Ch.02 Modeling of Vibratory Systems

11
2/2/2014 1 02. Modeling of Vibratory System HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien Vibrations 2.01 Modeling of Vibratory Systems Chapter Objectives โ€ข Compute the mass moment of inertia of rotational systems โ€ข Determine the stiffness of various linear and nonlinear elastic components in translation and torsion and the equivalent stiffness when many individual linear components are combined โ€ข Determine the stiffness of fluid, gas, and pendulum elements โ€ข Determine the potential energy of stiffness elements โ€ข Determine the damping for systems that have different sources of dissipation: viscosity, dry friction, fluid, and material โ€ข Construct models of vibratory systems Vibrations 2.02 Modeling of Vibratory Systems HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien ยง 1 . Introduction - Three elements that comprise a vibrating system โ€ข Inertia elements: stores and releases kinetic energy โ€ข Stiffness elements: stores and releases potential energy โ€ข Dissipation elements: express energy loss in a system - Components comprising a vibrating mechanical system โ€ข Translational motion โ€ข Rotational motion Mass, () Mass moment of inertia, ( 2 ) Stiffness, (/) Stiffness, (/) Damping, (/) Damping, (/) External force, () External moment, () Vibrations 2.03 Modeling of Vibratory Systems HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien ยง 2 . Inertia Elements - Translational motion - Rotational motion Slender bar = 1 12 2 Circular disk = 1 2 2 Sphere = 2 5 2 Circular cylinder = = 1 12 (3 2 +โ„Ž 2 ) = 1 2 2 = + 2 , : distance from the center of gravity to point Vibrations 2.04 Modeling of Vibratory Systems - Parallel-axes theorem HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien ยง 2 . Inertia Elements - For a mass translating with a velocity of magnitude in the โˆ’ plane under the driving force โ€ข The equation governing the motion of the mass = ( ) when and are independent of time = (2.2) โ€ข The kinetic energy, , of mass = 1 2 โˆ™ = 1 2 2 Vibrations 2.05 Modeling of Vibratory Systems HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien ยง 2 . Inertia Elements - For a rigid body undergoing only rotation in the plane with an angular speed โ€ข The equation governing the rotation of the mass of inertia = (2.6) : the moment acting about the center of mass or a fixed point along the direction normal to the plane of motion : the associated mass moment of inertia โ€ข The kinetic energy of the system = 1 2 2 Vibrations 2.06 Modeling of Vibratory Systems HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

Transcript of Ch.02 Modeling of Vibratory Systems

Page 1: Ch.02 Modeling of Vibratory Systems

2/2/2014

1

02. Modeling of Vibratory

System

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

Vibrations 2.01 Modeling of Vibratory Systems

Chapter Objectives

โ€ข Compute the mass moment of inertia of rotational systems

โ€ข Determine the stiffness of various linear and nonlinear elastic

components in translation and torsion and the equivalent

stiffness when many individual linear components are

combined

โ€ข Determine the stiffness of fluid, gas, and pendulum elements

โ€ข Determine the potential energy of stiffness elements

โ€ข Determine the damping for systems that have different sources

of dissipation: viscosity, dry friction, fluid, and material

โ€ข Construct models of vibratory systems

Vibrations 2.02 Modeling of Vibratory Systems

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

ยง1.Introduction

- Three elements that comprise a vibrating system

โ€ข Inertia elements: stores and releases kinetic energy

โ€ข Stiffness elements: stores and releases potential energy

โ€ข Dissipation elements: express energy loss in a system

- Components comprising a vibrating mechanical system

โ€ข Translational motion โ€ข Rotational motion

Mass, ๐‘š (๐‘˜๐‘”) Mass moment of inertia, ๐ฝ (๐‘˜๐‘”๐‘š2)

Stiffness, ๐‘˜ (๐‘/๐‘š) Stiffness, ๐‘˜๐‘ก (๐‘๐‘š/๐‘Ÿ๐‘Ž๐‘‘)

Damping, ๐‘ (๐‘๐‘ /๐‘š) Damping, ๐‘๐‘ก (๐‘๐‘š๐‘ /๐‘Ÿ๐‘Ž๐‘‘)

External force, ๐น (๐‘) External moment, ๐‘€ (๐‘๐‘š)

Vibrations 2.03 Modeling of Vibratory Systems

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

ยง2.Inertia Elements

- Translational motion ๐‘š

- Rotational motion

Slender bar ๐ฝ๐บ =1

12๐‘š๐ฟ2

Circular disk ๐ฝ๐บ =1

2๐‘š๐‘…2

Sphere ๐ฝ๐บ =2

5๐‘š๐‘…2

Circular cylinder ๐ฝ๐‘ฅ = ๐ฝ๐‘ฆ =1

12๐‘š(3๐‘…2 + โ„Ž2)

๐ฝ๐‘ง =1

2๐‘š๐‘…2

๐ฝ๐‘‚ = ๐ฝ๐บ + ๐‘š๐‘‘2, ๐‘‘: distance from the center of gravity to point ๐บ

Vibrations 2.04 Modeling of Vibratory Systems

- Parallel-axes theorem

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

ยง2.Inertia Elements

- For a mass ๐‘š translating with a

velocity of magnitude ๐‘ฅ in the ๐‘‹โˆ’๐‘Œ

plane under the driving force ๐น

โ€ข The equation governing the motion of the mass ๐‘š

๐น ๐‘– =๐‘‘

๐‘‘๐‘ก(๐‘š ๐‘ฅ ๐‘–)

when ๐‘š and ๐‘– are independent of time

๐น = ๐‘š ๐‘ฅ (2.2)

โ€ข The kinetic energy, ๐‘‡, of mass ๐‘š

๐‘‡ =1

2๐‘š ๐‘ฅ ๐‘– โˆ™ ๐‘ฅ ๐‘– =

1

2๐‘š ๐‘ฅ2

Vibrations 2.05 Modeling of Vibratory Systems

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

ยง2.Inertia Elements

- For a rigid body undergoing only

rotation in the plane with an angular

speed ๐œƒ

โ€ข The equation governing the rotation of the mass of inertia

๐‘€ = ๐ฝ ๐œƒ (2.6)

