= 2.00 + 2(1.37)

    = 2.00 + 2.74

    = 4.74 M

    Your Turn!

  • 8/13/2019 CH15 Chemical Equilibrium

    82/97

    Jespersen/Brady/HyslopChemistry:TheMolecularNatureofMatter,6E

    N2(g) + O2(g) 2NO(g)

    Kc= 0.0123 at 3900o

    CIf 0.25 moles of N2and O2are placed in a250 mL container, what are the equilibrium

    concentrations of all species ?A. 0.0526 M, 0.947 M, 0.105 M

    B. 0.947 M, 0.947 M, 0.105 M

    C. 0.947 M 0.105 M, 0.0526 M D. 0.105 M, 0.105 M, 0.947 M

    82

    Your Turn! - Solution

  • 8/13/2019 CH15 Chemical Equilibrium

    83/97

    Jespersen/Brady/HyslopChemistry:TheMolecularNatureofMatter,6E

    Conc (M) N2(g) +O2(g) 2NO(g) Initial 1.00 1.00 0.00

    Change x x + 2x

    Equil 1.00x1.00x + 2x

    83

    2 2

    2

    2

    0.250 mol[N ] [O ] 1.00

    0.250 L

    (2 ) 20.0123 0.01231(1 )

    0.0526 [NO] = 2 = 0.105

    M

    x xxx

    x M x M

    Calculate [X]equilibriumfrom [X]initialand KC

  • 8/13/2019 CH15 Chemical Equilibrium

    84/97

    Jespersen/Brady/HyslopChemistry:TheMolecularNatureofMatter,6E 84

    [ ]equilibrium [ ]initial C

    Ex. 6

    CH3CO2H(aq)+ C2H5OH(aq) CH3CO2C2H5(aq)+acetic acid ethanol ethyl acetate H2O()

    KC= 0.11

    An aqueous solution of ethanol and aceticacid, each with initial concentration of 0.810M, is heated at 100 C. What are the

    concentrations of acetic acid, ethanol andethyl acetate at equilibrium?

    Ex. 6Step 1.Write Equilibrium Law

  • 8/13/2019 CH15 Chemical Equilibrium

    85/97

    Jespersen/Brady/HyslopChemistry:TheMolecularNatureofMatter,6E 85

    p q

    Need to find equilibrium values that satisfy

    thisStep 2: Set up concentration table using x

    for unknown

    Initial concentrations Change in concentrations

    Equilibrium concentrations

    11.0H]COOH][CHH[C

    ]HCCO[CH

    2352

    5223 c

    K

    Ex. 6Step 2.Concentration Table

  • 8/13/2019 CH15 Chemical Equilibrium

    86/97

    Jespersen/Brady/HyslopChemistry:TheMolecularNatureofMatter,6E 86

    p

    (M) CH3CO2H(aq)+ C2H5OH(aq) CH3CO2C2H5(aq)+ H2O(l)

    I 0.810 0.810 0.000

    C

    E

    Amt of CH3CO2H consumed = Amt of C2H5OHconsumed =x

    Amt of CH3CO2C2H5formed = + x

    [CH3CO2H]eqand [C2H5OH ] = 0.810x [CH3CO2C2H5] = x

    x +xx

    +x0.810 x0.810 x

    )8100)(8100(110

    x.x.

    x.

    Ex. 6 Step 3. Solve for x

  • 8/13/2019 CH15 Chemical Equilibrium

    87/97

    Jespersen/Brady/HyslopChemistry:TheMolecularNatureofMatter,6E 87

    p

    Rearranging gives

    Then put in form of quadratic equation

    ax2+ bx+ c = 0

    Solution for quadratic equation given by

    xxx )62.16561.0(11.0 2

    011.01782.007217.0 2 xxx

    007217.01782.111.0 2 xx

    a

    acbbx

    2

    42

    Ex. 6 Step 3. Solve for x

  • 8/13/2019 CH15 Chemical Equilibrium

    88/97

    Jespersen/Brady/HyslopChemistry:TheMolecularNatureofMatter,6E 88

    p

    This gives two roots: x = 10.6 and x =0.064

    Only x = 0.064 is possible x = 10.6 is >> 0.810 initial concentrations

    0.81010.6 = negative concentration,which is impossible

    )11.0(2

    )07217.0)(11.0(4)1782.1()1782.1( 2

    x

    22.0

    164.11782.1

    22.0

    )032.0()388.1(1782.1

    x

    Ex. 6 Step 4. Equilibrium Concentrations

  • 8/13/2019 CH15 Chemical Equilibrium

    89/97

    Jespersen/Brady/HyslopChemistry:TheMolecularNatureofMatter,6E 89

    (M) CH3CO2H(aq)+ C2H5OH(aq) CH3CO2C2H5(aq)+ H2O(l)

