Ch 6 Fatigue Failure Resulting From Variable Loading 2015

download Ch 6 Fatigue Failure Resulting From Variable Loading 2015

of 113

Transcript of Ch 6 Fatigue Failure Resulting From Variable Loading 2015

  • 8/17/2019 Ch 6 Fatigue Failure Resulting From Variable Loading 2015

    1/113

    Chapter 6

    Fatigue FailureResulting fromVariable Loading

    Mohammad Suliman Abuhaiba, Ph.D., PE1

  • 8/17/2019 Ch 6 Fatigue Failure Resulting From Variable Loading 2015

    2/113

    Chapter Outline

    Mohammad Suliman Abuhaiba, Ph.D., PE

    Introduction to Fatigue in Metals

     Approach to Fatigue Failure in Analysis and Design Fatigue-Life Methods

    The Stress-Life Method

    The Strain-Life Method

    The Linear-Elastic Fracture Mechanics Method

    The Endurance Limit

    Fatigue Strength Endurance Limit Modifying Factors

    Stress Concentration and Notch Sensitivity

    Characterizing Fluctuating Stresses

    Fatigue Failure Criteria for Fluctuating Stress

    Torsional Fatigue Strength under Fluctuating Stresses

    Combinations of Loading Modes

    Varying, Fluctuating Stresses; Cumulative Fatigue Damage

    Surface Fatigue Strength

    Stochastic Analysis

    2

  • 8/17/2019 Ch 6 Fatigue Failure Resulting From Variable Loading 2015

    3/113

    Introduction to Fatigue in Metals

    Loading produces stresses that are

    variable, repeated, alternating, or 

    fluctuatingMaximum stresses well below yield strength

    Failure occurs after many stress cycles

    Failure is by sudden ultimate fractureNo visible warning in advance of failure

    Mohammad Suliman Abuhaiba, Ph.D., PE

    3

  • 8/17/2019 Ch 6 Fatigue Failure Resulting From Variable Loading 2015

    4/113

    Stages of Fatigue Failure

     Stage I:   Initiation ofmicro-crack due to

    cyclic plastic

    deformation

     Stage II: Progresses to

    macro-crack that

    repeatedly opens &closes, creating

    bands called   beach

    marks

    Mohammad Suliman Abuhaiba, Ph.D., PE

    4

  • 8/17/2019 Ch 6 Fatigue Failure Resulting From Variable Loading 2015

    5/113

    Stages of Fatigue Failure

     Stage III:   Crack has

    propagated far  

    enough thatremaining material is

    insufficient to carry

    the load, and fails by

    simple ultimate failure

    Mohammad Suliman Abuhaiba, Ph.D., PE

    5

  • 8/17/2019 Ch 6 Fatigue Failure Resulting From Variable Loading 2015

    6/113

    Fatigue Fracture Example

    Mohammad Suliman Abuhaiba, Ph.D., PE

      AISI 4320

    drive shaft

      B: crack  initiation at

    stress

    concentration

    in keyway  C: Final brittle

    failure

    6

  • 8/17/2019 Ch 6 Fatigue Failure Resulting From Variable Loading 2015

    7/113

    Fatigue-Life Methods

    Three major fatigue life models

    Methods predict life in number of

    cycles to failure, N, for a specific levelof loading

    Mohammad Suliman Abuhaiba, Ph.D., PE

    7

  • 8/17/2019 Ch 6 Fatigue Failure Resulting From Variable Loading 2015

    8/113

  • 8/17/2019 Ch 6 Fatigue Failure Resulting From Variable Loading 2015

    9/113

    1. Stress-Life Method

     Test specimens subjected to repeated

    stress while counting cycles to failure

     Pure bending with no transverse shear 

     completely reversed stress cycling

    Mohammad Suliman Abuhaiba, Ph.D., PE

    9

  • 8/17/2019 Ch 6 Fatigue Failure Resulting From Variable Loading 2015

    10/113

     S-N Diagram

    Mohammad Suliman Abuhaiba, Ph.D., PE

    10

  • 8/17/2019 Ch 6 Fatigue Failure Resulting From Variable Loading 2015

    11/113

     S-N Diagram for Steel

    Stress levels below Se : infinite life

    103 to 106 cycles: finite life

    Below 103 cycles: low cycle

    Yielding usually occurs before fatigue

    Mohammad Suliman Abuhaiba, Ph.D., PE

    11

  • 8/17/2019 Ch 6 Fatigue Failure Resulting From Variable Loading 2015

    12/113

     S-N Diagram for Nonferrous Metals

     no endurance limit

     Fatigue strength Sf 

     S-N diagram for aluminums

    Mohammad Suliman Abuhaiba, Ph.D., PE

    12

  • 8/17/2019 Ch 6 Fatigue Failure Resulting From Variable Loading 2015

    13/113

    2. Strain-Life Method

      Detailed analysis of plastic deformation

    at localized regions

      Useful for explaining nature of fatigue

      Fatigue failure begins at a local

    discontinuity

    Mohammad Suliman Abuhaiba, Ph.D., PE

    13

  • 8/17/2019 Ch 6 Fatigue Failure Resulting From Variable Loading 2015

    14/113

    2. Strain-Life Method

      When stress at

    discontinuity

    exceeds elastic

    limit, plastic strain

    occurs

      Cyclic plastic

    strain can changeelastic limit,

    leading to fatigue

    Mohammad Suliman Abuhaiba, Ph.D., PE

    Fig. 6 – 12

    14

  • 8/17/2019 Ch 6 Fatigue Failure Resulting From Variable Loading 2015

    15/113

    Relation of Fatigue Life to Strain

    Figure 6 – 13: relationship of fatigue life to

    true-strain amplitude

     Fatigue ductility coefficient  

    'F = true strainat which fracture occurs in one reversal

    (point A in Fig. 6 – 12)