๐‘€ : the moment acting about the center of mass ๐บ or a

fixed point ๐‘‚ along the direction normal to the plane of

motion

๐ฝ : the associated mass moment of inertia

โ€ข The kinetic energy of the system

๐‘‡ =1

2๐ฝ ๐œƒ2

Vibrations 2.06 Modeling of Vibratory Systems

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

Page 2: Ch.02 Modeling of Vibratory Systems

2/2/2014

2

ยง2.Inertia Elements

- Ex.2.1 Determination of mass moments of inertia

Illustrate how the mass moments of inertia of several different

rigid body distributions are determined

Solution

โ€ข Uniform Disk

The mass moment of inertia about the point ๐‘‚ ,

which is located a distance ๐‘… from point ๐บ

๐ฝ๐‘‚ = ๐ฝ๐บ + ๐‘š๐‘…2 =1

2๐‘š๐‘…2 + ๐‘š๐‘…2 =

3

2๐‘š๐‘…2

โ€ข Uniform Bar

The mass moment of inertia about the point ๐‘‚

๐ฝ๐‘‚ = ๐ฝ๐บ + ๐‘š๐ฟ

2

2

=1

12๐‘š๐ฟ2 +

1

4๐‘š๐ฟ2 =

1

3๐‘š๐ฟ2

Vibrations 2.07 Modeling of Vibratory Systems

๐ฝ๐บ =1

2๐‘š๐‘…2

๐ฝ๐บ =1

12๐‘š๐ฟ2

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

ยง2.Inertia Elements

- Ex.2.2 Slider mechanism: system with varying inertia property

A slider of mass ๐‘š๐‘  slides along a uniform bar of

mass ๐‘š๐‘™ with a pivot at point ๐‘‚. Another bar,

which is pivoted at point ๐‘‚โ€ฒ, has a portion of length

๐‘ that has a mass ๐‘š๐‘ and another portion of

length ๐‘’ that has a mass ๐‘š๐‘’. Determine the rotary

inertia ๐ฝ๐‘‚ of this system and show its dependence

on the angular displacement coordinate ๐œ‘

From geometry, ๐‘Ÿ, ๐‘Ž๐‘, ๐‘Ž๐‘’ can be described in terms of ๐œ‘

๐‘Ÿ2 ๐œ‘ = ๐‘Ž2 + ๐‘2 โˆ’ 2๐‘Ž๐‘๐‘๐‘œ๐‘ ๐œ‘

๐‘Ž๐‘2 ๐œ‘ = (๐‘/2)2+๐‘Ž2 โˆ’ ๐‘Ž๐‘๐‘๐‘œ๐‘ ๐œ‘

๐‘Ž๐‘’2 ๐œ‘ = (๐‘’/2)2+๐‘Ž2 โˆ’ ๐‘Ž๐‘’๐‘๐‘œ๐‘ (๐œ‹ โˆ’ ๐œ‘)

๐‘Ž๐‘ : the distance from the midpoint of bar of mass ๐‘š๐‘’ to ๐‘‚

๐‘Ž๐‘’ : the distance from the midpoint of bar of mass ๐‘š๐‘ to ๐‘‚

Vibrations 2.08 Modeling of Vibratory Systems

Solution

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

ยง2.Inertia Elements

๐‘Ÿ2 ๐œ‘ = ๐‘Ž2 + ๐‘2 โˆ’ 2๐‘Ž๐‘๐‘๐‘œ๐‘ ๐œ‘

๐‘Ž๐‘2 ๐œ‘ = (๐‘/2)2+๐‘Ž2 โˆ’ ๐‘Ž๐‘๐‘๐‘œ๐‘ ๐œ‘

๐‘Ž๐‘’2 ๐œ‘ = (๐‘’/2)2+๐‘Ž2 โˆ’ ๐‘Ž๐‘’๐‘๐‘œ๐‘ (๐œ‹ โˆ’ ๐œ‘)

The rotary inertia ๐ฝ๐‘‚ of this system

๐ฝ๐‘‚ = ๐ฝ๐‘š๐‘™+ ๐ฝ๐‘š๐‘ 

(๐œ‘) + ๐ฝ๐‘š๐‘(๐œ‘) + ๐ฝ๐‘š๐‘’

(๐œ‘)

where

๐ฝ๐‘š๐‘™=

1

3๐‘š๐‘™๐‘—

2

๐ฝ๐‘š๐‘ (๐œ‘) = ๐‘š๐‘ ๐‘Ÿ

2(๐œ‘)

๐ฝ๐‘š๐‘๐œ‘ = ๐‘š๐‘

๐‘2

12+ ๐‘š๐‘๐‘Ž๐‘

2 = ๐‘š๐‘

๐‘2

3+ ๐‘Ž2 โˆ’ ๐‘Ž๐‘๐‘๐‘œ๐‘ ๐œ‘

๐ฝ๐‘š๐‘’๐œ‘ = ๐‘š๐‘’

๐‘’2

12+ ๐‘š๐‘’๐‘Ž๐‘’

2 = ๐‘š๐‘’

๐‘’2

3+ ๐‘Ž2 โˆ’ ๐‘Ž๐‘’๐‘๐‘œ๐‘ (๐œ‹ โˆ’ ๐œ‘)

Vibrations 2.09 Modeling of Vibratory Systems

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

ยง3.Stiffness Elements

1.Introduction

- Stiffness elements are manufactured from different materials

and they have many different shapes

- Application

โ€ข to minimize vibration transmission from machinery to the

supporting structure

โ€ข to isolate a building from earthquakes

โ€ข to absorb energy from systems subjected to impacts

Vibrations 2.10 Modeling of Vibratory Systems

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

ยง3.Stiffness Elements

- Some representative types of stiffness elements that are

commercially available along with their typical application

Vibrations 2.11 Modeling of Vibratory Systems

Building or highway

base isolation for

lateral motion using

cylindrical rubber

bearings

Wire rope isolators to isolate vertical motions of machinery

Steel cable

springs

used in a

chimney

tuned

mass

damper to

suppress

lateral

motions

Air springs used in

suspension systems to

isolate vertical motions

Typical steel

coil springs

for isolation

of vertical

motions

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

ยง3.Stiffness Elements

- The stiffness elements store and release the potential energy

of a system

- Consider a spring under acting force of magnitude ๐น is

directed along the direction of the unit vector ๐‘—

๐น๐‘  = โˆ’๐น ๐‘—

๐น๐‘  tries to restore the stiffness element to its undeformed

configuration, it is referred to as a restoring force

Vibrations 2.12 Modeling of Vibratory Systems

Stiffness element with a force acting on it Free-body diagram

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

Page 3: Ch.02 Modeling of Vibratory Systems

2/2/2014

3

ยง3.Stiffness Elements

- As the stiffness element is deformed, energy is stored in this

element, and as the stiffness element is undeformed, energy

is released

- The potential energy ๐‘‰ is defined as the work done to take

the stiffness element from the deformed position to the

undeformed position; that is, the work needed to undeform

the element to its original shape

๐‘‰ ๐‘ฅ = ๐‘‘๐‘’๐‘“๐‘œ๐‘Ÿ๐‘š๐‘’๐‘‘ ๐‘๐‘œ๐‘ ๐‘–๐‘ก๐‘–๐‘œ๐‘›

๐‘–๐‘›๐‘–๐‘ก๐‘–๐‘Ž๐‘™ ๐‘œ๐‘Ÿ ๐‘Ÿ๐‘’๐‘“๐‘’๐‘Ÿ๐‘’๐‘›๐‘๐‘’ ๐‘๐‘œ๐‘ ๐‘–๐‘ก๐‘–๐‘œ๐‘›

๐น๐‘ ๐‘‘๐‘ฅ

=

๐‘ฅ

0

๐น๐‘ ๐‘‘๐‘ฅ =

๐‘ฅ

0

โˆ’๐น ๐‘— โˆ™ ๐‘‘๐‘ฅ ๐‘— =

๐‘ฅ

0

๐น๐‘‘๐‘ฅ

Vibrations 2.13 Modeling of Vibratory Systems

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

ยง3.Stiffness Elements

2.Linear Springs

- Translation Spring

โ€ข Deformation

๐น ๐‘ฅ = ๐‘˜๐‘ฅ (2.9)

๐น : the applied force

๐‘˜ : the spring constant

๐‘ฅ : the spring deflection

โ€ข The potential energy ๐‘‰ stored in the spring

๐‘‰ ๐‘ฅ =

0

๐‘ฅ

๐น ๐‘ฅ ๐‘‘๐‘ฅ =

0

๐‘ฅ

๐‘˜๐‘ฅ๐‘‘๐‘ฅ = ๐‘˜

0

๐‘ฅ

๐‘ฅ๐‘‘๐‘ฅ =1

2๐‘˜๐‘ฅ2

Vibrations 2.14 Modeling of Vibratory Systems

(2.10)