    I 0.810 0.810 0.000

    C

    E

    [CH3CO2C2H5]equil= x = 0.064 M

    [CH3CO2H]equil= [C2H5OH]equil= 0.810 Mx= 0.810 M0.064 M= 0.746 M

    0.064 +0.0640.064

    +0.0640.7460.746

    Calculate [X]equilibriumfrom [X]initialand KC

  • 8/13/2019 CH15 Chemical Equilibrium

    90/97

    Jespersen/Brady/HyslopChemistry:TheMolecularNatureofMatter,6E 90

    When KCis very small

    Ex. 7 2H2O(g) 2H2(g)+ O2(g)At 1000 C, KC= 7.3 10

    18

    If the initial H2O concentration is 0.100M,

    what will the H2concentration be atequilibrium?

    Step 1. Write Equilibrium Law

    18

    22

    22

    2 103.7O][H

    ][O][H cK

    Ex. 7 Step 2.Concentration Table

  • 8/13/2019 CH15 Chemical Equilibrium

    91/97

    Jespersen/Brady/HyslopChemistry:TheMolecularNatureofMatter,6E 91

    Conc (M) 2H2O(g) 2H2(g) + O2(g)

    Initial 0.100 0.00 0.00Change

    Equilm

    2x +x+2x

    +x+2x0.1002x

    2

    3

    2

    218

    )2100.0(

    4

    )2100.0(

    )2(103.7x

    x

    x

    xx

    Cubic equationtough to solve

    Make approximation KCvery small, soxwill be very small

    Assume we can neglectx

    must prove valid later

  • 8/13/2019 CH15 Chemical Equilibrium

    92/97

    Ex. 7 Step 3.Solve for x

  • 8/13/2019 CH15 Chemical Equilibrium

    93/97

    Jespersen/Brady/HyslopChemistry:TheMolecularNatureofMatter,6E 93

    Now take cubic root

    xis very small

    0.1002(2.6107) = 0.09999948

    Which rounds to 0.100 (3 decimal places) [H2] = 2x = 2(2.610

    7)= 5.2107M

    2020

    3 108.1

    4

    103.7

    x

    73 20 106.2108.1 x

    Simplifications: When Can Youi i i l (C )?

  • 8/13/2019 CH15 Chemical Equilibrium

    94/97

    Jespersen/Brady/HyslopChemistry:TheMolecularNatureofMatter,6E 94

    Ignore x in Binomial (Cix)? If equilibrium law gives very complicated

    mathematical problems

    And if Kis small

    Change to reach equilibrium (xterm) is also small

    Compare initial concentration Ciin binomial tovalue of K

    Use proof to show that droppedxterm wassufficiently small

    05.0termxdropped ?

    iC

    400K

    Ci

    Learning Check

  • 8/13/2019 CH15 Chemical Equilibrium

    95/97

    Jespersen/Brady/HyslopChemistry:TheMolecularNatureofMatter,6E

    For the reaction 2A(g)B(g)given that Kp = 3.510

    16at 25C, and we place 0.2

    atm A into the container, what will be the pressure of Bat equilibrium?

    2A B

    I 0.2 0 atm

    C 2x +x

    E 0.22x x

    2

    NO

    ON

    P

    PQ 42

    2

    16

    )2.0(

    x105.3

    x = 1.41017

    [B]= 1.41017 M

    proof: 1.41017/0.2

  • 8/13/2019 CH15 Chemical Equilibrium

    96/97

    Jespersen/Brady/HyslopChemistry:TheMolecularNatureofMatter,6E

    In the reaction shown, K = 1.8 105

    HC2H3O2(aq) + H2O(l)H3O+(aq) + C2H3O2(aq)

    If we start with 0.3M HC2H3O2, what will be theequilibrium concentration of C2H3O2

    ?

    A. 0.3 MB. 0.002 M

    C. 0.04 M

    D. 0.5 M

    96

    Calculating KCGiven Initial Concentrationsd O Fi l C t ti

  • 8/13/2019 CH15 Chemical Equilibrium

    97/97

    and One Final Concentration

    Ex. 2aH2(g)+ I2(g)2HI(g) @ 450 C Initially H2and I2concentrations are 0.200

    mol each in 2.00L (= 0.100M); no HI ispresent

    At equilibrium, HI concentration is 0.160M

    Calculate KC

    To do this we need to know 3 sets ofconcentrations: initial, change andequilibrium