      Fatigue strength coefficient   'F   = true

    stress corresponding to fracture in onereversal (point A in Fig. 6 – 12)

    Mohammad Suliman Abuhaiba, Ph.D., PE

    15

  • 8/17/2019 Ch 6 Fatigue Failure Resulting From Variable Loading 2015

    16/113

    Relation of Fatigue Life to Strain

    Mohammad Suliman Abuhaiba, Ph.D., PE

    Fig. 6 – 13

    16

  • 8/17/2019 Ch 6 Fatigue Failure Resulting From Variable Loading 2015

    17/113

    Equation of plastic-strain line in Fig. 6 – 13

    Equation of elastic strain line in Fig. 6 – 13

    Mohammad Suliman Abuhaiba, Ph.D., PE

    Relation of Fatigue Life to Strain

    17

  • 8/17/2019 Ch 6 Fatigue Failure Resulting From Variable Loading 2015

    18/113

      Fatigue ductility exponent c   = slope ofplastic-strain line

      2N stress reversals = N cycles   Fatigue strength exponent b   = slope of

    elastic-strain line

    Mohammad Suliman Abuhaiba, Ph.D., PE

    Relation of Fatigue Life to Strain

    18

  • 8/17/2019 Ch 6 Fatigue Failure Resulting From Variable Loading 2015

    19/113

    Manson-Coffin:   relationship between

    fatigue life and total strainTable A – 23:   values of coefficients &

    exponents

    Equation has limited use for design Values for total strain at discontinuities are

    not readily available

    Mohammad Suliman Abuhaiba, Ph.D., PE

    Relation of Fatigue Life to Strain

    19

  • 8/17/2019 Ch 6 Fatigue Failure Resulting From Variable Loading 2015

    20/113

    The Endurance Limit

    Mohammad Suliman Abuhaiba, Ph.D., PE

    Fig. 6 – 17

    20

  • 8/17/2019 Ch 6 Fatigue Failure Resulting From Variable Loading 2015

    21/113

    Simplified estimate of endurance limit for 

    steels for the rotating-beam specimen, S'e

    Mohammad Suliman Abuhaiba, Ph.D., PE

    The Endurance Limit

    21

  • 8/17/2019 Ch 6 Fatigue Failure Resulting From Variable Loading 2015

    22/113

    Fatigue Strength

    For design, an approximation of idealized S-

    N diagram is desirable.

    To estimate fatigue strength at 103 cycles,

    start with Eq. (6-2)

    Define specimen fatigue strength at aspecific number of cycles as

    Mohammad Suliman Abuhaiba, Ph.D., PE

    22

  • 8/17/2019 Ch 6 Fatigue Failure Resulting From Variable Loading 2015

    23/113

    Fatigue Strength

    At 103 cycles,f  = fraction of Sut represented by

    SAE approximation for steels with HB ≤ 500,

    Mohammad Suliman Abuhaiba, Ph.D., PE

    310( )

     f  S 

    23

  • 8/17/2019 Ch 6 Fatigue Failure Resulting From Variable Loading 2015

    24/113

    Fatigue Strength

    To find   b, substitute endurance strengthand corresponding cycles into Eq. (6 – 9)

    and solve for  b

    Mohammad Suliman Abuhaiba, Ph.D., PE

    24

  • 8/17/2019 Ch 6 Fatigue Failure Resulting From Variable Loading 2015

    25/113

  • 8/17/2019 Ch 6 Fatigue Failure Resulting From Variable Loading 2015

    26/113

    Fatigue Strength Fraction f   Plot Eq. (6 – 10) for the fatigue

    strength fraction f  of Sut at 103

    cycles

     Use f  from plot for  S'f  = f Sut at

    103 cycles on S-N diagram  Assume Se = S'e= 0.5Sut at 10

    6

    cycles

    Mohammad Suliman Abuhaiba, Ph.D., PE

    Fig. 6 – 

    18

    26

  • 8/17/2019 Ch 6 Fatigue Failure Resulting From Variable Loading 2015

    27/113

    Equations for S-N Diagram

    Mohammad Suliman Abuhaiba, Ph.D., PE

    Fig. 6 – 10

    27

  • 8/17/2019 Ch 6 Fatigue Failure Resulting From Variable Loading 2015

    28/113

    Mohammad Suliman Abuhaiba, Ph.D., PE

      Write equation for S-N line from 103 to 106 cycles

      Two known points

      At N  =103 cycles, S f  = f S ut 

      At N  =106 cycles, S f  = S e 

     Equations for line:

    Equations for S-N Diagram

    28

  • 8/17/2019 Ch 6 Fatigue Failure Resulting From Variable Loading 2015

    29/113

    Mohammad Suliman Abuhaiba, Ph.D., PE

      If a completely reversed stress   s  rev is given, setting

    S f   =   s  rev in Eq. (6 – 13) and solving for N  gives ,

      Typical S-N   diagram is only applicable for 

    completely reversed stresses

     For other stress situations, a completely reversedstress with the same life expectancy must be used

    on the S-N  diagram

    Equations for S-N Diagram

    29

  • 8/17/2019 Ch 6 Fatigue Failure Resulting From Variable Loading 2015

    30/113

    Low-cycle Fatigue

    1 ≤ N ≤ 103

     On the idealized  S-N  diagram on a log-

    log scale, failure is predicted by a straightline between two points:

    (103, f Sut ) and (1, Sut )

    Mohammad Suliman Abuhaiba, Ph.D., PE

    30

  • 8/17/2019 Ch 6 Fatigue Failure Resulting From Variable Loading 2015

    31/113

    Example 6-2

    Given a 1050 HR steel, estimate

    a.   the rotating-beam endurance limit at 106

    cycles.

    b.   the endurance strength of a polishedrotating-beam specimen corresponding

    to 104 cycles to failure

    c.   the expected life of a polished rotating-

    beam specimen under a completely

    reversed stress of 55 kpsi.