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

ยง3.Stiffness Elements

- Torsion Spring

โ€ข Deformation

๐œ ๐œƒ = ๐‘˜๐‘ก๐œƒ (2.11)

๐œ : the applied moment

๐‘˜๐‘ก : the spring constant

๐œƒ : the spring deflection

โ€ข The potential energy ๐‘‰ stored in the spring

๐‘‰ ๐œƒ =

0

๐œƒ

๐œ ๐œƒ ๐‘‘๐œƒ =

0

๐œƒ

๐‘˜๐‘ก๐œƒ๐‘‘๐œƒ =1

2๐‘˜๐‘ก๐œƒ

2

Vibrations 2.15 Modeling of Vibratory Systems

(2.12)

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

ยง3.Stiffness Elements

- Combinations of Linear Springs

โ€ข Parallel Springs

Translation springs

Total force

๐น ๐‘ฅ =๐น1 ๐‘ฅ +๐น1 ๐‘ฅ =๐‘˜1๐‘ฅ+๐‘˜2๐‘ฅ= ๐‘˜1 +๐‘˜2 ๐‘ฅ =๐‘˜๐‘’๐‘ฅ

Equivalent spring

๐‘˜๐‘’ = ๐‘˜1 + ๐‘˜2

Torsion springs

Total moment

๐œ ๐œƒ = ๐œ1 ๐œƒ + ๐œ2 ๐œƒ

= ๐‘˜๐‘ก1๐œƒ + ๐‘˜๐‘ก2

๐œƒ = ๐‘˜๐‘ก1+ ๐‘˜๐‘ก2

๐œƒ = ๐‘˜๐‘ก๐‘’๐œƒ

Equivalent spring

๐‘˜๐‘ก๐‘’= ๐‘˜๐‘ก1

+ ๐‘˜๐‘ก2

Vibrations 2.16 Modeling of Vibratory Systems

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

ยง3.Stiffness Elements

โ€ข Series Springs

Translation springs

๐‘ฅ = ๐‘ฅ1 + ๐‘ฅ2 =๐น

๐‘˜1+

๐น

๐‘˜2=

1

๐‘˜1+

1

๐‘˜2๐น =

๐น

๐‘˜๐‘’

Equivalent spring

๐‘˜๐‘’ =1

๐‘˜1+

1

๐‘˜2

โˆ’1

=๐‘˜1๐‘˜2

๐‘˜1 + ๐‘˜2

Torsion springs

๐œƒ = ๐œƒ1 + ๐œƒ2 =๐œ

๐‘˜๐‘ก1

+๐œ

๐‘˜๐‘ก2

=1

๐‘˜๐‘ก1

+1

๐‘˜๐‘ก2

๐œ =๐œ

๐‘˜๐‘ก๐‘’

Equivalent spring

๐‘˜๐‘ก๐‘’=

1

๐‘˜๐‘ก1

+1

๐‘˜๐‘ก2

โˆ’1

=๐‘˜๐‘ก1

๐‘˜๐‘ก2

๐‘˜๐‘ก1+ ๐‘˜๐‘ก2

Vibrations 2.17 Modeling of Vibratory Systems

Displacement

Displacement

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

ยง3.Stiffness Elements

- Spring Constants for Some Common Elastic Elements

1. Axially loaded rod or cable

๐‘˜ =๐ด๐ธ

๐ฟ

๐ด : cross-sectional area, ๐‘š2

๐ธ : Youngโ€™s modulus of elasticity, ๐‘/๐‘š2

๐ฟ : length of the rod, ๐‘š

2. Axially loaded tapered rod

๐‘˜ =๐œ‹๐ธ๐‘‘1๐‘‘2

4๐ฟ

๐ธ : Youngโ€™s modulus of elasticity, ๐‘/๐‘š2

๐‘‘1 : rod diameter, ๐‘š

๐‘‘2 : rod diameter, ๐‘š

๐ฟ : length of the rod, ๐‘š

Vibrations 2.18 Modeling of Vibratory Systems

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

Page 4: Ch.02 Modeling of Vibratory Systems

2/2/2014

4

ยง3.Stiffness Elements

3. Hollow circular rod in torsion

๐‘˜๐‘ก =๐บ๐ผ

๐ฟ

๐บ : shear modulus of elasticity, ๐‘/๐‘š2

๐ผ : the torsion constant (polar moment of inertia), ๐‘š4

For the concentric circular tubes,

๐ฟ : length of the rod, ๐‘š

๐‘‘๐‘œ : outside rod diameter, ๐‘š

๐‘‘๐‘– : inside rod diameter, ๐‘š

4. Cantilever beam

๐‘˜ =3๐ธ๐ผ

๐‘Ž3, 0 < ๐‘Ž โ‰ค ๐ฟ

๐ธ : Youngโ€™s modulus of elasticity, ๐‘/๐‘š2

๐ผ : the area moment of inertia about the bending axis, ๐‘š4

๐‘Ž : position of applied force, ๐‘š

๐ฟ : length of the beam, ๐‘š

Vibrations 2.19 Modeling of Vibratory Systems

๐ผ =๐œ‹(๐‘‘๐‘œ

4 โˆ’ ๐‘‘๐‘–4)

32

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

ยง3.Stiffness Elements

5. Pinned-pinned beam (Hinged, simply supported)

๐‘˜ =3๐ธ๐ผ(๐‘Ž + ๐‘)

๐‘Ž2๐‘2

๐ธ : Youngโ€™s modulus of elasticity, ๐‘/๐‘š2

๐ผ : the area moment of inertia about the bending axis, ๐‘š4

๐‘Ž,๐‘: position of applied force, ๐‘š

6. Clamped-clamped beam (Fixed-fixed beam)

๐‘˜ =3๐ธ๐ผ(๐‘Ž + ๐‘)3

๐‘Ž3๐‘3

๐ธ : Youngโ€™s modulus of elasticity, ๐‘/๐‘š2

๐ผ : the area moment of inertia about the bending axis, ๐‘š4

๐‘Ž,๐‘: position of applied force, ๐‘š

Vibrations 2.20 Modeling of Vibratory Systems

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

ยง3.Stiffness Elements

7. Two circular rods in torsion

๐‘˜๐‘ก๐‘’= ๐‘˜๐‘ก1

+ ๐‘˜๐‘ก2, ๐‘˜๐‘ก๐‘–

=๐บ๐‘–๐ผ๐‘–๐ฟ๐‘–

๐บ๐‘– : modulus of elasticity, ๐‘/๐‘š2

๐ผ๐‘– : the torsion constant (polar moment of inertia), ๐‘š4

๐ฟ๐‘– : position of applied force, ๐‘š

8. Two circular rods in torsion

๐‘˜๐‘ก๐‘’=

1

๐‘˜๐‘ก1

+1

๐‘˜๐‘ก2

โˆ’1

, ๐‘˜๐‘ก๐‘–=

๐บ๐‘–๐ผ๐‘–๐ฟ๐‘–

๐บ๐‘– : modulus of elasticity, ๐‘/๐‘š2

๐ผ๐‘– : the torsion constant (polar moment of inertia), ๐‘š4

๐ฟ๐‘– : position of applied force, ๐‘š

Vibrations 2.21 Modeling of Vibratory Systems

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

ยง3.Stiffness Elements

9. Coil springs

๐‘˜ =๐บ๐‘‘4

8๐‘›๐ท3

๐บ : modulus of elasticity, ๐‘/๐‘š2

๐‘‘ : wire diameter, ๐‘š

๐‘› : number of active coil

๐ท : mean coil diameter, ๐‘š

10. Clamped rectangular plate, constant thickness, force at center

๐‘˜ =๐ธโ„Ž3

12๐›ผ๐‘Ž2(1 โˆ’ ๐œˆ2)

