Chemical Systems and Equilibrium Unitchemistryfouryou.weebly.com/.../note_7.1_equilibrium.pdf7.1...

14
7.1 Dynamic Equilibrium in Chemical Systems.notebook 1 Chemical Systems and Equilibrium Unit Learning goals: see page 520, 521 for Key Expectations, Key Terms, Key Equations, and a summary of Problems You Can Solve (Refer to these throughout the unit for selfassessment) S.T.S.E. Assignment: analyse the optimal conditions for a specific chemical process related to the principles of equilibrium in nature or in industry assess the impact of chemical equilibrium processes on biological, biochemical, and technological systems Are You Ready? (Diagnostic Assessment) Examine the concepts and skills prerequisites in the margin on page 420. Try # 1, 2 page 420. Read the paragraph on page 422. Define dynamic equilibrium in your notebook. Attempt Reflect on Your Learning # 1 4. Classroom demonstrations: Try this Activity pages 423, 425, 426.

Transcript of Chemical Systems and Equilibrium Unitchemistryfouryou.weebly.com/.../note_7.1_equilibrium.pdf7.1...

Page 1: Chemical Systems and Equilibrium Unitchemistryfouryou.weebly.com/.../note_7.1_equilibrium.pdf7.1 Dynamic Equilibrium in Chemical Systems.notebook 1 Chemical Systems and Equilibrium

7.1 Dynamic Equilibrium in Chemical Systems.notebook

1

Chemical Systems and Equilibrium Unit• Learning goals: see page 520, 521 for Key Expectations, Key Terms, Key Equations, and a summary of Problems You Can Solve (Refer to these throughout the unit for self­assessment)

• S.T.S.E. Assignment: ­ analyse the optimal conditions for a specific chemical process related to the principles of equilibrium in nature or in industry­ assess the impact of chemical equilibrium processes on biological, biochemical, and technological systems 

• Are You Ready? (Diagnostic Assessment)Examine the concepts and skills prerequisites in the margin on page 420.  Try # 1, 2 page 420.

• Read the paragraph on page 422.  Define dynamic equilibrium in your notebook.  Attempt Reflect on Your Learning # 1 ­ 4.

• Classroom demonstrations: Try this Activity pages 423, 425, 426.

Page 2: Chemical Systems and Equilibrium Unitchemistryfouryou.weebly.com/.../note_7.1_equilibrium.pdf7.1 Dynamic Equilibrium in Chemical Systems.notebook 1 Chemical Systems and Equilibrium

7.1 Dynamic Equilibrium in Chemical Systems.notebook

2

Page 3: Chemical Systems and Equilibrium Unitchemistryfouryou.weebly.com/.../note_7.1_equilibrium.pdf7.1 Dynamic Equilibrium in Chemical Systems.notebook 1 Chemical Systems and Equilibrium

7.1 Dynamic Equilibrium in Chemical Systems.notebook

3

Page 4: Chemical Systems and Equilibrium Unitchemistryfouryou.weebly.com/.../note_7.1_equilibrium.pdf7.1 Dynamic Equilibrium in Chemical Systems.notebook 1 Chemical Systems and Equilibrium

7.1 Dynamic Equilibrium in Chemical Systems.notebook

4

7.1 Dynamic Equilibrium (Read pages 424­437)

dynamic equilibrium: a balance between forward and reverse processes occurring at the same time

forward reaction: in an equilibrium equation, the left­to­right reaction

reverse reaction: in an equilibrium equation, the right­to­left reaction

Solubility Equilibrium

solubility equilibrium: a dynamic equilibrium between a solute and a solvent in a saturated solution in a closed system

Most substances dissolve to a certain extent and then appear to stop dissolving (saturation point).  But according to kinetic molecular theory, particles are always moving a collisions are always occurring.

1.   Place NaCl (more than will saturate) in a test tube of water and shake to dissolve.     

2.  Some NaCl dissolves, but  at saturation point, appears to stop.

Some NaCl is dissolving, but at the same time and same rate, some Na+ and Cl­ ions are combining into the NaCl crystal below.

r1r2

Summary:

where r1 = ­r2

Page 5: Chemical Systems and Equilibrium Unitchemistryfouryou.weebly.com/.../note_7.1_equilibrium.pdf7.1 Dynamic Equilibrium in Chemical Systems.notebook 1 Chemical Systems and Equilibrium

7.1 Dynamic Equilibrium in Chemical Systems.notebook

5

Phase Equilibrium

phase equilibrium: a dynamic equilibrium between different physical states of a pure substance in a closed system

Example:1.  Water is placed in a stoppered flask with air above it.  