    Mohammad Suliman Abuhaiba, Ph.D., PE

    31

  • 8/17/2019 Ch 6 Fatigue Failure Resulting From Variable Loading 2015

    32/113

    Endurance Limit Modifying Factors

      Endurance limit   S'e   is for carefully

    prepared and tested specimen

      If warranted, Se

    is obtained from testing of

    actual parts

      When testing of actual parts is not

    practical, a set of   factors   are used to

    adjust the endurance limit

    Mohammad Suliman Abuhaiba, Ph.D., PE

    32

  • 8/17/2019 Ch 6 Fatigue Failure Resulting From Variable Loading 2015

    33/113

    Endurance Limit Modifying Factors

    Mohammad Suliman Abuhaiba, Ph.D., PE

    k a  = surface condition factor 

    k b  = size factor 

    k c  = load factor k d  = temperature factor 

    k e  = reliability factor 

    k f  = miscellaneous-effects factor 

    S e ’ = rotary-beam test specimen endurance limitS e  = endurance limit at the critical location of a

    machine part in the geometry and condition of 

    use

    33

  • 8/17/2019 Ch 6 Fatigue Failure Resulting From Variable Loading 2015

    34/113

    Surface Factor k ak a is a function of ultimate strengthHigher strengths more sensitive to rough

    surfaces

    Table 6 – 2

    Mohammad Suliman Abuhaiba, Ph.D., PE

    34

  • 8/17/2019 Ch 6 Fatigue Failure Resulting From Variable Loading 2015

    35/113

    Example 6-3

    A steel has a min ultimate strength of 520

    MPa and a machined surface. Estimate ka

    .

    Mohammad Suliman Abuhaiba, Ph.D., PE

    35

  • 8/17/2019 Ch 6 Fatigue Failure Resulting From Variable Loading 2015

    36/113

    Size Factor k b rotating & Round

    Larger parts have greater surface area at

    high stress levels

    Likelihood of crack initiation is higher For 

    bending and torsion loads,

    Mohammad Suliman Abuhaiba, Ph.D., PE

    36

  • 8/17/2019 Ch 6 Fatigue Failure Resulting From Variable Loading 2015

    37/113

    Size Factor k b rotating & Round

    Applies only for round, rotating diameter For axial load, there is no size effect,

    k b = 1

    Mohammad Suliman Abuhaiba, Ph.D., PE

    37

  • 8/17/2019 Ch 6 Fatigue Failure Resulting From Variable Loading 2015

    38/113

    An equivalent round rotating   diameter isobtained.

    Volume of material stressed at and above

    95% of max stress =   same volume inrotating-beam specimen.

    Lengths cancel, so equate areas

    Mohammad Suliman Abuhaiba, Ph.D., PE

    Size Factor k b not round & rotating

    38

  • 8/17/2019 Ch 6 Fatigue Failure Resulting From Variable Loading 2015

    39/113

    For a rotating round section, the 95% stressarea is the area of a ring,

    Equate 95% stress area for other conditions

    to Eq. (6 – 22) and solve for   d   as the

    equivalent round rotating diameter 

    Mohammad Suliman Abuhaiba, Ph.D., PE

    Size Factor k b not round & rotating

    39

  • 8/17/2019 Ch 6 Fatigue Failure Resulting From Variable Loading 2015

    40/113

    For non-rotating round,

    Equating to Eq. (6-22) and solving for 

    equivalent diameter,

    Size Factor k b round & not rotating

    Dr. Mohammad Suliman Abuhaiba, PE

    Mohammad Suliman Abuhaiba, Ph.D., PE

    40

  • 8/17/2019 Ch 6 Fatigue Failure Resulting From Variable Loading 2015

    41/113

    For rectangular section  h x b,  A95  = 0.05

    hb.  Equating to Eq. (6 – 22),

    Size Factor k b not round & not rotating

    Dr. Mohammad Suliman Abuhaiba, PE

    Mohammad Suliman Abuhaiba, Ph.D., PE

    41

  • 8/17/2019 Ch 6 Fatigue Failure Resulting From Variable Loading 2015

    42/113

    Size Factor k b

    Mohammad Suliman Abuhaiba, Ph.D., PE

    Table 6 – 

    3: A95s     for common non-rotatingstructural shapes undergoing bending

    42

  • 8/17/2019 Ch 6 Fatigue Failure Resulting From Variable Loading 2015

    43/113

    Size Factor k b

    Mohammad Suliman Abuhaiba, Ph.D., PE

    Table 6 – 

    3: A95s     for common non-rotatingstructural shapes undergoing bending

    43

    44

  • 8/17/2019 Ch 6 Fatigue Failure Resulting From Variable Loading 2015

    44/113

    Example 6-4

    A steel shaft loaded in bending is 32 mm in

    diameter, abutting a filleted shoulder 38

    mm in diameter. The shaft material has a

    mean ultimate tensile strength of 690 MPa.Estimate the Marin size factor  kb if the shaft

    is used in

    a.   A rotating mode.

    b.   A nonrotating mode.