๐ธ : Youngโ€™s modulus of elasticity, ๐‘/๐‘š2

โ„Ž : thickness of plate, ๐‘š

๐›ผ : coefficient

๐‘Ž : width of the plate, ๐‘š

๐œˆ : poison ratio

Vibrations 2.22 Modeling of Vibratory Systems

๐‘/๐‘Ž ๐›ผ1.0 0.005601.2 0.006471.4 0.006911.6 0.007121.8 0.007202.0 0.00722

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

ยง3.Stiffness Elements

- Force-displacement relationships may also be used to

determine parameters such as ๐‘˜ that characterize a stiffness

element

Vibrations 2.23 Modeling of Vibratory Systems

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

ยง3.Stiffness Elements

- Ex.2.3 Equivalent stiffness of a beam-spring combination

Consider a cantilever beam that has a spring attached at its free end

โ€ข The force is applied to the free end of the spring

๐‘˜๐‘’ =1

๐‘˜๐‘๐‘’๐‘Ž๐‘š+

1

๐‘˜1

โˆ’1

๐‘˜๐‘๐‘’๐‘Ž๐‘š =3๐ธ๐ผ

๐ฟ3

โ€ข The force is applied simultaneously to the free end of the

cantilever beam

๐‘˜๐‘’ = ๐‘˜๐‘๐‘’๐‘Ž๐‘š + ๐‘˜1

Vibrations 2.24 Modeling of Vibratory Systems

โŸน parrallel

โŸน series

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

Page 5: Ch.02 Modeling of Vibratory Systems

2/2/2014

5

ยง3.Stiffness Elements

- Ex.2.4 Equivalent stiffness of a cantilever beam with a

transverse end load

Acantilever beam:๐ธ = 72ร—109๐‘/๐‘š2, ๐‘Ž = 750๐‘š๐‘š, ๐‘‘๐‘– = 110๐‘š๐‘š,

๐‘‘๐‘œ = 120๐‘š๐‘š. Determine the equivalent stiffness of this beam

Solution

The area moment of inertia ๐ผ about the bending axis

๐ผ =๐œ‹

32๐‘‘๐‘œ

4 โˆ’ ๐‘‘๐‘–4

=๐œ‹

32120 ร— 10โˆ’3 4 โˆ’ 110 ร— 10โˆ’3 4

= 5.98 ร— 10โˆ’6๐‘š4

The equivalent stiffness of the cantilever beam

๐‘˜ =3๐ธ๐ผ

๐ฟ3 =3 ร— 72 ร— 109 ร— 5.98 ร— 10โˆ’6

750 ร— 10โˆ’3 3 = 3.06 ร— 106๐‘/๐‘š

Vibrations 2.25 Modeling of Vibratory Systems

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

ยง3.Stiffness Elements

- Ex.2.5 Equivalent stiffness of a beam with a fixed end and a

translating support at the other end

Consider a uniform beam of length ๐ฟ with flexural rigidity ๐ธ๐ผ. When the

beam is subjected to a transverse loading ๐นat the translating support end, determine

the equivalent stiffness of this beam

Solution

By observation

โŸบ

Vibrations 2.26 Modeling of Vibratory Systems

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

ยง3.Stiffness Elements

To this end, we use Case 6 of Table 2.3 and set ๐‘Ž = ๐‘ = ๐ฟ and

obtain

๐‘˜๐‘“๐‘–๐‘ฅ๐‘’๐‘‘ = 3๐ธ๐ผ ๐‘Ž + ๐‘ 3

๐‘Ž3๐‘3

๐‘Ž=๐‘=๐ฟ

=3๐ธ๐ผ ๐ฟ + ๐ฟ 3

๐ฟ3๐ฟ3 =24๐ธ๐ผ

๐ฟ3

Recognizing that the equivalent stiffness of a fixed-fixed beam

of length 2๐ฟ loaded at its middle is equal to the total equivalent

stiffness of a parallel spring combination of two end loaded

beams, we obtain that

๐‘˜๐‘’ =1

2๐‘˜๐‘“๐‘–๐‘ฅ๐‘’๐‘‘ =

1

2

24๐ธ๐ผ

๐ฟ3 =12๐ธ๐ผ

๐ฟ3

Vibrations 2.27 Modeling of Vibratory Systems

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

ยง3.Stiffness Elements

- Ex.2.6 Equivalent stiffness of a micro-electromechanical

system (MEMS) fixed-fixed flexure

A micro-electromechanical sensor

system (MEMS) consisting of four

flexures. Each of these flexures is

fixed at one end and connected to a

mass at the other end. The length of each flexure is๐ฟ =100๐œ‡๐‘š, the thickness of each flexure is โ„Ž = 2๐œ‡๐‘š, and the

width of each flexure is ๐‘ = 2๐œ‡๐‘š. A transverse loading acts on

the mass along the ๐‘-direction, which is normal to the ๐‘‹ โˆ’ ๐‘Œplane. Each flexure is fabricated from a poly-silicon material,

