Ch. 5. Overview of RF filter design · INF5481: RF kretser, teori og design Institutt for...

43
Institutt for Informatikk INF5481: RF kretser, teori og design Svein-Erik Hamran Ch. 5. Overview of RF filter design Microstrip line low-pass filter implementation Filters are important circuit elements used to enhance or attenuate certain ranges of frequencies. This chapter presents basic concepts and definitions related to filters and resonators. Apply one- and two-port networks and transmission lines to develop RF filters.

Transcript of Ch. 5. Overview of RF filter design · INF5481: RF kretser, teori og design Institutt for...

Page 1: Ch. 5. Overview of RF filter design · INF5481: RF kretser, teori og design Institutt for Informatikk Svein-Erik Hamran. Ch. 5. Overview of RF filter design. Microstrip line low-pass

Institutt for InformatikkINF5481: RF kretser, teori og design Svein-Erik Hamran

Ch. 5. Overview of RF filter design

Microstrip line low-pass filter implementation

Filters are important circuit elements used to enhance or attenuate certain ranges of frequencies.

This chapter presents basic concepts and definitions related to filters and resonators.

Apply one- and two-port networks and transmission lines to develop RF filters.

Page 2: Ch. 5. Overview of RF filter design · INF5481: RF kretser, teori og design Institutt for Informatikk Svein-Erik Hamran. Ch. 5. Overview of RF filter design. Microstrip line low-pass

Institutt for InformatikkINF5481: RF kretser, teori og design Svein-Erik Hamran

Basic filter typesIdealized low-pass, high-pass, band-pass and band-stopfilters.

Use normalized frequencies Ω = ω/ωc.

ωc is the cut-off frequency for LP and HP filters and center frequency for BP and BS filters.

Page 3: Ch. 5. Overview of RF filter design · INF5481: RF kretser, teori og design Institutt for Informatikk Svein-Erik Hamran. Ch. 5. Overview of RF filter design. Microstrip line low-pass

Institutt for InformatikkINF5481: RF kretser, teori og design Svein-Erik Hamran

Standard filter types (low-pass)

Butterworth (binomial) filter+ Monotonic+ Easy to implement– Steep transition

requires a large number of elements

Chebyshev filter+ Steep transition – Ripples in the

passband + Ripple control,

equal ripples foroptimization

Elliptic (Cauer) filter+ Steepest transition – Finite attenuation in

stopband– Ripples in passband

and stopband – Complex

Page 4: Ch. 5. Overview of RF filter design · INF5481: RF kretser, teori og design Institutt for Informatikk Svein-Erik Hamran. Ch. 5. Overview of RF filter design. Microstrip line low-pass

Institutt for InformatikkINF5481: RF kretser, teori og design Svein-Erik Hamran

Bandwidth:

Shape factor:

Rejection:Attenuation required in stopband, typically 60 dB

Quality factor Q:Describes selectivity of filter( )2

21

10 log

10log 1 20log

in

L

in

PILP

S

α⎛ ⎞

= = ⎜ ⎟⎝ ⎠

= − − Γ = −

dBl

dBu

dB ffBW 333 −=

dBl

dBu

dBl

dBu

dB

dB

ffff

BWBWSF 33

6060

3

60

−−

==

Insertion loss:

Filter parameters

Page 5: Ch. 5. Overview of RF filter design · INF5481: RF kretser, teori og design Institutt for Informatikk Svein-Erik Hamran. Ch. 5. Overview of RF filter design. Microstrip line low-pass

Institutt for InformatikkINF5481: RF kretser, teori og design Svein-Erik Hamran

Quality factor Q

cc

c

loss

stored

PW

Q

ωωωω

ωω

ωω

π

==

=

==

=

losspower energystoredaverage

cycleperlossenergyenergystoredaverage2

Distinguish between loaded and unloaded QLoaded Q = QLD : including load ZL

c

dB

EFLD fBW

QQQ

3111=+=

QF : filter Q, QE : external Q

Page 6: Ch. 5. Overview of RF filter design · INF5481: RF kretser, teori og design Institutt for Informatikk Svein-Erik Hamran. Ch. 5. Overview of RF filter design. Microstrip line low-pass