    Mohammad Suliman Abuhaiba, Ph.D., PE

    44

    45

  • 8/17/2019 Ch 6 Fatigue Failure Resulting From Variable Loading 2015

    45/113

    Loading Factor k c

     Accounts for changes in endurance limit

    for different types of fatigue loading.

      Only to be used for single load types.

      Use Combination Loading method (Sec. 6 – 14) when more than one load type   is

    present.

    Mohammad Suliman Abuhaiba, Ph.D., PE

    45

    46

  • 8/17/2019 Ch 6 Fatigue Failure Resulting From Variable Loading 2015

    46/113

    Temperature Factor k d

    Endurance limit appears to maintain same

    relation to ultimate strength for elevated

    temperatures as at RT

    Table 6 – 4:   Effect of OperatingTemperature on Tensile Strength of Steel.

    ST    = tensile strength at operatingtemperature

    SRT  = tensile strength at room temperature

    Mohammad Suliman Abuhaiba, Ph.D., PE

    46

    47

  • 8/17/2019 Ch 6 Fatigue Failure Resulting From Variable Loading 2015

    47/113

    Temperature Factor k d

    Mohammad Suliman Abuhaiba, Ph.D., PE

    Table 6 –

    4

    47

    48

  • 8/17/2019 Ch 6 Fatigue Failure Resulting From Variable Loading 2015

    48/113

    Temperature Factor k d   If ultimate strength is known for OT, then

     just use that strength. Let k d = 1.

      If ultimate strength is known only at RT, use

    Table 6 – 

    4 to estimate ultimate strength atOT. With that strength, let k d = 1.

     Use ultimate strength at RT and apply  k dfrom Table 6 – 4 to the endurance limit.

    Mohammad Suliman Abuhaiba, Ph.D., PE

    48

    49

  • 8/17/2019 Ch 6 Fatigue Failure Resulting From Variable Loading 2015

    49/113

     A fourth-order polynomial curve fit of the

    data of Table 6 – 4 can be used in place of

    the table,

    Temperature Factor k d

    Mohammad Suliman Abuhaiba, Ph.D., PE

    49

    50

  • 8/17/2019 Ch 6 Fatigue Failure Resulting From Variable Loading 2015

    50/113

    Example 6-5

    A 1035 steel has a tensile strength of 70 kpsi

    and is to be used for a part that sees 450°F

    in service. Estimate the Marin temperature

    modification factor and (Se )450◦ ifa.   RT endurance limit by test is (S’e )70◦ = 39.0

    kpsi

    b.   Only the tensile strength at RT is known.

    Mohammad Suliman Abuhaiba, Ph.D., PE

    50

    51

  • 8/17/2019 Ch 6 Fatigue Failure Resulting From Variable Loading 2015

    51/113

    Reliability Factor k e

    Fig. 6 – 17, S'e = 0.5 Sut is typical of the data

    and represents 50% reliability.

    Reliability factor adjusts to other reliabilities.

    Mohammad Suliman Abuhaiba, Ph.D., PE

    51

    52

  • 8/17/2019 Ch 6 Fatigue Failure Resulting From Variable Loading 2015

    52/113

    Reliability Factor k e

    Mohammad Suliman Abuhaiba, Ph.D., PE

    Fig. 6 – 17

    52

    53

  • 8/17/2019 Ch 6 Fatigue Failure Resulting From Variable Loading 2015

    53/113

    Reliability Factor k e

    Mohammad Suliman Abuhaiba, Ph.D., PE

    Table 6 – 5

    53

    54

  • 8/17/2019 Ch 6 Fatigue Failure Resulting From Variable Loading 2015

    54/113

    Miscellaneous-Effects Factor k f Consider other possible factors: Residual stresses

     Directional characteristics from cold working

     Case hardening

     Corrosion

     Surface conditioning

    Limited data is available.

    May require research or testing.

    Mohammad Suliman Abuhaiba, Ph.D., PE

    54

    55

  • 8/17/2019 Ch 6 Fatigue Failure Resulting From Variable Loading 2015

    55/113

    Stress Concentration and Notch

    SensitivityObtain Kt  as usual (Appendix A – 15)

    Kf  = fatigue stress-concentration factor 

    q = notch sensitivity, ranging from 0 (not sensitive)to 1 (fully sensitive)

    For q = 0, Kf  = 1

    For q = 1, Kf  = KtMohammad Suliman Abuhaiba, Ph.D., PE

    55

    56

  • 8/17/2019 Ch 6 Fatigue Failure Resulting From Variable Loading 2015

    56/113

    Notch Sensitivity

    Fig. 6 – 20: q for bending or axial loading

    Mohammad Suliman Abuhaiba, Ph.D., PE

    Fig. 6 – 20

    K f = 1 + q ( K t  – 1)

    56

    57

  • 8/17/2019 Ch 6 Fatigue Failure Resulting From Variable Loading 2015

    57/113

    Notch Sensitivity

    Fig. 6 – 21: q s for torsional loading

    Mohammad Suliman Abuhaiba, Ph.D., PE

    K  fs = 1 + q s ( K  ts  – 1)

  • 8/17/2019 Ch 6 Fatigue Failure Resulting From Variable Loading 2015

    58/113

    59

  • 8/17/2019 Ch 6 Fatigue Failure Resulting From Variable Loading 2015

    59/113

    Notch Sensitivity for Cast Irons

    Cast irons are already full of discontinuities,

    which are included in the strengths.