which has a Youngโ€™s modulus of elasticity ๐ธ = 150๐บ๐‘ƒ๐‘Ž

Determine the equivalent stiffness of the system

Vibrations 2.28 Modeling of Vibratory Systems

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

ยง3.Stiffness Elements

Solution

Each of the four flexures can be treated as a beam that is fixed

at one end and free to translate only

at the other end, similar to the

system in Ex.2.5

The equivalent stiffness of each

flexure is given by

๐‘˜๐‘“๐‘™๐‘’๐‘ฅ๐‘ข๐‘Ÿ๐‘’ =12๐ธ๐ผ

๐ฟ3 , ๐ผ =๐‘โ„Ž3

12The equivalent stiffness of the system

๐‘˜๐‘’ = 4 ร— ๐‘˜๐‘“๐‘™๐‘’๐‘ฅ๐‘ข๐‘Ÿ๐‘’ = 4 ร—12๐ธ ร—

๐‘โ„Ž3

12๐ฟ3 = 4

๐ธ๐‘โ„Ž3

๐ฟ3

= 4150 ร— 109 ร— 2 ร— 10โˆ’6 ร— 2 ร— 10โˆ’6

100 ร— 10โˆ’6 = 9.6๐‘/๐‘š

Vibrations 2.29 Modeling of Vibratory Systems

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

ยง3.Stiffness Elements

- Ex.2.7 Equivalent stiffness of springs in parallel: removal of a restriction

Determine of the equivalence spring constant for

the parallel springs subjected to unequal forces

Solution

From similar triangles

๐‘ฅ = ๐‘ฅ2 +๐‘

๐‘Ž + ๐‘๐‘ฅ1 โˆ’ ๐‘ฅ2 =

๐‘

๐‘Ž + ๐‘๐‘ฅ1 +

๐‘Ž

๐‘Ž + ๐‘๐‘ฅ2

Consider the bar

๐น = ๐น1 + ๐น2

๐‘๐น2 = ๐‘Ž๐น1

Therefore

๐‘ฅ1 =๐น1

๐‘˜1=

๐‘๐น

๐‘˜1 ๐‘Ž + ๐‘, ๐‘ฅ2 =

๐น2

๐‘˜2=

๐‘Ž๐น

๐‘˜2 ๐‘Ž + ๐‘

Vibrations 2.30 Modeling of Vibratory Systems

โŸน ๐น1 =๐‘๐น

๐‘Ž + ๐‘, ๐น2 =

๐‘Ž๐น

๐‘Ž + ๐‘

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

Page 6: Ch.02 Modeling of Vibratory Systems

2/2/2014

6

ยง3.Stiffness Elements

โŸน ๐‘ฅ =๐‘

๐‘Ž + ๐‘๐‘ฅ1 +

๐‘Ž

๐‘Ž + ๐‘๐‘ฅ2

=๐‘

๐‘Ž + ๐‘

๐‘๐น

๐‘˜1 ๐‘Ž + ๐‘+

๐‘Ž

๐‘Ž + ๐‘

๐‘Ž๐น

๐‘˜2 ๐‘Ž + ๐‘

=๐น

๐‘Ž + ๐‘ 2

๐‘˜1๐‘Ž2 + ๐‘˜2๐‘

2

๐‘˜1๐‘˜2

For the equivalent system

๐น = ๐‘˜๐‘’๐‘ฅ

โŸน ๐‘˜๐‘’ =๐น

๐‘ฅThe equivalence spring constant for the parallel

springs subjected to unequal forces

๐‘˜๐‘’ =๐‘˜1๐‘˜2 ๐‘Ž + ๐‘ 2

๐‘˜1๐‘Ž2 + ๐‘˜2๐‘

2

Vibrations 2.31 Modeling of Vibratory Systems

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

ยง3.Stiffness Elements

3.Nonlinear Springs

- Nonlinear stiffness elements appear in many applications,

including leaf springs in vehicle suspensions and uniaxial

micro-electromechanical devices in the presence of

electrostatic actuation

- The spring force ๐น(๐‘ฅ)

๐น ๐‘ฅ = ๐‘˜๐‘ฅ๐‘™๐‘–๐‘›๐‘’๐‘Ž๐‘Ÿ ๐‘ ๐‘๐‘Ÿ๐‘–๐‘›๐‘” ๐‘’๐‘™๐‘’๐‘š๐‘’๐‘›๐‘ก

+ ๐›ผ๐‘˜๐‘ฅ3

๐‘›๐‘œ๐‘›๐‘™๐‘–๐‘›๐‘’๐‘Ž๐‘Ÿ ๐‘ ๐‘๐‘Ÿ๐‘–๐‘›๐‘” ๐‘’๐‘™๐‘’๐‘š๐‘’๐‘›๐‘ก

(2.23)

๐›ผ : the stiffness coefficient of the nonlinear term

๐›ผ > 0 hardening spring ๐›ผ < 0 softening spring

๐‘˜ : the linear spring constant

- The potential energy ๐‘‰

๐‘‰ ๐‘ฅ = 0

๐‘ฅ

๐น ๐‘ฅ ๐‘‘๐‘ฅ =1

2๐‘˜๐‘ฅ2 +

1

2๐›ผ๐‘˜๐‘ฅ4

Vibrations 2.32 Modeling of Vibratory Systems

(2.24)

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

๐น ๐‘ฅ = ๐‘˜๐‘ฅ + ๐›ผ๐‘˜๐‘ฅ3 (2.23)

ยง3.Stiffness Elements

- For a nonlinear stiffness element described by Eq. (2.23), the

graph is no longer a straight line. The slope of this graph at a

location ๐‘ฅ = ๐‘ฅ๐‘™ is given by

๐‘‘๐น

๐‘‘๐‘ฅ๐‘ฅ=๐‘ฅ๐‘™

= ๐‘˜ + 3๐›ผ๐‘˜๐‘ฅ2

๐‘ฅ=๐‘ฅ๐‘™

= ๐‘˜ + 3๐›ผ๐‘˜๐‘ฅ๐‘™2

โŸน in the vicinity of displacements in a neighborhood of ๐‘ฅ =๐‘ฅ๐‘™, the cubic nonlinear stiffness element may be replaced by

a linear stiffness element with a stiffness constant (2.25)

- The constant of proportionality ๐›ผ๐‘˜ for the nonlinear cubic

spring is determined experimentally

Vibrations 2.33 Modeling of Vibratory Systems

(2.25)