2. The flask is heated to 70oC and maintained at  that temperature.  Some evaporation occurs from the water to the air space above.

3. Once it reaches phase equilibrium, water condenses at the same rate it is evaporating.  But it would appear to us that the air above is saturated with water vapour and just can’t take any more.

Assigned Problems: # 1 ­ 5 page 428

Page 6: Chemical Systems and Equilibrium Unitchemistryfouryou.weebly.com/.../note_7.1_equilibrium.pdf7.1 Dynamic Equilibrium in Chemical Systems.notebook 1 Chemical Systems and Equilibrium

7.1 Dynamic Equilibrium in Chemical Systems.notebook

6

Chemical Reaction Equilibrium

chemical reaction eq’m: *a dynamic equilibrium between reactants and products of a chemical reaction in a closed system*more complex than phase or solubility eq’m due to large variety of possible chemical rxns and greater number of substances involved

Example:Calcium oxide is used to make cement, mortar and plaster.  It is made from heating calcium carbonate (limestone) in open kilns.

CaCO3(s)    CaO(s) + CO2(g)

In an open system like this, the CO2 escapes, preventing the reverse reaction from occurring.  So it goes to completion.  This is an example of a quantitative reaction.However, if we confine this reaction to a closed container, both reactants and products are present after the reaction appears to have stopped.  The reaction is no longer quantitative.  The reverse reaction is occurring.

CaCO3(s)    CaO(s) + CO2(g) or CaO(s) + CO2(g)     CaCO3(s) 

The final state of a chemical system at eq’m can be explained as a competition between collisions of reactants to form products and collision of products to form reactants.  The eq’m equation is 

CaCO3(s)     CaO(s) + CO2(g)

Rate of forward reaction = Rate of reverse reaction

Page 7: Chemical Systems and Equilibrium Unitchemistryfouryou.weebly.com/.../note_7.1_equilibrium.pdf7.1 Dynamic Equilibrium in Chemical Systems.notebook 1 Chemical Systems and Equilibrium

7.1 Dynamic Equilibrium in Chemical Systems.notebook

7

For a given overall system composition, the same equilibrium concentrations are reached whether equilibrium 

is approached in the forward or reverse direction.

This means a closed container containing all reactants and a closed container containing all products will both have the same composition once equilibrium is reached.

Table 1: Observations on N2O4 (g) ­ NO2 (g) Equilibrium

Initial Concentrations (mol/L)

Final Concentrations (mol/L)

N2O4 (g) NO2 (g) N2O4 (g) NO2 (g)

Experiment 1 0.75 0 0.721 0.058

Experiment 2 0 1.50 0.721 0.058

(a) N2O4(g) in equilibrium with NO2(g) ﴾b﴿  When N2O4﴾g﴿ is introduced into a closed container its concentration decreases rapidly ﴾red line﴿ as the concentration of NO2﴾g﴿ increases ﴾blue line﴿.  However, soon the concentrations of both substances change more slowly,until equilibrium is reached ﴾dotted vertical line﴿. From this point on, the concentrations no longer change with time.

Page 8: Chemical Systems and Equilibrium Unitchemistryfouryou.weebly.com/.../note_7.1_equilibrium.pdf7.1 Dynamic Equilibrium in Chemical Systems.notebook 1 Chemical Systems and Equilibrium

7.1 Dynamic Equilibrium in Chemical Systems.notebook

8

Page 9: Chemical Systems and Equilibrium Unitchemistryfouryou.weebly.com/.../note_7.1_equilibrium.pdf7.1 Dynamic Equilibrium in Chemical Systems.notebook 1 Chemical Systems and Equilibrium

7.1 Dynamic Equilibrium in Chemical Systems.notebook

9

Percent Reaction at Chemical Equilibrium

percent reaction =  actual product yield x 100%   theoretical yield

Example: H2 (g) +  I2 (g)    2 HI (g)

Table 2: The Hydrogen­Iodine System at 448oC

% reaction  =  1.56 mmol/L  x 100%        2(1.00)mmol/L

= 78%

This value will stay constant for all three systems.  Remember, this always refers to the amount of product formed.

Page 10: Chemical Systems and Equilibrium Unitchemistryfouryou.weebly.com/.../note_7.1_equilibrium.pdf7.1 Dynamic Equilibrium in Chemical Systems.notebook 1 Chemical Systems and Equilibrium

7.1 Dynamic Equilibrium in Chemical Systems.notebook

10

Why can concentrations be used in equilibrium calculations, as an alternative to amounts in moles? 

Conclusion: The mole ratio applies equally to both molar concentrations, as well as amounts in moles.  

Page 11: Chemical Systems and Equilibrium Unitchemistryfouryou.weebly.com/.../note_7.1_equilibrium.pdf7.1 Dynamic Equilibrium in Chemical Systems.notebook 1 Chemical Systems and Equilibrium

7.1 Dynamic Equilibrium in Chemical Systems.notebook

11

Solving Equilibrium Problems

Example 1Consider the following equation for the formation of hydrogen fluoride from its elements at SATP.

H2 (g) + F2 (g)     2 HF (g)

If the reaction begins with 1.00 mol/L concentrations of H2 (g) and F2 (g) and no HF (g), calculate the concentrations of H2 (g) and HF (g) at eq’m if the eq’m concentration of F2 (g) is measured to be 0.24 mol/L.  (Notice that these gas concentrations are given in units of mol/L.  1 mol/L means there is 1 mole of gas per litre of space occupied.)

Solution1.  Set up an equilibrium table.  Begin with your initial 

concentrations.  Use x to represent changes in concentrations.  Since the hydrogen and fluorine are in a 1:1 molar ratio, the same number of moles of each will be consumed.  Therefore, each concentration will change by ­x.  Since one mole of either reactant results in two moles of the product, its change in concentration will be 2x.  (This is positive because it’s concentration is increasing not decreasing like the reactants.)

2.  We know the eq’m concentration of fluorine will be 0.24 mol/L.Therefore,  1.00 mol/L ­ x = 0.24 mol/L

  x = 0.76 mol/L

Therefore, the eq’m concentrations of H2 (g) and HF (g) are 0.24 mol/L and 1.52 mol/L, respectively.

Page 12: Chemical Systems and Equilibrium Unitchemistryfouryou.weebly.com/.../note_7.1_equilibrium.pdf7.1 Dynamic Equilibrium in Chemical Systems.notebook 1 Chemical Systems and Equilibrium

7.1 Dynamic Equilibrium in Chemical Systems.notebook

12

Practice 7.1 page 437

6. When carbon dioxide is heated in a closed container, it decomposes into carbon monoxide and oxygen according to the following equilibrium equation:

2CO2(g) <­­> 2CO(g) + O2(g)   

When 2.0 mol of CO2(g) is placed in a 5.0­L closed container and heated to a particular temperature, the equilibrium concentration of CO2(g) is measured to be 0.39 mol/L.  Use an I.C.E. table to determine the equilibrium concentrations of the products.  Then, calculate the % reaction. 

Page 13: Chemical Systems and Equilibrium Unitchemistryfouryou.weebly.com/.../note_7.1_equilibrium.pdf7.1 Dynamic Equilibrium in Chemical Systems.notebook 1 Chemical Systems and Equilibrium

7.1 Dynamic Equilibrium in Chemical Systems.notebook

13

Practice 7.1 page 437 (continued)

7. At 35oC, 2.0 mol of pure NOCl(g) is introduced into a 2.0­L flask.  The NOCl(g) partially decomposes according to the following equilibrium equation:

2 NOCl(g) <­­> 2NO(g) + Cl2(g)   

At equilibrium, the concentration of NO(g) is 0.032 mol/L.  Use an I.C.E. table to determine all equilibrium concentrations at this temperature.Then, calculate the % reaction. 

Page 14: Chemical Systems and Equilibrium Unitchemistryfouryou.weebly.com/.../note_7.1_equilibrium.pdf7.1 Dynamic Equilibrium in Chemical Systems.notebook 1 Chemical Systems and Equilibrium

7.1 Dynamic Equilibrium in Chemical Systems.notebook

14

Assigned Work:

Page 437 Understanding Concepts#1, 3, 4, 8, 9