    Additional notches do not add muchadditional harm.

    Recommended to use   q = 0.2 for cast

    irons.

    Mohammad Suliman Abuhaiba, Ph.D., PE

    60

  • 8/17/2019 Ch 6 Fatigue Failure Resulting From Variable Loading 2015

    60/113

    Example 6-6A steel shaft in bending has an ultimate strength of690 MPa and a shoulder with a fillet radius of 3 mmconnecting a 32-mm diameter with a 38-mm

    diameter. Estimate Kf using:a.   Figure 6 – 20

    b.   Equations (6 – 33) and (6 – 35)

    Mohammad Suliman Abuhaiba, Ph.D., PE

    61

  • 8/17/2019 Ch 6 Fatigue Failure Resulting From Variable Loading 2015

    61/113

    Application of Fatigue

    Stress Concentration Factor Use Kf  as a multiplier to increase the nominal stress.

    Some designers apply 1/Kf  as a Marin factor to

    reduce Se . For infinite life, either method is equivalent, since

    For finite life, increasing stress is moreconservative. Decreasing Se applies more to highcycle than low cycle.

    Mohammad Suliman Abuhaiba, Ph.D., PE

    1/  f ee f  

     f  

     K S S n

     K   s s  

    62

  • 8/17/2019 Ch 6 Fatigue Failure Resulting From Variable Loading 2015

    62/113

    Example 6-7

    For the step-shaft of Ex. 6 – 6, it is

    determined that the fully corrected

    endurance limit is  Se = 280 MPa. Consider 

    the shaft undergoes a fully reversingnominal stress in the fillet of   (σrev )nom = 260

    MPa. Estimate the number of cycles to

    failure.

    Mohammad Suliman Abuhaiba, Ph.D., PE

    63

  • 8/17/2019 Ch 6 Fatigue Failure Resulting From Variable Loading 2015

    63/113

    Example 6-8

    A 1015 hot-rolled steel bar has been

    machined to a diameter of 1 in. It is to be

    placed in reversed axial loading for 70 000

    cycles to failure in an operatingenvironment of 550°F. Using ASTM minimum

    properties, and a reliability of 99%, estimate

    the endurance limit and fatigue strength at

    70 000 cycles.

    Mohammad Suliman Abuhaiba, Ph.D., PE

    64

  • 8/17/2019 Ch 6 Fatigue Failure Resulting From Variable Loading 2015

    64/113

    Example 6-9

    Figure 6 – 22a   shows a rotating shaft simply

    supported in ball bearings at A and D andloaded by a non-rotating force F of 6.8 kN.

    Using ASTM   “minimum”   strengths, estimate

    the life of the part.

    Mohammad Suliman Abuhaiba, Ph.D., PEFig. 6 – 22

    65

  • 8/17/2019 Ch 6 Fatigue Failure Resulting From Variable Loading 2015

    65/113

    Characterizing Fluctuating

    Stresses

    The   S-N   diagram is applicable for 

    completely reversed stresses

    Other fluctuating stresses exist

    Sinusoidal loading patterns are common,

    but not necessary

    Mohammad Suliman Abuhaiba, Ph.D., PE

    66

  • 8/17/2019 Ch 6 Fatigue Failure Resulting From Variable Loading 2015

    66/113

    Fluctuating Stresses

    Mohammad Suliman Abuhaiba, Ph.D., PE

    Figure 6 –

    23

    fluctuating stress with

    high frequency ripplenon-sinusoidal

    fluctuating stress

    67

  • 8/17/2019 Ch 6 Fatigue Failure Resulting From Variable Loading 2015

    67/113

    Fluctuating Stresses

    Mohammad Suliman Abuhaiba, Ph.D., PE

    General Fluctuating

    Repeated

    Completely Reversed

    Figure 6 –

    23

    68

  • 8/17/2019 Ch 6 Fatigue Failure Resulting From Variable Loading 2015

    68/113

    Characterizing Fluctuating

    Stresses

    Mohammad Suliman Abuhaiba, Ph.D., PE

    Stress ratio

    Amplitude ratio 

    69

  • 8/17/2019 Ch 6 Fatigue Failure Resulting From Variable Loading 2015

    69/113

    Application of K f  for Fluctuating

    StressesFor fluctuating loads at points with stress

    concentration, the best approach is to

    design to avoid all localized plastic strain. In this case,  K f  should be applied to both

    alternating and midrange stress

    components.

    Mohammad Suliman Abuhaiba, Ph.D., PE

    70

  • 8/17/2019 Ch 6 Fatigue Failure Resulting From Variable Loading 2015

    70/113

    Application of K f  for Fluctuating

    Stresses

    When localized strain does occur, some

    methods (nominal mean stress   method

    and   residual stress   method) recommend

    only applying K f  to the alternating stress.

    Mohammad Suliman Abuhaiba, Ph.D., PE

    71

  • 8/17/2019 Ch 6 Fatigue Failure Resulting From Variable Loading 2015

    71/113

    Application of K f  for Fluctuating

    StressesDowling method recommends applying Kf 

    to the alternating stress and Kfm to the mid-

    range stress, where Kfm is

    Mohammad Suliman Abuhaiba, Ph.D., PE

    72

  • 8/17/2019 Ch 6 Fatigue Failure Resulting From Variable Loading 2015

    72/113

    Plot of Alternating vs

    Midrange StressMost common and simple to

    use

    Goodman or Modified

    Goodman diagram

    Mohammad Suliman Abuhaiba, Ph.D., PE

    73

  • 8/17/2019 Ch 6 Fatigue Failure Resulting From Variable Loading 2015

    73/113

    Commonly Used Failure Criteria

    Mohammad Suliman Abuhaiba, Ph.D., PE

    Fig. 6 – 27

    74

  • 8/17/2019 Ch 6 Fatigue Failure Resulting From Variable Loading 2015

    74/113

    Equations for Commonly

    Used Failure Criteria

    Mohammad Suliman Abuhaiba, Ph.D., PE

    75

  • 8/17/2019 Ch 6 Fatigue Failure Resulting From Variable Loading 2015

    75/113

    Summarizing Tables for

    Failure Criteria Tables 6 – 6 to 6 – 8:   equations for Modified

    Goodman, Gerber, ASME-elliptic, and Langer 

    failure criteria 1st row: fatigue criterion

    2nd row: yield criterion

    3rd row: intersection of static and fatigue criteria

    4th row: equation for fatigue factor of safety 1st column: intersecting equations

    2nd column: coordinates of the intersectionMohammad Suliman Abuhaiba, Ph.D., PE

    76

  • 8/17/2019 Ch 6 Fatigue Failure Resulting From Variable Loading 2015

    76/113

    Mohammad Suliman Abuhaiba, Ph.D., PE

    Table 6 – 6:Modified

    Goodman andLanger FailureCriteria (1st

    Quadrant)

    77

  • 8/17/2019 Ch 6 Fatigue Failure Resulting From Variable Loading 2015

    77/113

    Table 6 – 7:Gerber &Langer FailureCriteria (1st

    Quadrant)

    Mohammad Suliman Abuhaiba, Ph.D., PE

    78

  • 8/17/2019 Ch 6 Fatigue Failure Resulting From Variable Loading 2015

    78/113

    Table 6 – 8:ASME Ellipticand LangerFailureCriteria (1st

    Quadrant)

    Mohammad Suliman Abuhaiba, Ph.D., PE

    79

  • 8/17/2019 Ch 6 Fatigue Failure Resulting From Variable Loading 2015

    79/113

    Example 6-10

    A 1.5-in-diameter bar has been machinedfrom an AISI 1050 cold-drawn bar. This part is

    to withstand a fluctuating tensile load

    varying from 0 to 16 kip. Because of the

    ends, and the fillet radius, a fatigue stress-concentration factor   Kf   is 1.85 for 106 or 

    larger life. Find Sa and Sm and the factor of

    safety guarding against fatigue and first-

    cycle yielding, using

    a.   Gerber fatigue line

    b.   ASME-elliptic fatigue line. Mohammad Suliman Abuhaiba, Ph.D., PE

    80

  • 8/17/2019 Ch 6 Fatigue Failure Resulting From Variable Loading 2015

    80/113

    Example 6-10

    Mohammad Suliman Abuhaiba, Ph.D., PE

    81

  • 8/17/2019 Ch 6 Fatigue Failure Resulting From Variable Loading 2015

    81/113

    Example 6-10

    Mohammad Suliman Abuhaiba, Ph.D., PE

    Example 6 1182

  • 8/17/2019 Ch 6 Fatigue Failure Resulting From Variable Loading 2015

    82/113

    Example 6-11A flat-leaf spring is used to retain an oscillating flat-faced follower in contact with a plate cam. Thefollower range of motion is 2 in and fixed, so thealternating component of force, bending moment,and stress is fixed, too. The spring is preloaded toadjust to various cam speeds. The preload must be

    increased to prevent follower float or jump. For lower speeds the preload should be decreased to obtainlonger life of cam and follower surfaces. The spring isa steel cantilever 32 in long, 2 in wide, and 1/4 in

    thick, as seen in Fig. 6 – 30a. The spring strengths are Sut= 150 kpsi,   Sy  = 127 kpsi, and   Se   = 28 kpsi fullycorrected. The total cam motion is 2 in. The designer wishes to preload the spring by deflecting it 2 in for low speed and 5 in for high speed. Mohammad Suliman Abuhaiba, Ph.D., PE

    Example 6-1183

  • 8/17/2019 Ch 6 Fatigue Failure Resulting From Variable Loading 2015

    83/113

    a.   Plot Gerber-Langer failure lines with the load line.

    b.   What are the strength factors of safetycorresponding to 2 in and 5 in preload?

    Example 6-11

    Mohammad Suliman Abuhaiba, Ph.D., PE

    Example 6-1184

  • 8/17/2019 Ch 6 Fatigue Failure Resulting From Variable Loading 2015

    84/113

    Example 6-11

    Mohammad Suliman Abuhaiba, Ph.D., PE

    85

  • 8/17/2019 Ch 6 Fatigue Failure Resulting From Variable Loading 2015

    85/113

    Example 6-12

    A steel bar undergoes cyclic loading suchthat  σmax = 60 kpsi and  σmin =   −20 kpsi. For 

    the material, Sut = 80 kpsi, Sy = 65 kpsi, a fully

    corrected endurance limit of   Se   = 40 kpsi,

    and f  = 0.9. Estimate the number of cycles toa fatigue failure using:

    a.  Modified Goodman criterion.

    b.  Gerber criterion.