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

ยง3.Stiffness Elements

- Experimentally obtained data used to determine the

nonlinear spring constant ๐›ผ๐‘˜

Vibrations 2.34 Modeling of Vibratory Systems

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

ยง3.Stiffness Elements

- Ex.2.8 Nonlinear stiffness due to geometry

a. Nonlinear stiffness due to geometry

โ€ข The initial tension force

๐‘‡0 = ๐น๐‘ ๐›พ=0

= ๐‘˜๐›ฟ0

โ€ข The force in the spring

๐น๐‘  ๐‘ฅ = ๐‘˜๐›ฟ0 + ๐‘˜ ๐ฟ2 + ๐‘ฅ2 โˆ’ ๐ฟ

โ€ข The force in the ๐‘ฅ-direction is obtained

๐น๐‘ฅ ๐‘ฅ = ๐น๐‘ ๐‘ ๐‘–๐‘›๐›พ =๐น๐‘ ๐‘ฅ

๐ฟ2 + ๐‘ฅ2=

๐‘ฅ๐‘˜๐›ฟ0

๐ฟ2 + ๐‘ฅ2+

๐‘˜๐‘ฅ ๐ฟ2 + ๐‘ฅ2 โˆ’ ๐ฟ

๐ฟ2 + ๐‘ฅ2

โŸน the spring force opposing the motion is a nonlinear function

of the displacement ๐‘ฅ . Hence, this vibratory model of the

system will have nonlinear stiffness

Vibrations 2.35 Modeling of Vibratory Systems

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

Binomial expansion 1 + ๐‘ฅ ๐‘› = 1 + ๐‘›๐‘ฅ +1

2๐‘›(๐‘› โˆ’ 1)๐‘ฅ2 + โ‹ฏ

ยง3.Stiffness Elements

Cubic Springs and Linear Springs

Assume that |๐‘ฅ/๐ฟ| โ‰ช 1, using binomial expansion

1 +๐‘ฅ

๐ฟ

2

= 1 +๐‘ฅ

๐ฟ

2 1/2

= 1 +1

2

๐‘ฅ

๐ฟ

2

+1

8

๐‘ฅ

๐ฟ

4

+ โ‹ฏ

โŸน ๐น๐‘ฅ ๐‘ฅ = ๐‘˜๐›ฟ0

๐‘ฅ/๐ฟ

1 + ๐‘ฅ/๐ฟ 2+

๐‘˜๐‘ฅ 1 + ๐‘ฅ/๐ฟ 2 โˆ’ 1

1 + ๐‘ฅ/๐ฟ 2

= ๐‘˜๐›ฟ0

๐‘ฅ/๐ฟ

1 +12

๐‘ฅ๐ฟ

2 +๐‘˜๐‘ฅ 1 +

12

๐‘ฅ๐ฟ

2โˆ’ 1

1 +12

๐‘ฅ๐ฟ

2

= ๐‘˜๐›ฟ0

๐‘ฅ

๐ฟ+

๐‘˜

2๐ฟ

๐‘ฅ

๐ฟ

3

Vibrations 2.36 Modeling of Vibratory Systems

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

Page 7: Ch.02 Modeling of Vibratory Systems

2/2/2014

7

ยง3.Stiffness Elements

๐น๐‘ฅ ๐‘ฅ = ๐‘˜๐›ฟ0

๐‘ฅ

๐ฟ+

๐‘˜

2๐ฟ

๐‘ฅ

๐ฟ

3

When the nonlinear term is negligible

๐น๐‘ฅ ๐‘ฅ = ๐‘˜๐›ฟ0

๐‘ฅ

๐ฟ= ๐‘‡0

๐‘ฅ

๐ฟand the spring constant is proportional to the initial tension in

the spring

b. Nonlinear spring composed of a set of linear springs

Another example of a nonlinear spring is one that is piecewise

linear as shown in figure

Vibrations 2.37 Modeling of Vibratory Systems

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

ยง3.Stiffness Elements

4.Other Forms of Potential Energy Elements

Consider other stiffness elements in which there is a

mechanism for storing and releasing potential energy. The

source of the restoring force is a fluid element or a gravitational

loading

- Fluid Element

โ€ข The magnitude of the total force of the

displaced fluid acting on the rest of the fluid

๐น๐‘š ๐‘ฅ = 2๐œŒ๐‘”๐ด0๐‘ฅ

๐œŒ : the mass density of the fluid, ๐‘˜๐‘”/๐‘š3

๐‘” : gravitational constant, ๐‘š/๐‘ 2

๐ด0 : the manometer cross-sectional area, ๐‘š2

๐‘ฅ : the fluid displacement, ๐‘š

Vibrations 2.38 Modeling of Vibratory Systems

Manometer

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

ยง3.Stiffness Elements

โ€ข The equivalent spring constant of this fluid system

๐‘˜๐‘’ =๐‘‘๐น๐‘š

๐‘‘๐‘ฅ= 2๐œŒ๐‘”๐ด0

โ€ข The potential energy

๐‘‰ ๐‘ฅ =1

2๐‘˜๐‘’๐‘ฅ

2 = ๐œŒ๐‘”๐ด0๐‘ฅ2

Alternatively, the potential energy can also be obtained

directly from the work done

๐‘‰ ๐‘ฅ = 0

๐‘ฅ

๐น๐‘š ๐‘ฅ ๐‘‘๐‘ฅ

= 2๐œŒ๐‘”๐ด0 0

๐‘ฅ

๐‘ฅ๐‘‘๐‘ฅ

= ๐œŒ๐‘”๐ด0๐‘ฅ2

Vibrations 2.39 Modeling of Vibratory Systems

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

ยง3.Stiffness Elements

- Compressed Gas

โ€ข When the piston moves by an amount ๐‘ฅ along

the axis of the piston, ๐‘‰0 decreases to a

volume ๐‘‰๐‘

๐‘‰๐‘ ๐‘ฅ = ๐‘‰0 โˆ’ ๐ด0๐‘ฅ = ๐ด0๐ฟ0 1 โˆ’ ๐‘ฅ/๐ฟ0

โŸน ๐‘‰๐‘ ๐‘ฅ = ๐‘‰0 1 โˆ’ ๐‘ฅ/๐ฟ0

๐ด0: the piston cross-sectional area, ๐‘š2

โ€ข The equation of state for the gas

๐‘ƒ๐‘‰๐‘๐‘› = ๐‘ƒ0๐‘‰0

๐‘› = ๐‘0 = ๐‘๐‘œ๐‘›๐‘ ๐‘ก โŸน ๐‘ƒ = ๐‘0๐‘‰๐‘โˆ’๐‘›

๐‘ƒ : gas pressure, ๐‘/๐‘š2 ๐‘‰ : gas volume, ๐‘š3

๐‘› : the ratio of specific heats of the gas, when compressed

- slowly, the compression is isothermal, ๐‘› = 1

- rapidly, the compression is adiabatic, ๐‘› = ๐‘๐‘/๐‘๐‘ฃ = 1.4

Vibrations 2.40 Modeling of Vibratory Systems

Gas compression

with a piston

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

ยง3.Stiffness Elements

โ€ข The magnitude of the force on the piston

๐น ๐‘ฅ = ๐ด0๐‘ƒ

= ๐ด0๐‘0๐‘‰๐‘โˆ’๐‘›

= ๐ด0๐‘0๐‘‰0โˆ’๐‘› 1 โˆ’ ๐‘ฅ/๐ฟ0

โˆ’๐‘›

โŸน ๐น ๐‘ฅ = ๐ด0๐‘ƒ0 1 โˆ’ ๐‘ฅ/๐ฟ0โˆ’๐‘› (2.33)

The Eq. (2.33) describes a nonlinear force

versus displacement relationship

At the vicinity of ๐‘ฅ = ๐‘ฅ๐‘™, the stiffness of an equivalent linear

stiffness element

๐‘˜๐‘’ = ๐‘‘๐น

๐‘‘๐‘ฅ๐‘ฅ=๐‘ฅ๐‘™

=๐‘›๐ด0๐‘ƒ0

๐ฟ01 โˆ’ ๐‘ฅ๐‘™/๐ฟ0

โˆ’๐‘›โˆ’1

For ๐‘ฅ๐‘™/๐ฟ0 โ‰ช 1,

Vibrations 2.41 Modeling of Vibratory Systems

๐‘˜๐‘’ =๐‘›๐ด0๐‘ƒ0

๐ฟ0

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

ยง3.Stiffness Elements

โ€ข For arbitrary ๐‘ฅ/๐ฟ0, the potential energy

๐‘‰ ๐‘ฅ = 0

๐‘ฅ

๐น ๐‘ฅ ๐‘‘๐‘ฅ

= ๐ด0๐‘ƒ0 0

๐‘ฅ

1 โˆ’ ๐‘ฅ/๐ฟ0โˆ’๐‘›๐‘‘๐‘ฅ

โŸน ๐‘‰ ๐‘ฅ = โˆ’๐ด0๐‘ƒ0๐ฟ0๐‘™๐‘› 1 โˆ’ ๐‘ฅ/๐ฟ0 ๐‘› = 1

๐ด0๐‘ƒ0๐ฟ0

๐‘› โˆ’ 11 โˆ’ ๐‘ฅ/๐ฟ0

โˆ’๐‘› โˆ’ 1 ๐‘› โ‰  1

Vibrations 2.42 Modeling of Vibratory Systems

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

Page 8: Ch.02 Modeling of Vibratory Systems

2/2/2014

8

ยง3.Stiffness Elements

- Pendulum System

โ€ข Pendulum systems: bar with uniformly

distributed mass

At ๐œƒ, the vertical distance through which the

center of gravity of the bar moves up from the

reference position

๐‘ฅ =๐ฟ

2โˆ’

๐ฟ

2๐‘๐‘œ๐‘ ๐œƒ =

๐ฟ

21 โˆ’ ๐‘๐‘œ๐‘ ๐œƒ

The increase in the potential energy

๐‘‰ ๐‘ฅ = 0

๐‘ฅ

๐น ๐‘ฅ ๐‘‘๐‘ฅ = 0

๐‘ฅ

๐‘š๐‘”๐‘‘๐‘ฅ = ๐‘š๐‘”๐‘ฅ

or in ๐œƒ

๐‘‰ ๐œƒ =1

2๐‘š๐‘”๐ฟ(1 โˆ’ ๐‘๐‘œ๐‘ ๐œƒ)