Institutt for InformatikkINF5481: RF kretser, teori og design Svein-Erik Hamran

First-order filter realizations

Low-pass

High-pass

Band-pass

Band-stop

Consider each as cascade of ABCD-networks

[ ] ⎥⎦

⎤⎢⎣

⎡⎥⎦

⎤⎢⎣

⎡=⎥

⎤⎢⎣

⎡1101

101

L

G

ZZ

DCBA

Z

Page 7: Ch. 5. Overview of RF filter design · INF5481: RF kretser, teori og design Institutt for Informatikk Svein-Erik Hamran. Ch. 5. Overview of RF filter design. Microstrip line low-pass

Institutt for InformatikkINF5481: RF kretser, teori og design Svein-Erik Hamran

Low-pass filter

Consider as cascade of 4 ABCD-networks

( ) ( ) ( )( )210 0

2 221 1

S HA R Z j C Z

ω ωω

= = =+ + +

For ω → 0:S21(ω) → 2Z0/(R +2Z0)

For ω →∞S21(ω) → 0

( )

⎥⎥⎥⎥

⎢⎢⎢⎢

+

+⎟⎟⎠

⎞⎜⎜⎝

⎛+++

=⎥⎦

⎤⎢⎣

11

11

L

LGL

G

RCj

RRR

CjRR

DCBA

ω

ω

Transfer function H(ω ) =V2/VG = 1/A) (matching: ZG = ZL = Z0 ):

Page 8: Ch. 5. Overview of RF filter design · INF5481: RF kretser, teori og design Institutt for Informatikk Svein-Erik Hamran. Ch. 5. Overview of RF filter design. Microstrip line low-pass

Institutt for InformatikkINF5481: RF kretser, teori og design Svein-Erik Hamran

LP filter response

( ) ( )210

21

Sj C R Z

ωω

→+ +

High-frequency limit: Attenuation factor:

Phase angle:

Group delay:

( ) ( )2120log Sα ω ω= −

( ) ( ) ( )

211

21

Imtan

ReSS

ωϕ ω

ω−⎡ ⎤

= ⎢ ⎥⎢ ⎥⎣ ⎦( ) ωωφ ddtg =

Page 9: Ch. 5. Overview of RF filter design · INF5481: RF kretser, teori og design Institutt for Informatikk Svein-Erik Hamran. Ch. 5. Overview of RF filter design. Microstrip line low-pass

Institutt for InformatikkINF5481: RF kretser, teori og design Svein-Erik Hamran

High-pass filter

Consider as cascade of 4 ABCD-networks

( )

⎥⎥⎥⎥

⎢⎢⎢⎢

+

+⎟⎟⎠

⎞⎜⎜⎝

⎛+++

=⎥⎦

⎤⎢⎣

111

111

L

LGL

G

RLj

RRRLj

RR

DCBA

ω

ω

( )( )

21

00

2 21 11

SA

R Zj L Z

ω

ω

= =⎛ ⎞

+ + +⎜ ⎟⎝ ⎠

For ω → 0S21(ω) → 0

For ω →∞S21(ω) → 2Z0/(R + 2Z0)

Page 10: Ch. 5. Overview of RF filter design · INF5481: RF kretser, teori og design Institutt for Informatikk Svein-Erik Hamran. Ch. 5. Overview of RF filter design. Microstrip line low-pass

Institutt for InformatikkINF5481: RF kretser, teori og design Svein-Erik Hamran

HP filter response

Low-frequency limit: ( ) ( )210

21

Sj R Z L

ωω

→− +

Page 11: Ch. 5. Overview of RF filter design · INF5481: RF kretser, teori og design Institutt for Informatikk Svein-Erik Hamran. Ch. 5. Overview of RF filter design. Microstrip line low-pass

Institutt for InformatikkINF5481: RF kretser, teori og design Svein-Erik Hamran

Band-pass filter

Band-pass filter in series config-uration. Consider as cascade of 3 ABCD-networks where:

⎥⎥⎥⎥

⎢⎢⎢⎢

⎡ ++

+=⎥

⎤⎢⎣

11

1

L

GL

G

R

ZRR

ZR

DCBA

( ) ( )0

210

22 1

ZSZ R j L C

ωω ω

=+ + −

( )CLjRZ ωω 1−+=

Z

ZL = ZG = 50 ΩR = 20 ΩL = 5 nHC = 2 pF

Page 12: Ch. 5. Overview of RF filter design · INF5481: RF kretser, teori og design Institutt for Informatikk Svein-Erik Hamran. Ch. 5. Overview of RF filter design. Microstrip line low-pass

Institutt for InformatikkINF5481: RF kretser, teori og design Svein-Erik Hamran

Band-stop filter

Band-stop filter in parallel configuration. Consider as cascade of 3 ABCD networks. G = 1/R

( )0

21

0

12

11 2

Z G j CLS

Z G j CL

ωω

ωω

ω

⎡ ⎤⎛ ⎞+ −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦=⎡ ⎤⎛ ⎞+ + −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

Page 13: Ch. 5. Overview of RF filter design · INF5481: RF kretser, teori og design Institutt for Informatikk Svein-Erik Hamran. Ch. 5. Overview of RF filter design. Microstrip line low-pass

Institutt for InformatikkINF5481: RF kretser, teori og design Svein-Erik Hamran

Quality factor

GGC

GC

GC

RRL

RL

RL

QQQ

EE

EE

LDFE

+

+000

000

Parallel

Series

LoadedFilter External

ωωω

ωωωResonance frequency:

LC1

0 ≈ω

Generally:

00

ImRe2

orImRe2

00ffffLD df

YdY

fdf

ZdZ

fQ ===

Page 14: Ch. 5. Overview of RF filter design · INF5481: RF kretser, teori og design Institutt for Informatikk Svein-Erik Hamran. Ch. 5. Overview of RF filter design. Microstrip line low-pass

Institutt for InformatikkINF5481: RF kretser, teori og design Svein-Erik Hamran

Series and parallel resonators

Page 15: Ch. 5. Overview of RF filter design · INF5481: RF kretser, teori og design Institutt for Informatikk Svein-Erik Hamran. Ch. 5. Overview of RF filter design. Microstrip line low-pass

Institutt for InformatikkINF5481: RF kretser, teori og design Svein-Erik Hamran

Insertion lossQ-factors easier to measure than impedances and admittances.

( ) ⎥⎦

⎤⎢⎣

⎡++=⎟

⎠⎞

⎜⎝⎛ −+= ε

ωω LD

F

LDE jQ

QQRR

CLjRZ 1Series resonance:

( ) ⎥⎦

⎤⎢⎣

⎡++=⎟

⎠⎞

⎜⎝⎛ −+= ε

ωω LD

F

LDE jQ

QQGG

LCjGY 1Parallel resonance: ω

ωωωε 0

0−=

02 8ZVPP GinL ==

( )( )2220

2

0 11

221

LDELDin

GL QQQ

PZZZ

VPε+

=+

=

⎟⎟⎠

⎞⎜⎜⎝

⎛ += 22

221log10ELD

LD

QQQIL εInsertion loss:

Page 16: Ch. 5. Overview of RF filter design · INF5481: RF kretser, teori og design Institutt for Informatikk Svein-Erik Hamran. Ch. 5. Overview of RF filter design. Microstrip line low-pass

Institutt for InformatikkINF5481: RF kretser, teori og design Svein-Erik Hamran

Butterworth filters

For LP filter:

IL for low-pass Butterworth filtera = 1

( ) ( ) ( )Nin aLFIL 222 1log10log101log10 Ω+==Γ−−=

1at 3dB gives1filteroforder

1 :factor Loss 22

=Ω===

Ω+=

ILaN

aLF Ncωω

Maximally flat filters (no ripples)

Page 17: Ch. 5. Overview of RF filter design · INF5481: RF kretser, teori og design Institutt for Informatikk Svein-Erik Hamran. Ch. 5. Overview of RF filter design. Microstrip line low-pass

Institutt for InformatikkINF5481: RF kretser, teori og design Svein-Erik Hamran

Filter elementsEquivalent realizations of generic multisection LP filters with normalized elements

⎪⎪⎩

⎪⎪⎨

=

⎪⎩

⎪⎨

⎧=

+

inductor seriesafter econductanc load-

capacitorshunt after resistance load-

(b) econductancor (a) resistance

generator internal

1

0

Ng

g

⎩⎨⎧

== capacitorshunt for ecapacitancinductor seriesfor inductance

,..,1 Nmmg

Page 18: Ch. 5. Overview of RF filter design · INF5481: RF kretser, teori og design Institutt for Informatikk Svein-Erik Hamran. Ch. 5. Overview of RF filter design. Microstrip line low-pass

Institutt for InformatikkINF5481: RF kretser, teori og design Svein-Erik Hamran

Butterworth LP filter coefficients3 dB design (a = 1)

Page 19: Ch. 5. Overview of RF filter design · INF5481: RF kretser, teori og design Institutt for Informatikk Svein-Erik Hamran. Ch. 5. Overview of RF filter design. Microstrip line low-pass

Institutt for InformatikkINF5481: RF kretser, teori og design Svein-Erik Hamran

Attenuation versus order of LP filter

circuits)mixer andmodulationfor (useful

order low requires phaselinear :Note

dB/decade02

as increases ,1For

2

N

N

LFN →Ω

>>Ω

3 dB design (a = 1)

Page 20: Ch. 5. Overview of RF filter design · INF5481: RF kretser, teori og design Institutt for Informatikk Svein-Erik Hamran. Ch. 5. Overview of RF filter design. Microstrip line low-pass

Institutt for InformatikkINF5481: RF kretser, teori og design Svein-Erik Hamran

Chebyshev filters

For LP filter: ( ) Ω+== 221log10log10 NTaLFIL

Equi-ripple filters

( )( )[ ]( )[ ]⎪⎩

⎪⎨⎧

≥ΩΩ

≤ΩΩ=Ω

1for ,coshcosh

1for ,coscos1

1

N

NTN

⎪⎪⎪

⎪⎪⎪

Ω+Ω−=

Ω+Ω−=

Ω+−=

Ω==

424

33

22

1

0

881

43

21

1

T

T

T

TT

In the range:-1 < Ω < 1

Page 21: Ch. 5. Overview of RF filter design · INF5481: RF kretser, teori og design Institutt for Informatikk Svein-Erik Hamran. Ch. 5. Overview of RF filter design. Microstrip line low-pass

Institutt for InformatikkINF5481: RF kretser, teori og design Svein-Erik Hamran

LP Chebyshev filter properties

IL and attenuation response for 3dB design (a = 1)( )122 ,1For −≈>>Ω N

BC LFLF

Page 22: Ch. 5. Overview of RF filter design · INF5481: RF kretser, teori og design Institutt for Informatikk Svein-Erik Hamran. Ch. 5. Overview of RF filter design. Microstrip line low-pass

Institutt for InformatikkINF5481: RF kretser, teori og design Svein-Erik Hamran

Chebyshev LP filter coefficients3 dB design

Page 23: Ch. 5. Overview of RF filter design · INF5481: RF kretser, teori og design Institutt for Informatikk Svein-Erik Hamran. Ch. 5. Overview of RF filter design. Microstrip line low-pass

Institutt for InformatikkINF5481: RF kretser, teori og design Svein-Erik Hamran

Comparison of filtersThird order Butterworth and Chebyshev filters

VG

RG L1 L2

C1 RLV2V1 V2

RG = RL = 1 Ω

Standard 3 dB Butterworth: L1 = L2 = 1 H, C1 = 2 F

Linear phase Butterworth:L1 = 1.255 H, C1 = 0.5528 F, L2 = 0.1922 H

3 dB Chebyshev:L1 = L2 = 3.3487 H, C1 = 0.7117 F

Page 24: Ch. 5. Overview of RF filter design · INF5481: RF kretser, teori og design Institutt for Informatikk Svein-Erik Hamran. Ch. 5. Overview of RF filter design. Microstrip line low-pass

Institutt for InformatikkINF5481: RF kretser, teori og design Svein-Erik Hamran

Filter transformation

• Start with standard, normalized Chebyshev LP filter.• Apply appropriate frequency and impedance scaling.• Generate real filters of all four types (LP, HP, BP, BS). • Use simple cook-book approach.

3dB normalized Chebyshev LP filter shown for positive and negative frequencies Ω = ω/ωc.

Page 25: Ch. 5. Overview of RF filter design · INF5481: RF kretser, teori og design Institutt for Informatikk Svein-Erik Hamran. Ch. 5. Overview of RF filter design. Microstrip line low-pass

Institutt for InformatikkINF5481: RF kretser, teori og design Svein-Erik Hamran

Low-pass filter transformation

GHz1h filter wit-LP =cω

Scaled frequency: cωω Ω=

Scaled reactances:

( )

( )c

cC

c

cL

CC

CjCjCjjX

LL

LjLjLjjX

ω

ωωω

ω

ωωω

=⇒

==Ω

=

=⇒

==Ω=

~

~111

~

~

Page 26: Ch. 5. Overview of RF filter design · INF5481: RF kretser, teori og design Institutt for Informatikk Svein-Erik Hamran. Ch. 5. Overview of RF filter design. Microstrip line low-pass

Institutt for InformatikkINF5481: RF kretser, teori og design Svein-Erik Hamran

High-pass filter transformationScaled frequency: Ω−= cωω

Scaled reactances:

( )

CL

LC

LjCjCj

jX

CjLjLjjX

cc

cC

cL

ωω

ωωω

ωωω

1~,1~

~1

~1

==⇒

=−=Ω

=

=−=Ω=

GHz1h filter wit-HP =cω

Page 27: Ch. 5. Overview of RF filter design · INF5481: RF kretser, teori og design Institutt for Informatikk Svein-Erik Hamran. Ch. 5. Overview of RF filter design. Microstrip line low-pass

Institutt for InformatikkINF5481: RF kretser, teori og design Svein-Erik Hamran

Band-pass filter transformationScaled and shifted frequency:

LU

cc

cLU

c

ωωεω

ωω

ωω

ωωω

−=⎟⎟

⎞⎜⎜⎝

⎛−

−=Ω

Scaled reactances:

LU

LU

LUC

LU

LU

LUL

CCC

L

LjCjCjCjjB

LCLL

CjLjLjLjjX

ωωω

ωωω

ωωωεω

Ω

ω

ωωωω

ωω

ωωεω

Ω

−=

−=

+=−

==

−=

−=

+=−

==

~,~

~1~

~,~

~1~

20

0

20

0

GHz 1

:frequencycenter filter -BP

0 === LUc ωωωω

Page 28: Ch. 5. Overview of RF filter design · INF5481: RF kretser, teori og design Institutt for Informatikk Svein-Erik Hamran. Ch. 5. Overview of RF filter design. Microstrip line low-pass

Institutt for InformatikkINF5481: RF kretser, teori og design Svein-Erik Hamran

Band-stop filter transformation

( )

( )( )

20

20

~,1~:capacitorShunt

1~,~:inductor Series

ωωω

ωω

ωωωωω

CCC

L

LCLL

LU

LU

LU

LU

−=

−=⇒

−=

−=⇒

GHz 1:frequencycenter filter -BS

0 == cωω

Page 29: Ch. 5. Overview of RF filter design · INF5481: RF kretser, teori og design Institutt for Informatikk Svein-Erik Hamran. Ch. 5. Overview of RF filter design. Microstrip line low-pass

Institutt for InformatikkINF5481: RF kretser, teori og design Svein-Erik Hamran

Summary of transformationsLUBW ωω −=

Page 30: Ch. 5. Overview of RF filter design · INF5481: RF kretser, teori og design Institutt for Informatikk Svein-Erik Hamran. Ch. 5. Overview of RF filter design. Microstrip line low-pass

Institutt for InformatikkINF5481: RF kretser, teori og design Svein-Erik Hamran

Impedance transformationHave so far assumed that the generator resistance g0 =1. If not, all impedances have to be scaled according to:

GLLG

GGG

RRRRCC

LRLRR

==

==~,~

~, 1~

RG = 50 Ω L1 L3

C2RL =50 Ω

L1 = L3 = 167.4 H C2 = 14.23 mF

Example: N = 3 Chebyshev 3 dB filterg0 = g4 = 1, g1= g3 = 3.3487, g2 = 0.7117

BP-filter withf0 =2.4 GHzBW = 0.2 f0

Page 31: Ch. 5. Overview of RF filter design · INF5481: RF kretser, teori og design Institutt for Informatikk Svein-Erik Hamran. Ch. 5. Overview of RF filter design. Microstrip line low-pass

Institutt for InformatikkINF5481: RF kretser, teori og design Svein-Erik Hamran

RF filter implementationRF filters difficult to realize with discrete devices because of physical dimensions. Have to use distributed transmission elements lines based on:

• Richard’s transformation• Unit elements• Kuroda’s identities

Apply the property that short- or open-circuit transmission lines behave as reactive elements:

( ) ( )λπβ ljZljZZ shortin 2tantan 00 ==

( ) ( )λπβ ljYljYY openin 2tantan 00 ==

Page 32: Ch. 5. Overview of RF filter design · INF5481: RF kretser, teori og design Institutt for Informatikk Svein-Erik Hamran. Ch. 5. Overview of RF filter design. Microstrip line low-pass

Institutt for InformatikkINF5481: RF kretser, teori og design Svein-Erik Hamran

Richard’s transformationChoose arbitrarily a line segment of length l = λ0/8 at a reference frequency f0 = vp/λ0. Use:

00 4tan SZjZLjjXZ Lin =⎟

⎠⎞

⎜⎝⎛ Ω===πω

Ω===444

20

0 ππλλπ

λπ

ffl

Short-circuit:

00 4tan SYjYCjjBY Cin =⎟

⎠⎞

⎜⎝⎛ Ω===πωOpen-circuit:

Note: Richard’s transformation maps the lumped element frequency response for 0 ≤ f ≤ ∞ into the range 0 ≤ f ≤ 4 f0. Short-circuit inductive and open-circuit capacitive for 0 ≤ f ≤ 2 f0.

Page 33: Ch. 5. Overview of RF filter design · INF5481: RF kretser, teori og design Institutt for Informatikk Svein-Erik Hamran. Ch. 5. Overview of RF filter design. Microstrip line low-pass

Institutt for InformatikkINF5481: RF kretser, teori og design Svein-Erik Hamran

Unit elementsHave to separate transmission line elements spatially to achieve practical circuit configurations. Accomplished by inserting unit elements (UEs) of electrical length Ωπ/4 and characteristic impedance ZUE. Represent as chain-parameter two-port:

[ ]( ) ( )( ) ( ) ⎥

⎢⎢

−=

⎥⎥

⎢⎢

ΩΩ

ΩΩ=⎥

⎤⎢⎣

⎡= 1

1

1

14cos4sin

4sin4cos

2UE

UE

UE

UE

UEUE

UEUE

ZS

SZ

SZj

jZ

DCBA

UE ππππ

( ) ( )4cos1

1,4tan2

ππ Ω=−

Ω=S

jS

Page 34: Ch. 5. Overview of RF filter design · INF5481: RF kretser, teori og design Institutt for Informatikk Svein-Erik Hamran. Ch. 5. Overview of RF filter design. Microstrip line low-pass

Institutt for InformatikkINF5481: RF kretser, teori og design Svein-Erik Hamran

Kuroda’s identities

These identities are used to facilitate practical implementations.

For example:Open shunt stub lines easier to realize than shorted series lines.

Page 35: Ch. 5. Overview of RF filter design · INF5481: RF kretser, teori og design Institutt for Informatikk Svein-Erik Hamran. Ch. 5. Overview of RF filter design. Microstrip line low-pass

Institutt for InformatikkINF5481: RF kretser, teori og design Svein-Erik Hamran

Microstrip filter design

Procedure

• Select the normalized filter parameters for the design.

• Use Richard’s transformation to replace Ls and Cs byequivalent λ0/8 transmission lines.

• Convert series stub lines to shunt stubs using Kuroda’s identities.

• De-normalize and and select equivalent microstrip lines

Page 36: Ch. 5. Overview of RF filter design · INF5481: RF kretser, teori og design Institutt for Informatikk Svein-Erik Hamran. Ch. 5. Overview of RF filter design. Microstrip line low-pass

Institutt for InformatikkINF5481: RF kretser, teori og design Svein-Erik Hamran

Example: Low-pass microstrip filter

Specifications:• Input and output matched to 50 Ω.

• Cut-off frequency: 3 GHz

• Equi-ripple of 0.5dB• Rejection of 25 dBat 4.5 GHz (N = 5)

• Dielectric with vp = 0.6 c

Step 1:Fig. 5-22 gives N = 5. From Table 5-4 (b): g1 = g5 = 1.706, g2 = g4 = 1.230, g3 = 2.541, g6 = 1

Page 37: Ch. 5. Overview of RF filter design · INF5481: RF kretser, teori og design Institutt for Informatikk Svein-Erik Hamran. Ch. 5. Overview of RF filter design. Microstrip line low-pass

Institutt for InformatikkINF5481: RF kretser, teori og design Svein-Erik Hamran

Microstrip LP-filter, step 2

Use Richard’s transformation to replace Ls and Cs by open and short series and shunt TL stubs. Characteristic line impedances:

Y1 = Y5 = g1, Y3 = g3, Z2 = Z4 = g2

Page 38: Ch. 5. Overview of RF filter design · INF5481: RF kretser, teori og design Institutt for Informatikk Svein-Erik Hamran. Ch. 5. Overview of RF filter design. Microstrip line low-pass

Institutt for InformatikkINF5481: RF kretser, teori og design Svein-Erik Hamran

Microstrip LP-filter, step 3

• Introduce matched UEs.

• Apply Kuroda’s 1, and 2. identities to convert shunts 1 and 3 to seriesinductors.

• Resulting circuit not realizable in microstrip.

Page 39: Ch. 5. Overview of RF filter design · INF5481: RF kretser, teori og design Institutt for Informatikk Svein-Erik Hamran. Ch. 5. Overview of RF filter design. Microstrip line low-pass

Institutt for InformatikkINF5481: RF kretser, teori og design Svein-Erik Hamran

Microstrip LP-filter, step 3 cont.

• Again introduce matched UEs.

• Apply Kuroda’s 1, and 2. identities to convert all seriesinductors to shunts.

• Resulting circuit isnow realizable inmicrostrip.

Page 40: Ch. 5. Overview of RF filter design · INF5481: RF kretser, teori og design Institutt for Informatikk Svein-Erik Hamran. Ch. 5. Overview of RF filter design. Microstrip line low-pass

Institutt for InformatikkINF5481: RF kretser, teori og design Svein-Erik Hamran

Microstrip LP-filter, step 4Denormalization:

• Use RG = RL = 50 Ω.

• Scale all other elements according totransformation rules.

• Determine line lengths: l = λ0/8 = vp/8f0 = 7.5 mm.

• Scale line widths according to expressions presented in Chapter 2.

Page 41: Ch. 5. Overview of RF filter design · INF5481: RF kretser, teori og design Institutt for Informatikk Svein-Erik Hamran. Ch. 5. Overview of RF filter design. Microstrip line low-pass

Institutt for InformatikkINF5481: RF kretser, teori og design Svein-Erik Hamran

Coupled-line filtersUtilize coupling of microrstip lines through a common ground plane.

Describe the overall system impedance in terms of a two-port chain matrix formalism.

C12 = C21 and L12 = L21 give rise to coupling between the lossless lines.

Page 42: Ch. 5. Overview of RF filter design · INF5481: RF kretser, teori og design Institutt for Informatikk Svein-Erik Hamran. Ch. 5. Overview of RF filter design. Microstrip line low-pass

Institutt for InformatikkINF5481: RF kretser, teori og design Svein-Erik Hamran

Single bandpass filter section

( ) ( ) ( )( )

12221211

2211

00

2200

200

22

:modes (o) odd and (e)even with lines identicalFor

1,1sin2

cos

CCCCCCCC

CvZ

CvZ

llZZZZ

Z

o

e

opoo

epee

oeoein

+=+===

==

+−−=

ββ

Page 43: Ch. 5. Overview of RF filter design · INF5481: RF kretser, teori og design Institutt for Informatikk Svein-Erik Hamran. Ch. 5. Overview of RF filter design. Microstrip line low-pass

Institutt for InformatikkINF5481: RF kretser, teori og design Svein-Erik Hamran

Cascading filter elements

Gives steeper passband and stopband transitions.

N = 5 coupled-line 3 dB Chebyshev filter.

f0 = 5 GHz