    Mohammad Suliman Abuhaiba, Ph.D., PE

    86

  • 8/17/2019 Ch 6 Fatigue Failure Resulting From Variable Loading 2015

    86/113

    Fatigue Criteria for Brittle

    MaterialsFirst quadrant fatigue failure criteria follows

    a concave upward Smith-Dolan locus,

    Or as a design equation,

    Mohammad Suliman Abuhaiba, Ph.D., PE

    87

  • 8/17/2019 Ch 6 Fatigue Failure Resulting From Variable Loading 2015

    87/113

    Fatigue Criteria for Brittle

    Materials For a radial load line of slope   r , the intersectionpoint is

    In the second quadrant,

    Table A – 24: properties of gray cast iron, includingendurance limit

    Endurance limit already includes ka and kbAverage kc for axial and torsional is 0.9

    Mohammad Suliman Abuhaiba, Ph.D., PE

    88

  • 8/17/2019 Ch 6 Fatigue Failure Resulting From Variable Loading 2015

    88/113

    Example 6-13

    A grade 30 gray cast iron is subjected to a load Fapplied to a 1 by 3/8 -in cross-section link with a 1/4

    -in-diameter hole drilled in the center as depicted inFig. 6 – 31a. The surfaces are machined. In the

    neighborhood of the hole, what is the factor ofsafety guarding against failure under the followingconditions:

    a.   The load F = 1000 lbf tensile, steady.

    b.   The load is 1000 lbf repeatedly applied.c.   The load fluctuates between   −1000 lbf and 300

    lbf without column action.

    Use the Smith-Dolan fatigue locus.Mohammad Suliman Abuhaiba, Ph.D., PE

    89

  • 8/17/2019 Ch 6 Fatigue Failure Resulting From Variable Loading 2015

    89/113

    Example 6-13

    Mohammad Suliman Abuhaiba, Ph.D., PE

    90

  • 8/17/2019 Ch 6 Fatigue Failure Resulting From Variable Loading 2015

    90/113

    Example 6-13

    Mohammad Suliman Abuhaiba, Ph.D., PE

    91

  • 8/17/2019 Ch 6 Fatigue Failure Resulting From Variable Loading 2015

    91/113

    Torsional Fatigue Strength

    Testing: steady-stress component has no effect onthe endurance limit for torsional loading if thematerial is :

    ductile, polished, notch-free, and cylindrical.

    For less than perfect surfaces, the modifiedGoodman line is more reasonable.

    For pure torsion cases, use  k c = 0.59   to convertnormal endurance strength to shear endurance

    strength. For shear ultimate strength, recommended to use

    Mohammad Suliman Abuhaiba, Ph.D., PE

    92

  • 8/17/2019 Ch 6 Fatigue Failure Resulting From Variable Loading 2015

    92/113

    Combinations of Loading

    ModesFor combined loading, use Distortion

    Energy theory to combine them.

    Obtain Von Mises stresses for bothmidrange and alternating components.

    Apply appropriate K f  to each type of stress.

    For load factor, use  k c

    = 1. The torsional

    load factor (k c = 0.59) is inherently

    included in the von Mises equations.

    Mohammad Suliman Abuhaiba, Ph.D., PE

    93

  • 8/17/2019 Ch 6 Fatigue Failure Resulting From Variable Loading 2015

    93/113

    Combinations of Loading

    Modes If needed, axial load factor can be

    divided into the axial stress.

    Mohammad Suliman Abuhaiba, Ph.D., PE

    St ti Ch k f

    94

  • 8/17/2019 Ch 6 Fatigue Failure Resulting From Variable Loading 2015

    94/113

    Static Check for

    Combination LoadingDistortion Energy theory still applies for 

    check of static yielding

    Obtain Von Mises stress for maximumstresses

    Stress concentration factors are not

    necessary to check for yielding at firstcycle

    Mohammad Suliman Abuhaiba, Ph.D., PE

    St ti Ch k f

    95

  • 8/17/2019 Ch 6 Fatigue Failure Resulting From Variable Loading 2015

    95/113

    max   a ms s s  

    Static Check for

    Combination LoadingAlternate simple check is to obtain

    conservative estimate of   s  'max by summing

    s  'a and   s  'm

      ≈Mohammad Suliman Abuhaiba, Ph.D., PE

    1/2

    2 2

    max

    max

    3a m a m

     y

     y

    n

    s s s    

    s  

     

    E l 6 14

    96

  • 8/17/2019 Ch 6 Fatigue Failure Resulting From Variable Loading 2015

    96/113

    Example 6-14

    A rotating shaft is made of 42×4 mm AISI 1018 CDsteel tubing and has a 6-mm-diameter hole drilledtransversely through it. Estimate the factor of safetyguarding against fatigue and static failures using theGerber and Langer failure criteria for the following

    loading conditions:a.   The shaft is subjected to a completely reversed

    torque of 120 N.m in phase with a completelyreversed bending moment of 150 N.m.

    b.   The shaft is subjected to a pulsating torquefluctuating from 20 to 160 N.m and a steadybending moment of 150 N.m.

    Mohammad Suliman Abuhaiba, Ph.D., PE

    E l 6 14

    97

  • 8/17/2019 Ch 6 Fatigue Failure Resulting From Variable Loading 2015

    97/113

    Example 6-14

    Mohammad Suliman Abuhaiba, Ph.D., PE

    98

  • 8/17/2019 Ch 6 Fatigue Failure Resulting From Variable Loading 2015

    98/113

    Varying

    Fluctuating

    Stresses

    Mohammad Suliman Abuhaiba, Ph.D., PE

    i i

    99

  • 8/17/2019 Ch 6 Fatigue Failure Resulting From Variable Loading 2015

    99/113

    Cumulative Fatigue Damage

     A common situation is to load at   s  1 for  n1cycles, then at   s  2 for  n2 cycles, etc.

     The cycles at each stress level contributes

    to the fatigue damage Accumulation of damage is represented

    by the   Palmgren-Miner cycle-ratio

     summation rule, also known as Miner’s rule

    Mohammad Suliman Abuhaiba, Ph.D., PE

    C l i i

    100

  • 8/17/2019 Ch 6 Fatigue Failure Resulting From Variable Loading 2015

    100/113

    Cumulative Fatigue Damage

     ni = number of cycles at stress level   s  i Ni   = number of cycles to failure at stress

    level   s  i

     c   = experimentally found to be in therange 0.7

  • 8/17/2019 Ch 6 Fatigue Failure Resulting From Variable Loading 2015

    101/113

    Example 6-15

    Given a part with  Sut= 151 kpsi and at thecritical location of

    the part,   Se   = 67.5

    kpsi. For the loading

    of Fig. 6 – 33, estimate

    the number of

    repetitions of the

    stress-time block inFig. 6 – 33 that can be

    made before failure.Mohammad Suliman Abuhaiba, Ph.D., PE

    Fig. 6 – 33

    102

  • 8/17/2019 Ch 6 Fatigue Failure Resulting From Variable Loading 2015

    102/113

    Illustration of Miner’s Rule

    Figure 6 – 

    34:   effect ofMiner’s   rule on endurancelimit and fatigue failure line.

     Damaged material line ispredicted to be parallel tooriginal material line.

    Mohammad Suliman Abuhaiba, Ph.D., PE

    103

  • 8/17/2019 Ch 6 Fatigue Failure Resulting From Variable Loading 2015

    103/113

    Weaknesses of Miner’s Rule

    Miner’s rule fails to agree with experimental

    results in two ways

    1.   It predicts the static strength   Sut   is

    damaged.2.   It does not account for the order in

    which the stresses are applied

    Mohammad Suliman Abuhaiba, Ph.D., PE

    104

  • 8/17/2019 Ch 6 Fatigue Failure Resulting From Variable Loading 2015

    104/113

    Manson’s Method

    Manson’s   method overcomes deficiencies ofMiner’s rule.

    Mohammad Suliman Abuhaiba, Ph.D., PE

    Fig. 6 – 

    35

     All fatigue lines on S-N  diagram

    converge to a common point at 0.9S ut at 103 cycles.

    It requires each line to be

    constructed in the same historicalorder in which the stresses occur.

    105

  • 8/17/2019 Ch 6 Fatigue Failure Resulting From Variable Loading 2015

    105/113

    Surface Fatigue Strength

    When two surfaces roll or roll and slide

    against one another, a pitting failure may

    occur after a certain number of cycles.

    The surface fatigue mechanism is complexand not definitively understood.

    Factors include Hertz stresses, number of

    cycles, surface finish, hardness, lubrication,

    and temperature

    Mohammad Suliman Abuhaiba, Ph.D., PE

    106

  • 8/17/2019 Ch 6 Fatigue Failure Resulting From Variable Loading 2015

    106/113

    From Eqs. (3 – 73) and (3 – 74), the pressure incontacting cylinders,

    Mohammad Suliman Abuhaiba, Ph.D., PE

    Surface Fatigue Strength

    107

  • 8/17/2019 Ch 6 Fatigue Failure Resulting From Variable Loading 2015

    107/113

    Converting to radius r  and width w insteadof length l,

     pmax   =   surface endurance strength(contact strength, contact fatigue

    strength, or Hertzian endurance strength)

    Mohammad Suliman Abuhaiba, Ph.D., PE

    Surface Fatigue Strength

    108

  • 8/17/2019 Ch 6 Fatigue Failure Resulting From Variable Loading 2015

    108/113

    Surface Fatigue Strength

    Combining Eqs. (6 – 61) and (6 – 63),

    K1   =   Buckingham’s   load-stress factor , or 

    wear factor 

    In gear studies, a similar factor is used,

    Mohammad Suliman Abuhaiba, Ph.D., PE

    109

  • 8/17/2019 Ch 6 Fatigue Failure Resulting From Variable Loading 2015

    109/113

    Surface Fatigue Strength

    From Eq. (6 – 64), with material propertyterms incorporated into an elastic

    coefficient CP

    Mohammad Suliman Abuhaiba, Ph.D., PE

    110

  • 8/17/2019 Ch 6 Fatigue Failure Resulting From Variable Loading 2015

    110/113

    Surface Fatigue Strength

    Experiments show the following relationships

    Data on induction-hardened steel give

    (SC )107 = 271 kpsi and (SC )10

    8 = 239 kpsi, so  β,

    from Eq. (6 – 67), is

    Mohammad Suliman Abuhaiba, Ph.D., PE

  • 8/17/2019 Ch 6 Fatigue Failure Resulting From Variable Loading 2015

    111/113

    S f F ti St th

    112

  • 8/17/2019 Ch 6 Fatigue Failure Resulting From Variable Loading 2015

    112/113

    Surface Fatigue Strength

    Incorporating design factor into Eq. (6 – 66),

    Mohammad Suliman Abuhaiba, Ph.D., PE

    S f F ti St th

    113

  • 8/17/2019 Ch 6 Fatigue Failure Resulting From Variable Loading 2015

    113/113

    Surface Fatigue Strength

    Since this is nonlinear in its stress-loadtransformation, the definition of   nddepends on whether load or stress is the

    primary consideration for failure.

    If loss of function is focused on the load,

    If loss of function is focused on the stress,