Vibrations 2.43 Modeling of Vibratory Systems

Pendulum systems: bar

with uniformly distributed

mass

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

Taylor series approximation ๐‘๐‘œ๐‘ ๐œƒ = 1 โˆ’๐œƒ2

2+ โ‹ฏ

ยง3.Stiffness Elements

๐‘‰ ๐œƒ =1

2๐‘š๐‘”๐ฟ 1 โˆ’ ๐‘๐‘œ๐‘ ๐œƒ

โ‰ˆ1

2

๐‘š๐‘”๐ฟ

2๐œƒ2

=1

2๐‘˜๐‘’๐œƒ

2

where the equivalent spring constant

๐‘˜๐‘’ =๐‘š๐‘”๐ฟ

2

Vibrations 2.44 Modeling of Vibratory Systems

Pendulum systems: bar

with uniformly distributed

mass

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

ยง3.Stiffness Elements

โ€ข Pendulum systems: mass on a weightless rod

The increase in the potential energy

๐‘‰ ๐œƒ โ‰ˆ1

2๐‘š1๐‘”๐ฟ๐œƒ2 =

1

2๐‘˜๐‘’๐œƒ

2

where the equivalent spring constant

๐‘˜๐‘’ = ๐‘š1๐‘”๐ฟ

If the weightless bar is replaced by one that

has a uniformly distributed mass ๐‘š, then the

total potential energy of the bar and the mass

๐‘‰ ๐œƒ โ‰ˆ1

4๐‘š๐‘”๐ฟ๐œƒ2 +

1

2๐‘š1๐‘”๐ฟ๐œƒ2 =

1

2

๐‘š

2+ ๐‘š1 ๐‘”๐ฟ๐œƒ2 =

1

2๐‘˜๐‘’๐œƒ

2

where the equivalent spring constant

๐‘˜๐‘’ =๐‘š

2+ ๐‘š1 ๐‘”๐ฟ

Vibrations 2.45 Modeling of Vibratory Systems

Pendulum systems: mass

on a weightless rod

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

ยง3.Stiffness Elements

โ€ข Pendulum systems: inverted mass on a

weightless rod

The decrease in the potential energy

๐‘‰ ๐œƒ โ‰ˆ โˆ’1

2๐‘š1๐‘”๐ฟ๐œƒ2

Vibrations 2.46 Modeling of Vibratory Systems

Pendulum systems:

inverted mass on a

weightless rod

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

ยง3.Stiffness Elements

- Ex.2.9 Equivalent stiffness due to gravity loading

For โ€œsmallโ€ rotations about the upright position ฮธ = 0,

the potential energy

๐‘‰ ๐œƒ =1

2๐‘š1๐‘”๐‘๐œƒ2 โˆ’

1

2๐‘š2๐‘”๐‘Ž๐œƒ2

=1

2๐‘š1๐‘ โˆ’ ๐‘š2๐‘Ž ๐‘”๐œƒ2

There is a gain or loss in potential energy depending

on whether ๐‘š1๐‘ > ๐‘š2๐‘Ž or vice versa

โ€ข When the bar has a uniformly distributed mass ๐‘š

๐‘š1 = ๐‘š๐ฟ1/๐ฟ, ๐‘š2 = ๐‘š๐ฟ2/๐ฟ, ๐ฟ = ๐ฟ1 + ๐ฟ2, ๐‘ = ๐ฟ1/2, ๐‘ = ๐ฟ2/2

๐‘‰ ๐œƒ =๐ฟ12 โˆ’ ๐ฟ2

2

4(๐ฟ1 + ๐ฟ2)๐‘š๐‘”๐œƒ2 =

1

2

๐ฟ1 + ๐ฟ2

2๐‘š๐‘”๐œƒ2 =

1

2๐‘˜๐‘’๐œƒ

2

where the equivalent stiffness ๐‘˜๐‘’ = ๐ฟ1 + ๐ฟ2 ๐‘š๐‘”/2

Vibrations 2.47 Modeling of Vibratory Systems

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

ยง4.Dissipation Elements

- Damping elements are assumed to have neither inertia nor the

means to store or release potential energy

- The mechanical motion imparted to these elements is

converted to heat or sound and, hence, they are called non-

conservative or dissipative because this energy is not

recoverable by the mechanical system

- There are four common types of damping mechanisms used to

model vibratory systems

โ€ข Viscous damping

โ€ข Coulomb or dry friction damping

โ€ข Material or solid or hysteretic damping

โ€ข Fluid damping

In all these cases, the damping force is expressed as a

function of velocity

Vibrations 2.48 Modeling of Vibratory Systems

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

Page 9: Ch.02 Modeling of Vibratory Systems

2/2/2014

9

ยง4.Dissipation Elements

1.Viscous damping

- When a viscous fluid flows through a slot or around a piston in

a cylinder, the damping force generated is proportional to the

relative velocity between the two boundaries confining the fluid

- A common representation of a viscous damper is a cylinder

with a piston head

- Depending on the damper construction and the velocity

range, the magnitude of the damper force ๐น( ๐‘ฅ) is a nonlinear

function of velocity or can be approximated as a linear

function of velocity

Vibrations 2.49 Modeling of Vibratory Systems

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

ยง4.Dissipation Elements

- In the linear case, the damper force is expressed as

๐น ๐‘ฅ = ๐‘ ๐‘ฅ (2.46)

๐‘ : the damping coefficient, ๐‘/(๐‘š/๐‘ )

Viscous damping of the form given by Eq. (2.46) is also

called slow-fluid damping

- In the case of a nonlinear viscous damper described by a

function ๐น ๐‘ฅ , the equivalent linear viscous damping around

an operating speed ๐‘ฅ = ๐‘ฅ๐‘™ is determined as follows

๐‘๐‘’ = ๐‘‘๐น ๐‘ฅ

๐‘‘ ๐‘ฅ ๐‘ฅ= ๐‘ฅ๐‘™

- Linear viscous damping elements can be combined in the

same way that linear springs are, except that the forces are

proportional to velocity instead of displacement

Vibrations 2.50 Modeling of Vibratory Systems

(2.47)

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

ยง4.Dissipation Elements

โ€ข Energy Dissipation

The energy dissipated by a linear viscous damper

๐ธ๐‘‘ = ๐น๐‘‘๐‘ฅ = ๐น ๐‘ฅ๐‘‘๐‘ก = ๐‘ ๐‘ฅ2๐‘‘๐‘ก = ๐‘ ๐‘ฅ2๐‘‘๐‘ก

โ€ข Parallel-Plate Damper

An example of a viscous damper is shown in the figure

The shear force acting on the

bottom plate

๐น ๐‘ฅ =๐œ‡ ๐‘ฅ

โ„Ž๐ด =

๐œ‡๐ด

โ„Ž ๐‘ฅ

The damping coefficient ๐‘ for the parallel-plate construction

๐‘ =๐œ‡๐ด

โ„Ž

Vibrations 2.51 Modeling of Vibratory Systems

(2.48)

(2.49)

(2.50)

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

๐‘ =๐œ‡๐ด

โ„Ž(2.50)

ยง4.Dissipation Elements

- Ex.2.10 Design of a parallel-plate damper

A parallel-plate damper with a top plate of dimensions100๐‘š๐‘šร— 100๐‘š๐‘š is to be pulled across an oil layer of thickness

0.2๐‘š๐‘š, which is confined between the moving plate and a

fixed plate. We are given that this oil is SAE30 oil, which has a

viscosity of 345๐‘š๐‘ƒ๐‘Ž๐‘  (345 ร— 103๐‘๐‘ /๐‘š2)

Determine the viscous damping coefficient of this system

Solution

To this end, using Eq. (2.50) and substitute the given values

into this expression and find that

๐‘ =๐œ‡๐ด

โ„Ž=

345ร—10โˆ’3 100ร—10โˆ’3 ร—100ร—10โˆ’3

0.2 ร— 10โˆ’3 = 17.25๐‘๐‘ /๐‘š

Vibrations 2.52 Modeling of Vibratory Systems

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

ยง4.Dissipation Elements

- Ex.2.11 Equivalent damping coefficient and

equivalent stiffness of a vibratory system

Consider the vibratory system in which the motion of mass ๐‘šis restrained by a set of linear springs and linear viscous

dampers. Determine ๐‘˜๐‘’ and ๐‘๐‘’

Solution

The equivalence system

๐‘˜๐‘’ = ๐‘˜1 +๐‘˜2๐‘˜3

๐‘˜2 + ๐‘˜3, ๐‘๐‘’ = ๐‘1 + ๐‘2

Vibrations 2.53 Modeling of Vibratory Systems

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

๐‘๐‘’ = ๐‘‘๐น ๐‘ฅ

๐‘‘ ๐‘ฅ ๐‘ฅ= ๐‘ฅ๐‘™

(2.47)

ยง4.Dissipation Elements

- Ex.2.12 Equivalent linear damping coefficientof a nonlinear damper

It has been experimentally determined that the damper force-

velocity relationship is given by the function

๐น ๐‘ฅ = 4๐‘๐‘ /๐‘š ๐‘ฅ + (0.3๐‘๐‘ 3/๐‘š) ๐‘ฅ3

Determine the equivalent linear damping coefficient around an

operating speed of 3๐‘š/๐‘ 

Solution

Using the Eq. (2.47)

๐‘๐‘’ = ๐‘‘๐น ๐‘ฅ

๐‘‘ ๐‘ฅ ๐‘ฅ=3๐‘š/๐‘ 

= 4 + 0.9 ๐‘ฅ2

๐‘ฅ=3๐‘š/๐‘ = 4 + 0.9 ร— 32

โŸน ๐‘๐‘’ = 12.1๐‘๐‘ /๐‘š

Vibrations 2.54 Modeling of Vibratory Systems

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

Page 10: Ch.02 Modeling of Vibratory Systems

2/2/2014

10

ยง4.Dissipation Elements

2.Other Forms of Dissipation

- Coulomb Damping or Dry Friction

This type of damping is due to the force caused by friction

between two solid surfaces

The friction force acting on the system

๐น ๐‘ฅ = ๐œ‡๐‘๐‘ ๐‘”๐‘›( ๐‘ฅ) (2.51)

๐œ‡ : the kinetic coefficient of friction

๐‘ : the force compressing the surfaces, ๐‘

๐‘ ๐‘”๐‘›: the signum function, ๐‘ ๐‘”๐‘› ๐‘ฅ = +1 ๐‘ฅ > 0โˆ’1 ๐‘ฅ < 0

0 ๐‘ฅ = 0

Vibrations 2.55 Modeling of Vibratory Systems

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

ยง4.Dissipation Elements

If the normal force is due to the system weight, then ๐‘ = ๐‘š๐‘”

๐น ๐‘ฅ = ๐œ‡๐‘š๐‘”๐‘ ๐‘”๐‘›( ๐‘ฅ) (2.52)

The energy dissipated in this case

(2.53)

- Fluid Damping (Velocity-Squared Damping)

This type of damping is associated with a system whose mass is

vibrating in a fluid medium. The magnitude of the damping force

๐น ๐‘ฅ = ๐‘๐‘‘ ๐‘ฅ2๐‘ ๐‘”๐‘› ๐‘ฅ = ๐‘๐‘‘| ๐‘ฅ| ๐‘ฅ (2.54)

๐‘๐‘‘ : friction coefficient, ๐‘๐‘‘ = ๐ถ๐œŒ๐ด/2

๐ถ : drag coefficient

๐œŒ : the mass density of the fluid

๐ด : the projected area of the mass in a direction normal to ๐‘ฅ

Fluid damping of (2.54) is often referred to as fast-fluid damping

Vibrations 2.56 Modeling of Vibratory Systems

๐ธ๐‘‘ = ๐น๐‘‘๐‘ฅ = ๐น ๐‘ฅ๐‘‘๐‘ก = ๐œ‡๐‘š๐‘” ๐‘ ๐‘”๐‘› ๐‘ฅ ๐‘ฅ๐‘‘๐‘ก

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

ยง4.Dissipation Elements

The energy dissipated

๐ธ๐‘‘ = ๐น๐‘‘๐‘ฅ = ๐น ๐‘ฅ๐‘‘๐‘ก = ๐‘๐‘‘ ๐‘ ๐‘”๐‘›( ๐‘ฅ) ๐‘ฅ3๐‘‘๐‘ก

- Structural or Solid or Hysteretic Damping

This type of damping describes the losses in materials due to

internal friction. The damping force is a function of

displacement and velocity and is of the form

๐น = ๐‘˜๐œ‹๐›ฝโ„Ž๐‘ ๐‘”๐‘› ๐‘ฅ |๐‘ฅ| (2.57)

๐›ฝโ„Ž : an empirically determined constant

The energy dissipated

๐ธ๐‘‘ = ๐น๐‘‘๐‘ฅ = ๐น ๐‘ฅ๐‘‘๐‘ก = ๐‘˜๐œ‹๐›ฝโ„Ž ๐‘ ๐‘”๐‘›( ๐‘ฅ)|๐‘ฅ|๐‘‘๐‘ก

Vibrations 2.57 Modeling of Vibratory Systems

(2.54)

(2.58)

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

ยง5.Model Construction

1.Introduction

- In this section, four examples are provided to illustrate how

the previously described inertia, stiffness, and damping

elements are used to construct system models

- Modeling is an art, and often experience serves as a guide in

model construction

- In this section, the examples are drawn from different areas,

and are presented in a progressive order proceeding from

the use of discrete inertia, stiffness, and damping elements in

a model to distributed elements, and finally, to a combination

of distributed and discrete elements

- As discussed in the subsequent chapters, the mass,

stiffness, and damping of a system appear as parameters in

the governing equations of the system

Vibrations 2.58 Modeling of Vibratory Systems

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

ยง5.Model Construction

2.A Micro-electromechanical System

Micro-electromechanical accelerometer and a vibratory model

of this sensor

Vibrations 2.59 Modeling of Vibratory Systems

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

ยง5.Model Construction

3.The Human Body

Human body and a vibratory model

Vibrations 2.60 Modeling of Vibratory Systems

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

Page 11: Ch.02 Modeling of Vibratory Systems

2/2/2014

11

ยง5.Model Construction

4.A Ski

Cross-country ski, which is a physical system with distributed

stiffness and inertia properties, and its vibratory model

Vibrations 2.61 Modeling of Vibratory Systems

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

ยง5.Model Construction

5.Cutting Process

Work-piece-tool turning system and vibratory model of this

system

Vibrations 2.62 Modeling of Vibratory Systems

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

ยง6.Design for Vibration

Vibrations 2.63 Modeling of Vibratory Systems

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

Exercises

Vibrations 2.66 Modeling of Vibratory Systems

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien