CBSE NCERT Solutions for Class 11 Mathematics Chapter 13 · 2019. 11. 29. ·...

61
Class–XI–CBSE-Mathematics Limits and Derivatives 1 Practice more on Limits and Derivatives www.embibe.com CBSE NCERT Solutions for Class 11 Mathematics Chapter 13 Back of Chapter Questions Exercise 13.1 1. Evaluate the Given limit: lim →3 +3 Hint: Put =3 Solution: Solution step 1: lim →3 +3=3+3=6 2. Evaluate the Given limit: lim ( − 22 7 ) Hint: Put = Solution: Solution step 1: lim ( − 22 7 ) = ( − 22 7 ) 3. Evaluate the Given limit: lim →1 2 Hint: Put =1 Solution: Solution step 1: lim →1 2 = (1) 2 = 4. Evaluate the Given limit: lim →4 4+3 −2 Hint: Put =4

Transcript of CBSE NCERT Solutions for Class 11 Mathematics Chapter 13 · 2019. 11. 29. ·...

Page 1: CBSE NCERT Solutions for Class 11 Mathematics Chapter 13 · 2019. 11. 29. · Class–XI–CBSE-Mathematics Limits and Derivatives 3 Practice more on Limits and Derivatives Hint:

Class–XI–CBSE-Mathematics Limits and Derivatives

1 Practice more on Limits and Derivatives www.embibe.com

CBSE NCERT Solutions for Class 11 Mathematics Chapter 13

Back of Chapter Questions

Exercise 13.1

1. Evaluate the Given limit:lim𝑥→3

𝑥 + 3

Hint: Put 𝑥 = 3

Solution:

Solution step 1: lim𝑥→3

𝑥 + 3 = 3 + 3 = 6

2. Evaluate the Given limit: lim𝑥→𝜋

(𝑥 −22

7)

Hint: Put 𝑥 = 𝜋

Solution:

Solution step 1: lim𝑥→𝜋

(𝑥 −22

7) = (𝜋 −

22

7)

3. Evaluate the Given limit: lim𝑟→1

𝜋𝑟2

Hint: Put 𝑟 = 1

Solution:

Solution step 1: lim𝑟→1

𝜋𝑟2 = 𝜋(1)2 = 𝜋

4. Evaluate the Given limit: lim𝑥→4

4𝑥+3

𝑥−2

Hint: Put 𝑥 = 4

Page 2: CBSE NCERT Solutions for Class 11 Mathematics Chapter 13 · 2019. 11. 29. · Class–XI–CBSE-Mathematics Limits and Derivatives 3 Practice more on Limits and Derivatives Hint:

Class–XI–CBSE-Mathematics Limits and Derivatives

2 Practice more on Limits and Derivatives www.embibe.com

Solution:

Solution step 1: lim𝑥→4

4𝑥+3

𝑥−2=

4(4)+3

4−2=

16+3

2=

19

2

5. Evaluate the Given limit: lim𝑥→−1

𝑥10+𝑥5+1

𝑥−1

Hint: Put 𝑥 = −1

Solution:

Solution step 1: lim𝑥→−1

𝑥10+𝑥5+1

𝑥−1=

(−1)10+(−1)5+1

−1−1=

1−1+1

−2= −

1

2

6. Evaluate the Given limit: lim𝑥→0

(𝑥+1)5−1

𝑥

Hint: At the time when we put variable value make sure function won’t take undefined form.

Solution:

Solution step 1: lim𝑥→0

(𝑥+1)5−1

𝑥

Put 𝑥 + 1 = 𝑦so that 𝑦 → 1 as 𝑥 → 0.

Accordingly, lim𝑥→0

(𝑥+1)5−1

𝑥= lim

𝑦→1

𝑦5−1

𝑦−1

= lim𝑦→1

𝑦5 − 15

𝑦 − 1

= 5.15−1 [lim𝑥→𝑎

𝑥𝑛−𝑎𝑛

𝑥−𝑎= 𝑛𝑎𝑛−1]

= 5

∴ lim𝑥→0

(𝑥 + 1)5 − 1

𝑥= 5

7. Evaluate the Given limit: lim𝑥→2

3𝑥2−𝑥−10

𝑥2−4

Page 3: CBSE NCERT Solutions for Class 11 Mathematics Chapter 13 · 2019. 11. 29. · Class–XI–CBSE-Mathematics Limits and Derivatives 3 Practice more on Limits and Derivatives Hint:

Class–XI–CBSE-Mathematics Limits and Derivatives

3 Practice more on Limits and Derivatives www.embibe.com

Hint: At the time when we put variable value make sure function won’t take undefined form.

Solution:

Solution step 1: At 𝑥 = 2, the value of the given rational function takes the form0

0

∴ lim𝑥→2

3𝑥2 − 𝑥 − 10

𝑥2 − 4= lim

𝑥→2

(𝑥 − 2)(2𝑥 + 5)

(𝑥 − 2)(𝑥 + 2)

lim𝑥→2

3𝑥 + 5

𝑥 + 2

=3(2) + 5

2 + 2

=11

4

8. Evaluate the Given limit: lim𝑥→3

𝑥4−81

2𝑥2−5𝑥−3

Hint: At the time when we put variable value make sure function won’t take undefined form.

Solution:

Solution step 1: At 𝑥 = 2, the value of the given rational function takes the form 0

0

∴ lim𝑥→3

𝑥4 − 81

2𝑥2 − 5𝑥 − 3= lim

𝑥→3

(𝑥 − 3)(𝑥 + 3)(𝑥2 + 9)

(𝑥 − 3)(2𝑥 + 1)

= lim𝑥→3

(𝑥 + 3)(𝑥2 + 9)

2𝑥 + 1

=(3 + 3)(32 + 9)

2(3) + 1

=6 × 18

7

=108

7

9. Evaluate the Given limit: lim𝑥→0

𝑎𝑥+𝑏

𝑐𝑥+1

Page 4: CBSE NCERT Solutions for Class 11 Mathematics Chapter 13 · 2019. 11. 29. · Class–XI–CBSE-Mathematics Limits and Derivatives 3 Practice more on Limits and Derivatives Hint:

Class–XI–CBSE-Mathematics Limits and Derivatives

4 Practice more on Limits and Derivatives www.embibe.com

Hint: At the time when we put variable value make sure function won’t take undefined form.

Solution:

Solution step 1: lim𝑥→0

𝑎𝑥+𝑏

𝑐𝑥+1=

𝑎(0)+𝑏

𝑐(0)+1= 𝑏

10. Evaluate the Given limit: lim𝑧→1

𝑧13−1

𝑧16−1

Hint: At the time when we put variable value make sure function won’t take undefined form.

Solution:

Solution step 1: lim𝑧→1

𝑧13−1

𝑧16−1

At 𝑧 = 1, the value of the given function takes the form 0

0

Put 𝑧1

6 = 𝑥so that 𝑧 → 1 as 𝑥 → 1.

Accordingly, lim𝑧→1

𝑧13−1

𝑧16−1

= lim𝑧→1

𝑥2−1

𝑥−1

= lim𝑧→1

𝑥2 − 12

𝑥 − 1

= 2.12−1 [lim𝑥→𝑎

𝑥𝑛−𝑎𝑛

𝑥−𝑎= 𝑛𝑎𝑛−1]

= 2

= lim𝑧→1

𝑧13 − 1

𝑧16 − 1

= 2

11. Evaluate the Given limit: lim𝑥→1

𝑎𝑥2+𝑏𝑥+𝑐

𝑐𝑥2+𝑏𝑥+𝑎, 𝑎 + 𝑏 + 𝑐 ≠ 0

Hint: At the time when we put variable value make sure function won’t take undefined form.

Page 5: CBSE NCERT Solutions for Class 11 Mathematics Chapter 13 · 2019. 11. 29. · Class–XI–CBSE-Mathematics Limits and Derivatives 3 Practice more on Limits and Derivatives Hint:

Class–XI–CBSE-Mathematics Limits and Derivatives

5 Practice more on Limits and Derivatives www.embibe.com

Solution:

Solution step 1: lim𝑥→1

𝑎𝑥2+𝑏𝑥+𝑐

𝑐𝑥2+𝑏𝑥+𝑎=

𝑎(1)2+𝑏(1)+𝑐

𝑐(1)2+𝑏(1)+𝑎

=𝑎 + 𝑏 + 𝑐

𝑎 + 𝑏 + 𝑐

= 1 [𝑎 + 𝑏 + 𝑐 ≠ 0]

12. Evaluate the Given limit: lim𝑥→−2

1

𝑥+

1

2

𝑥+2

Hint: At the time when we put variable value make sure function won’t take undefined form.

Solution:

Solution step 1: lim𝑥→−2

1

𝑥+

1

2

𝑥+2

At 𝑥 = – 2, the value of the given function takes the form

Now, lim𝑥→−2

1

𝑥+

1

2

𝑥+2= lim

𝑥→−2

1

2𝑥

=1

2(−1)=

−1

4

13. Evaluate the Given limit: lim𝑥→0

sin𝑎𝑥

𝑏𝑥

Hint: At the time when we put variable value make sure function won’t take undefined form.

Solution:

Solution step 1: lim𝑥→0

sin𝑎𝑥

𝑏𝑥

At 𝑥 = 0, the value of the given function takes the form 0

0

Now, lim𝑥→0

sin𝑎𝑥

𝑏𝑥= lim

𝑥→0

sin𝑎𝑥

𝑎𝑥×

𝑎𝑥

𝑏𝑥

lim𝑥→0

(sin 𝑎𝑥

𝑏𝑥) × (

𝑎

𝑏)

Page 6: CBSE NCERT Solutions for Class 11 Mathematics Chapter 13 · 2019. 11. 29. · Class–XI–CBSE-Mathematics Limits and Derivatives 3 Practice more on Limits and Derivatives Hint:

Class–XI–CBSE-Mathematics Limits and Derivatives

6 Practice more on Limits and Derivatives www.embibe.com

=𝑎

𝑏lim

𝑎𝑥→0(sin𝑎𝑥

𝑏𝑥) [𝑥 → 0 ⇒ 𝑎𝑥 → 0]

=𝑎

𝑏× 1 [lim

𝑦→0

sin𝑦

𝑦= 1]

=𝑎

𝑏

14. Evaluate the Given limit: lim𝑥→0

sin𝑎𝑥

sin𝑏𝑥, 𝑎, 𝑏 ≠ 0

Hint: At the time when we put variable value make sure function won’t take undefined form.

Solution:

Solution step 1: lim𝑥→0

sin𝑎𝑥

sin𝑏𝑥, 𝑎, 𝑏 ≠ 0

At 𝑥 = 0, the value of the given function takes the form 0

0

Now, lim𝑥→0

sin𝑎𝑥

sin𝑏𝑥= lim

𝑥→0

(sin𝑎𝑥

𝑎𝑥)×𝑎𝑥

(sin𝑏𝑥

𝑏𝑥)×𝑏𝑥

= (𝑎

𝑏) ×

lim𝑎𝑥→0

(sin 𝑎𝑥

𝑎𝑥)

lim𝑏𝑥→0

(sin 𝑏𝑥

𝑏𝑥) [

𝑥 → 0 ⇒ 𝑎𝑥 → 0and 𝑥 → 0 ⇒ 𝑏𝑥 → 0

]

= (𝑎

𝑏) ×

1

1 [lim

𝑦→0

sin𝑦

𝑦= 1]

=𝑎

𝑏

15. Evaluate the Given limit: lim𝑥→𝜋

sin(𝜋−𝑥)

𝜋(𝜋−𝑥)

Hint: At the time when we put variable value make sure function won’t take undefined form.

Solution:

Solution step 1: lim𝑥→𝜋

sin(𝜋−𝑥)

𝜋(𝜋−𝑥)

It is seen that 𝑥 → 𝜋 ⇒ (𝜋 – 𝑥) → 0

Page 7: CBSE NCERT Solutions for Class 11 Mathematics Chapter 13 · 2019. 11. 29. · Class–XI–CBSE-Mathematics Limits and Derivatives 3 Practice more on Limits and Derivatives Hint:

Class–XI–CBSE-Mathematics Limits and Derivatives

7 Practice more on Limits and Derivatives www.embibe.com

∴ lim𝑥→𝑧

sin(𝜋 − 𝑥)

𝜋(𝜋 − 𝑥)=

1

𝜋lim

(𝜋−𝑥)→0

sin(𝜋 − 𝑥)

𝜋 − 𝑥

=1

𝜋× 1 [lim

𝑦→0

sin𝑦

𝑦= 1]

=1

𝜋

16. Evaluate the Given limit: lim𝑥→0

cos𝑥

𝜋−𝑥

Hint: At the time when we put variable value make sure function won’t take undefined form.

Solution:

Solution step 1: lim𝑥→0

cos𝑥

𝜋−𝑥=

cos0

𝜋−0=

1

𝜋

17. Evaluate the Given limit: lim𝑥→0

cos2𝑥−1

cos𝑥−1

Hint: At the time when we put variable value make sure function won’t take undefined form.

Solution:

Solution step 1: lim𝑥→0

cos2𝑥−1

cos𝑥−1

At 𝑥 = 0, the value of the given function takes the form 0

0

Now,

lim𝑥→0

cos2𝑥−1

cos𝑥−1= lim

𝑥→0

1−2 sin2 𝑥−1

1−2sin2𝑥

2−1

[cos 𝑥 = 1 − 2 sin2 𝑥

2]

= lim𝑥→0

sin2 𝑥

sin2 𝑥2

= lim𝑥→0

(sin2 𝑥

𝑥 ) × 𝑥2

(sin2 𝑥

2

(𝑥2)

2 ) ×𝑥2

4

Page 8: CBSE NCERT Solutions for Class 11 Mathematics Chapter 13 · 2019. 11. 29. · Class–XI–CBSE-Mathematics Limits and Derivatives 3 Practice more on Limits and Derivatives Hint:

Class–XI–CBSE-Mathematics Limits and Derivatives

8 Practice more on Limits and Derivatives www.embibe.com

= 4lim𝑥→0

(sin2 𝑥

𝑥2 )

lim𝑥→0

(sin2 𝑥

2

(𝑥2)

2 )

= 4(lim𝑥→0

sin 𝑥

𝑥)2

(lim𝑥2→0

sin𝑥2

𝑥2

)

2 [𝑥 → 0 ⇒𝑥

2→ 0]

= 412

12 [lim

𝑦→0

sin𝑦

𝑦= 1]

= 4

18. Evaluate the Given limit: lim𝑥→0

𝑎𝑥+𝑥 cos𝑥

𝑏 sin𝑥

Hint: At the time when we put variable value make sure function won’t take undefined form.

Solution:

Solution step 1: lim𝑥→0

𝑎𝑥+𝑥 cos𝑥

𝑏 sin𝑥

At 𝑥 = 0, the value of the given function takes the form 0

0

Now,

lim𝑥→0

𝑎𝑥 + 𝑥 cos 𝑥

𝑏 sin 𝑥=

1

𝑏lim𝑥→0

(𝑎 + cos 𝑥)

sin 𝑥

=1

𝑏lim𝑥→0

(𝑥

sin 𝑥) × lim

𝑥→0(𝑎 + cos 𝑥)

=1

𝑏×

1

(lim𝑥→0

sin 𝑥𝑥 )

× lim𝑥→0

(𝑎 + cos 𝑥)

=1

𝑏× (𝑎 + cos 0) [lim

𝑥→0

sin𝑥

𝑥= 1]

=𝑎 + 1

𝑏

Page 9: CBSE NCERT Solutions for Class 11 Mathematics Chapter 13 · 2019. 11. 29. · Class–XI–CBSE-Mathematics Limits and Derivatives 3 Practice more on Limits and Derivatives Hint:

Class–XI–CBSE-Mathematics Limits and Derivatives

9 Practice more on Limits and Derivatives www.embibe.com

19. Evaluate the Given limit: lim𝑥→0

𝑥 sec 𝑥

Hint: At the time when we put variable value make sure function won’t take undefined form.

Solution:

Solution step 1: lim𝑥→0

𝑥 sec 𝑥 = lim𝑥→0

𝑥

cos𝑥=

0

cos0=

0

1= 0

20. Evaluate the Given limit: lim𝑥→0

sin𝑎𝑥+𝑏𝑥

𝑎𝑥+sin𝑏𝑥 𝑎, 𝑏, 𝑎 + 𝑏 ≠ 0

Hint: At the time when we put variable value make sure function won’t take undefined form.

Solution:

Solution step 1: At 𝑥 = 0, the value of the given function takes the form 0

0

Now,

lim𝑥→0

sin 𝑎𝑥 + 𝑏𝑥

𝑎𝑥 + sin 𝑏𝑥

= lim𝑥→0

(sin 𝑎𝑥

𝑎𝑥 ) 𝑎𝑥 + 𝑏𝑥

𝑎𝑥 + 𝑏𝑥 (sin 𝑏𝑥

𝑏𝑥)

=( lim𝑎𝑥→0

sin𝑎𝑥

𝑎𝑥)×lim

𝑥→0(𝑎𝑥)+lim

𝑥→0𝑏𝑥

lim𝑥→0

𝑎𝑥+ lim𝑥→0

𝑏𝑥( lim𝑏𝑥→0

sin 𝑏𝑥

𝑏𝑥)

[As 𝑥 → 0 ⇒ 𝑎𝑥 → 0 and 𝑏𝑥 → 0]

=lim𝑥→0

(𝑎𝑥)+lim𝑥→0

𝑏𝑥

lim𝑥→0

𝑎𝑥+lim𝑥→0

𝑏𝑥 [lim

𝑥→0

sin𝑥

𝑥= 1]

=lim𝑥→0

(𝑎𝑥 + 𝑏𝑥)

lim𝑥→0

(𝑎𝑥 + 𝑏𝑥)

= lim𝑥→0

(1)

= 1

Page 10: CBSE NCERT Solutions for Class 11 Mathematics Chapter 13 · 2019. 11. 29. · Class–XI–CBSE-Mathematics Limits and Derivatives 3 Practice more on Limits and Derivatives Hint:

Class–XI–CBSE-Mathematics Limits and Derivatives

10 Practice more on Limits and Derivatives www.embibe.com

21. Evaluate the Given limit: lim𝑥→0

(cosec 𝑥 − cot 𝑥)

Hint: At the time when we put variable value make sure function won’t take undefined form.

Solution:

Solution step 1: At 𝑥 = 0, the value of the given function takes the form ∞ − ∞

Now,

lim𝑥→0

(cosec 𝑥 − cot 𝑥)

= lim𝑥→0

(1

sin 𝑥−

cos 𝑥

sin 𝑥)

= lim𝑥→0

(1 − cos 𝑥

sin 𝑥)

= lim𝑥→0

(1 − cos 𝑥

sin 𝑥 )

(sin 𝑥

𝑥 )

=lim𝑥→0

1 − cos 𝑥𝑥

lim𝑥→0

sin 𝑥𝑥

=0

1 [lim

𝑥→0

1−cos𝑥

𝑥= 0 and lim

𝑥→0

sin𝑥

𝑥= 1]

= 0

22. lim𝑥→

𝜋

2

tan2𝑥

𝑥−𝜋

2

Hint: At the time when we put variable value make sure function won’t take undefined form.

Solution:

Solution step 1: lim𝑥→

𝜋

2

tan2𝑥

𝑥−𝜋

2

At 𝑥 =𝜋

2, the value of the given function takes the form

0

0

Now put 𝑥 −𝜋

2= 𝑦 so that 𝑥 →

𝜋

2, 𝑦 → 0

Page 11: CBSE NCERT Solutions for Class 11 Mathematics Chapter 13 · 2019. 11. 29. · Class–XI–CBSE-Mathematics Limits and Derivatives 3 Practice more on Limits and Derivatives Hint:

Class–XI–CBSE-Mathematics Limits and Derivatives

11 Practice more on Limits and Derivatives www.embibe.com

∴ lim𝑥→

𝜋2

tan 2𝑥

𝑥 −𝜋2

= lim𝑥→0

tan 2 (𝑦 +𝜋2)

𝑦

= lim𝑦→0

tan(𝜋 + 2𝑦)

𝑦

= lim𝑦→0

tan2𝑦

𝑦 [tan(𝜋 + 2𝑦) = tan 2𝑦]

= lim𝑦→0

sin 2𝑦

𝑦 cos 2𝑦

= lim𝑦→0

(sin 2𝑦

2𝑦×

2

cos 2𝑦)

= ( lim2𝑦→0

sin2𝑦

2𝑦) × lim

𝑦→0(

2

cos2𝑦) [𝑦 → 0 ⇒ 2𝑦 → 0]

= 1 ×2

cos0 [lim

𝑥→0

sin𝑥

𝑥= 1]

= 1 ×2

1

= 2

23. Find lim𝑥→0

𝑓(𝑥) and lim𝑥→1

𝑓(𝑥) = {2𝑥 + 3, 𝑥 ≤ 0

3(𝑥 + 1), 𝑥 > 0

Hint: At the time when we put variable value make sure function won’t take undefined form.

Solution:

Solution step 1: The given function is 𝑓(𝑥) = {2𝑥 + 3, 𝑥 ≤ 0

3(𝑥 + 1), 𝑥 > 0

lim𝑥→0−

𝑓(𝑥) = lim𝑥→0

[2𝑥 + 3] = 2(0) + 3 = 3

lim𝑥→0−

𝑓(𝑥) = lim𝑥→0

3[𝑥 + 1] = 3(0 + 1) = 3

∴ lim𝑥→0−

𝑓(𝑥) = lim𝑥→0

𝑓(𝑥) = lim𝑥→0

𝑓(𝑥) = 3

lim𝑥→1−

𝑓(𝑥) = lim𝑥→1

3[𝑥 + 1] = 3(1 + 1) = 6

lim𝑥→1−

𝑓(𝑥) = lim𝑥→1

2(𝑥 + 1) = 3(1 + 1) = 6

∴ lim𝑥→1−

𝑓(𝑥) = lim𝑥→1+

𝑓(𝑥) = lim𝑥→1

𝑓(𝑥) = 6

Page 12: CBSE NCERT Solutions for Class 11 Mathematics Chapter 13 · 2019. 11. 29. · Class–XI–CBSE-Mathematics Limits and Derivatives 3 Practice more on Limits and Derivatives Hint:

Class–XI–CBSE-Mathematics Limits and Derivatives

12 Practice more on Limits and Derivatives www.embibe.com

24. Find lim𝑥→1

𝑓(𝑥), where 𝑓(𝑥) = {𝑥2 − 1, 𝑥 ≤ 1

−𝑥2 − 1, 𝑥 > 1

Hint: At the time when we put variable value make sure function won’t take undefined form.

Solution:

Solution step 1: The given function is

𝑓(𝑥) = {𝑥2 − 1, 𝑥 ≤ 1

−𝑥2 − 1, 𝑥 > 1

lim𝑥→1−

𝑓(𝑥) = lim𝑥→1

[𝑥2 − 1] = 12 − 1 = 1 − 1 = 0

lim𝑥→1+

𝑓(𝑥) = lim𝑥→1

[−𝑥2 − 1] = −12 − 1 = −1 − 1 = −2

It is observed that that lim𝑥→1−

𝑓(𝑥) ≠ lim𝑥→1+

𝑓(𝑥).

Hence, lim𝑥→1

𝑓(𝑥) does not exist.

25. Evaluate lim𝑥→0

𝑓(𝑥), where 𝑓(𝑥) = {|𝑥|

𝑥, 𝑥 ≠ 0

0, 𝑥 = 0

Hint: At the time when we put variable value make sure function won’t take undefined form.

Solution:

Solution step 1: The given function is 𝑓(𝑥) = {|𝑥|

𝑥, 𝑥 ≠ 0

0, 𝑥 = 0

lim𝑥→0−

𝑓(𝑥) = lim𝑥→0−

[|𝑥|

𝑥]

= lim𝑥→0

(−𝑥

𝑥) [When 𝑥 is negative, |𝑥| = −𝑥]

= lim𝑥→0

(−1)

= −1

lim𝑥→0+

𝑓(𝑥) = lim𝑥→0+

[|𝑥|

𝑥]

= lim𝑥→0

[𝑥

𝑥] [When 𝑥 is positive, |𝑥| = 𝑥]

Page 13: CBSE NCERT Solutions for Class 11 Mathematics Chapter 13 · 2019. 11. 29. · Class–XI–CBSE-Mathematics Limits and Derivatives 3 Practice more on Limits and Derivatives Hint:

Class–XI–CBSE-Mathematics Limits and Derivatives

13 Practice more on Limits and Derivatives www.embibe.com

= lim𝑥→0

(1)

= 1

It is observed that lim𝑥→0−

𝑓(𝑥) ≠ lim𝑥→0+

𝑓(𝑥).

Hence, lim𝑥→0

𝑓(𝑥) does not exist.

26. Find lim𝑥→0

𝑓(𝑥), where 𝑓(𝑥) = {

𝑥

|𝑥|, 𝑥 ≠ 0

0, 𝑥 = 0

Hint: At the time when we put variable value make sure function won’t take undefined form.

Solution:

Solution step 1: The given function is

𝑓(𝑥) = {

𝑥

|𝑥|, 𝑥 ≠ 0

0, 𝑥 = 0

lim𝑥→0−

𝑓(𝑥) = lim𝑥→0−

[𝑥

|𝑥|]

= lim𝑥→0

[𝑥

−𝑥] [When 𝑥 < 0, |𝑥| = −𝑥]

= lim𝑥→0

(−1)

= −1

lim𝑥→0+

𝑓(𝑥) = lim𝑥→0+

[𝑥

|𝑥|]

= lim𝑥→0

[𝑥

𝑥] [When 𝑥 > 0, |𝑥| = 𝑥]

It is observed that lim𝑥→0−

𝑓(𝑥) ≠ lim𝑥→0+

𝑓(𝑥).

Hence, lim𝑥→0

𝑓(𝑥) does not exist.

27. Find lim𝑥→5

𝑓(𝑥), where 𝑓(𝑥) = |𝑥| − 5

Hint: At the time when we put variable value make sure function won’t take undefined form.

Page 14: CBSE NCERT Solutions for Class 11 Mathematics Chapter 13 · 2019. 11. 29. · Class–XI–CBSE-Mathematics Limits and Derivatives 3 Practice more on Limits and Derivatives Hint:

Class–XI–CBSE-Mathematics Limits and Derivatives

14 Practice more on Limits and Derivatives www.embibe.com

Solution:

Solution step 1: The given function is 𝑓(𝑥) = |𝑥| − 5

lim𝑥→5−

𝑓(𝑥) = lim𝑥→5−

[|𝑥| − 5]

= lim𝑥→5

(𝑥 − 5) [When 𝑥 > 0, |𝑥| = 𝑥]

= 5 − 5

= 0

lim𝑥→5+

𝑓(𝑥) = lim𝑥→5+

(|𝑥| − 5)

lim𝑥→5

(𝑥 − 5) [When 𝑥 > 0, |𝑥| = 𝑥]

= 5 − 5

= 0

∴ lim𝑥→5−

𝑓(𝑥) = lim𝑥→5+

𝑓(𝑥) = 0

Hence, lim𝑥→5

𝑓(𝑥) = 0

28. Suppose 𝑓(𝑥) = {

𝑎 + 𝑏𝑥, 𝑖𝑓 𝑥 < 14, 𝑖𝑓 𝑥 = 0

𝑏 − 𝑎𝑥, 𝑖𝑓 𝑥 > 1

lim𝑥→1

𝑓(𝑥) = 𝑓(1) what are possible values of 𝑎 and 𝑏?

Hint: At the time when we put variable value make sure function won’t take undefined form.

Solution:

Solution step 1: The given function is

𝑓(𝑥) = {

𝑎 + 𝑏𝑥, 𝑖𝑓 𝑥 < 14, 𝑖𝑓 𝑥 = 0

𝑏 − 𝑎𝑥, 𝑖𝑓 𝑥 > 1

lim𝑥→1+

𝑓(𝑥) = lim𝑥→1

(𝑎 + 𝑏𝑥) = 𝑎 + 𝑏

lim𝑥→1+

𝑓(𝑥) = lim𝑥→1

(𝑏 − 𝑎𝑥) = 𝑏 − 𝑎

𝑓(1) = 4

It is given that lim𝑥→1

𝑓(𝑥) = 𝑓(1)

Page 15: CBSE NCERT Solutions for Class 11 Mathematics Chapter 13 · 2019. 11. 29. · Class–XI–CBSE-Mathematics Limits and Derivatives 3 Practice more on Limits and Derivatives Hint:

Class–XI–CBSE-Mathematics Limits and Derivatives

15 Practice more on Limits and Derivatives www.embibe.com

∴ lim𝑥→1−

𝑓(𝑥) = lim𝑥→1+

𝑓(𝑥) = lim𝑥→1

𝑓(𝑥) = 𝑓(1)

⇒ 𝑎 + 𝑏 = 4 and 𝑏 − 𝑎 = 4

Thus, on solving these two equations, we obtain 𝑎 = 0 and 𝑏 = 4

Thus, the respective possible values of 𝑎 and 𝑏 are 0 and 4.

29. Let 𝑎1, 𝑎2, … , 𝑎𝑛be fixed real numbers and define a function

𝑓(𝑥) = (𝑥 − 𝑎1)(𝑥 − 𝑎2)… (𝑥 − 𝑎𝑛)

What is lim𝑥→𝑎1

𝑓(𝑥) ? For some 𝑎 ≠ 𝑎1, 𝑎2, … 𝑎𝑛compute lim𝑥→𝑎

𝑓(𝑥)

Hint: At the time when we put variable value make sure function won’t take undefined form.

Solution:

Solution step 1: The given function is 𝑓(𝑥) = (𝑥 − 𝑎1)(𝑥 − 𝑎2)… (𝑥 − 𝑎𝑛)

lim𝑥→𝑎1

𝑓(𝑥) = lim𝑥→𝑎1

[(𝑥 − 𝑎1)(𝑥 − 𝑎2)… (𝑥 − 𝑎𝑛)]

= [ lim𝑥→𝑎1

(𝑥 − 𝑎1)] [ lim𝑥→𝑎1

(𝑥 − 𝑎2)]… [ lim𝑥→𝑎1

(𝑥 − 𝑎𝑛)]

= (𝑎1 − 𝑎1)(𝑎1 − 𝑎2)… (𝑎1 − 𝑎𝑛) = 0

∴ lim𝑥→𝑎1

𝑓(𝑥) = 0

Now,lim𝑥→𝑎

𝑓(𝑥) = lim𝑥→𝑎

[(𝑥 − 𝑎1)(𝑥 − 𝑎2)… (𝑥 − 𝑎𝑛)]

= [lim𝑥→𝑎

(𝑥 − 𝑎1)] [lim𝑥→𝑎

(𝑥 − 𝑎2)]… [lim𝑥→𝑎

(𝑥 − 𝑎𝑛)]

= (𝑎 − 𝑎1)(𝑎 − 𝑎2)… (𝑎 − 𝑎𝑛)

∴ lim𝑥→𝑎

𝑓(𝑥) = (𝑎 − 𝑎1)(𝑎 − 𝑎2)… (𝑎 − 𝑎𝑛)

30. If 𝑓(𝑥) = {|𝑥| + 1, 𝑥 < 0

0, 𝑥 = 0|𝑥| − 1, 𝑥 > 0

For what value(s) of a does lim𝑥→𝑎

𝑓(𝑥) exists?

Hint: At the time when we put variable value make sure function won’t take undefined form.

Page 16: CBSE NCERT Solutions for Class 11 Mathematics Chapter 13 · 2019. 11. 29. · Class–XI–CBSE-Mathematics Limits and Derivatives 3 Practice more on Limits and Derivatives Hint:

Class–XI–CBSE-Mathematics Limits and Derivatives

16 Practice more on Limits and Derivatives www.embibe.com

Solution:

Solution step 1: The given function is

𝑓(𝑥) = {|𝑥| + 1, 𝑥 < 0

0, 𝑥 = 0|𝑥| − 1, 𝑥 > 0

When 𝑎 = 0

lim𝑥→0

𝑓(𝑥) = lim𝑥→0−

(|𝑥| + 1)

= lim𝑥→0

(|𝑥| + 1)[If 𝑥 < 0, |𝑥| = −𝑥]

= −0 + 1

= 1

lim𝑥→0

𝑓(𝑥) = lim𝑥→0+

(|𝑥| − 1)

lim𝑥→0

(|𝑥| − 1)[ If 𝑥0, |𝑥| = 𝑥]

= 0 − 1

= −1

Here, it is observed that lim𝑥→0−

𝑓(𝑥) ≠ lim𝑥→0+

𝑓(𝑥).

∴ lim𝑥→0

𝑓(𝑥)does not exist.

When 𝑎 < 0

lim𝑥→𝑎−

𝑓(𝑥) = lim𝑥→𝑎−

(|𝑥| + 1)

= lim𝑥→𝑎

(−𝑥 + 1)[𝑥 < 𝑎 < 0 ⇒ |𝑥| = −𝑥]

= −𝑎 + 1

lim𝑥→𝑎+

𝑓(𝑥) = lim𝑥→𝑎+

(|𝑥| + 1)

= lim𝑥→𝑎

(−𝑥 + 1)[𝑎 < 𝑥 < 0 ⇒ |𝑥| = −𝑥]

= −𝑎 + 1

∴ lim𝑥→𝑎−

𝑓(𝑥) = lim𝑥→𝑎+

𝑓(𝑥) = −𝑎 + 1

Thus, limit of𝑓(𝑥) exists for all 𝑎 = 0, where 𝑎 < 0.

When 𝑎 > 0

lim𝑥→𝑎−

𝑓(𝑥) = lim𝑥→𝑎−

(|𝑥| − 1)

Page 17: CBSE NCERT Solutions for Class 11 Mathematics Chapter 13 · 2019. 11. 29. · Class–XI–CBSE-Mathematics Limits and Derivatives 3 Practice more on Limits and Derivatives Hint:

Class–XI–CBSE-Mathematics Limits and Derivatives

17 Practice more on Limits and Derivatives www.embibe.com

= lim𝑥→𝑎

(−𝑥 − 1)[0 < 𝑥 < 𝑎 ⇒ |𝑥| = 𝑥]

= 𝑎 − 1

lim𝑥→𝑎+

𝑓(𝑥) = lim𝑥→𝑎+

(|𝑥| − 1)

= lim𝑥→𝑎

(𝑥 − 1)[0 < 𝑎 < 𝑥 ⇒ |𝑥| = 𝑥]

= 𝑎 − 1

∴ lim𝑥→𝑎−

𝑓(𝑥) = lim𝑥→𝑎+

𝑓(𝑥) = 𝑎 − 1

Thus, limit of 𝑓(𝑥) exist at 𝑥 = 𝑎, where 𝑎 > 0.

Thus, lim𝑥→𝑎

𝑓(𝑥) exists for all 𝑎 ≠ 0.

Marks for step 1: 3

Difficulty level 1: M

Page no.: 303

Question No.:

Question body: If the function 𝑓(𝑥) satisfies lim𝑥→1

𝑓(𝑥)−2

𝑥2−1= 𝜋,evaluate lim

𝑥→1𝑓(𝑥)

Full marks: 3

Overall difficulty Level: M

Hint: At the time when we put variable value make sure function won’t take undefined form.

Solution:

Solution step 1: lim𝑥→1

𝑓(𝑥)−2

𝑥2−1= 𝜋

⇒lim(𝑓(𝑥) − 2)

lim(𝑥2 − 1)= 𝜋

⇒ lim𝑥→1

𝑓(𝑥) − 2) = 𝜋lim𝑥→1

(𝑥2 − 1)

⇒ lim𝑥→1

(𝑓(𝑥) − 2) = 𝜋(12 − 1)

⇒ lim𝑥→1

𝑓(𝑥) − 2) = 0

⇒ lim𝑥→1

𝑓(𝑥) − lim𝑥→1

2 = 0

Page 18: CBSE NCERT Solutions for Class 11 Mathematics Chapter 13 · 2019. 11. 29. · Class–XI–CBSE-Mathematics Limits and Derivatives 3 Practice more on Limits and Derivatives Hint:

Class–XI–CBSE-Mathematics Limits and Derivatives

18 Practice more on Limits and Derivatives www.embibe.com

⇒ lim𝑥→1

𝑓(𝑥) − 2 = 0

∴ lim𝑥→1

𝑓(𝑥) = 2

31. If

𝑓(𝑥) = {𝑚𝑥2 + 𝑛, 𝑥 < 0𝑛𝑥 + 𝑚, 0 ≤ 𝑥 ≤ 1

𝑛𝑥3 + 𝑚, 𝑥 > 1

For what integers 𝑚 and 𝑛 does lim𝑥→0

𝑓(𝑥) and lim𝑥→1

𝑓(𝑥) exist?

Hint: At the time when we put variable value make sure function won’t take undefined form.

Solution:

Solution step 1: The given function is

𝑓(𝑥) = {𝑚𝑥2 + 𝑛, 𝑥 < 0𝑛𝑥 + 𝑚, 0 ≤ 𝑥 ≤ 1

𝑛𝑥3 + 𝑚, 𝑥 > 1

lim𝑥→0−

𝑓(𝑥) = lim𝑥→0

(𝑚𝑥2 + 𝑛)

= 𝑚(0)2 + 𝑛

= 𝑛

lim𝑥→0+

𝑓(𝑥) = lim𝑥→0

(𝑛𝑥 + 𝑚)

= 𝑛(0) + 𝑚

= 𝑚.

Thus, lim𝑥→0

𝑓(𝑥) exists if 𝑚 = 𝑛.

lim𝑥→1−

𝑓(𝑥) = lim𝑥→1

(𝑛𝑥 + 𝑚)

= 𝑛(1) + 𝑚

= 𝑚 + 𝑛

lim𝑥→1+

𝑓(𝑥) = lim𝑥→1

(𝑛𝑥3 + 𝑚)

= 𝑛(1)3 + 𝑚

= 𝑚 + 𝑛

∴ lim𝑥→1−

𝑓(𝑥) = lim𝑥→1+

𝑓(𝑥) = lim𝑥→1

𝑓(𝑥)

Thus, lim𝑥→1

𝑓(𝑥)exists for any integral value of 𝑚 and 𝑛.

Page 19: CBSE NCERT Solutions for Class 11 Mathematics Chapter 13 · 2019. 11. 29. · Class–XI–CBSE-Mathematics Limits and Derivatives 3 Practice more on Limits and Derivatives Hint:

Class–XI–CBSE-Mathematics Limits and Derivatives

19 Practice more on Limits and Derivatives www.embibe.com

Exercise 13.2

1. Find the derivative of (𝑥2) − 2 at 𝑥 = 10.

Hint: 𝑓′(𝑎) = limℎ→0

𝑓(𝑎+ℎ)−𝑓(𝑎)

Solution:

Solution step 1: Let 𝑓(𝑥) = 𝑥2 − 2. Accordingly,

𝑓′(10) = limℎ→0

𝑓(10 + ℎ) − 𝑓(10)

= limℎ→0

[(10 + ℎ)2 − 2] − (102 − 2)

= limℎ→0

102 + 2 ⋅ 10 ⋅ ℎ + ℎ2 − 2 − 102 + 2

= limℎ→0

20ℎ + ℎ2

ℎ= lim

ℎ→0(20 + ℎ) = (20 + 0) = 20

Thus, the derivative of (𝑥2) − 2 at 𝑥 = 10 is 20.

2. Find the derivative of 99𝑥 at 𝑥 = 100.

Solution:

Let 𝑓(𝑥) = 99𝑥. Accordingly,

𝑓′(100) = limℎ→0

𝑓(100 + ℎ) − 𝑓(100)

= limℎ→0

99(100 + ℎ) − 99(100)

= limℎ→0

99 × 100 + 99ℎ − 99 × 100

= limℎ→0

99ℎ

ℎ= lim

ℎ→0(99) = 99

Thus, the derivative of 99𝑥 at 𝑥 = 100 is 99.

Page 20: CBSE NCERT Solutions for Class 11 Mathematics Chapter 13 · 2019. 11. 29. · Class–XI–CBSE-Mathematics Limits and Derivatives 3 Practice more on Limits and Derivatives Hint:

Class–XI–CBSE-Mathematics Limits and Derivatives

20 Practice more on Limits and Derivatives www.embibe.com

3. Find the derivative of 𝑥 at 𝑥 = 1.

Hint: 𝑓′(𝑎) = limℎ→0

𝑓(𝑎+ℎ)−𝑓(𝑎)

Solution:

Solution step 1: Let 𝑓(𝑥) = 𝑥. Accordingly,

𝑓′(1) = limℎ→0

𝑓(1 + ℎ) − 𝑓(1)

= limℎ→0

(1 + ℎ) − 1

= limℎ→0

= limℎ→0

(1)

= 1

Thus, the derivative of 𝑥 at 𝑥 = 1 is 1.

4. Find the derivative of the following functions from first principle.

(i) 𝑥3 − 27

Hint: 𝑓′(𝑎) = limℎ→0

𝑓(𝑎+ℎ)−𝑓(𝑎)

Solution:

Solution step 1: Let 𝑓(𝑥) = 𝑥3 − 27.Accordingly, from the first principle,

𝑓′(𝑥) = limℎ→0

𝑓(𝑥 + ℎ) − 𝑓(𝑥)

= limℎ→0

[(𝑥 + ℎ)3 − 27] − (𝑥3 − 27)

= limℎ→0

𝑥3 + ℎ3 + 3𝑥2ℎ + 3𝑥ℎ2 − 𝑥3

= limℎ→0

ℎ3 + 3𝑥2ℎ + 3𝑥ℎ2

= limℎ→0

(ℎ2 + 3𝑥2 + 3𝑥ℎ)

= 0 + 3𝑥2 + 0 = 3𝑥2

Page 21: CBSE NCERT Solutions for Class 11 Mathematics Chapter 13 · 2019. 11. 29. · Class–XI–CBSE-Mathematics Limits and Derivatives 3 Practice more on Limits and Derivatives Hint:

Class–XI–CBSE-Mathematics Limits and Derivatives

21 Practice more on Limits and Derivatives www.embibe.com

(ii)(𝑥 − 1)(𝑥 − 2)

Hint: 𝑓′(𝑎) = limℎ→0

𝑓(𝑎+ℎ)−𝑓(𝑎)

Solution:

Solution step 1: Let 𝑓(𝑥) = (𝑥– 1)(𝑥– 2). Accordingly, from the first principle,

𝑓′(𝑥) = limℎ→0

𝑓(𝑥 + ℎ) − 𝑓(𝑥)

= limℎ→0

(𝑥 + ℎ − 1)(𝑥 + ℎ − 2) − (𝑥 − 1)(𝑥 − 2)

= limℎ→0

(𝑥2 + ℎ𝑥 − 2𝑥 + ℎ𝑥 + ℎ2 − 2ℎ − 𝑥 − ℎ + 2) − (𝑥2 − 2𝑥 − 𝑥 + 2)

= limℎ→0

(ℎ𝑥 + ℎ𝑥 + ℎ2 − 2ℎ − ℎ)

= limℎ→0

2ℎ𝑥 + ℎ2 − 3ℎ

= limℎ→0

(2𝑥 + ℎ − 3)

= (2𝑥 + 0 − 3)

= 2𝑥 − 3

(iii)1

𝑥2

Hint: 𝑓′(𝑎) = limℎ→0

𝑓(𝑎+ℎ)−𝑓(𝑎)

Solution:

Solution step 1: Let 𝑓(𝑥) =1

𝑥2 . Accordingly, from the first principle,

𝑓′(𝑥) = limℎ→0

𝑓(𝑥 + ℎ) − 𝑓(𝑥)

= limℎ→0

1(𝑥 + ℎ)2 −

1𝑥2

Page 22: CBSE NCERT Solutions for Class 11 Mathematics Chapter 13 · 2019. 11. 29. · Class–XI–CBSE-Mathematics Limits and Derivatives 3 Practice more on Limits and Derivatives Hint:

Class–XI–CBSE-Mathematics Limits and Derivatives

22 Practice more on Limits and Derivatives www.embibe.com

= limℎ→0

1

ℎ[𝑥2 − (𝑥 + ℎ)2

𝑥2(𝑥 + ℎ)2]

= limℎ→0

1

ℎ[𝑥2 − 𝑥2 − ℎ2 − 2ℎ𝑥

𝑥2(𝑥 + ℎ)2]

= limℎ→0

1

ℎ[−ℎ2 − 2ℎ𝑥

𝑥2(𝑥 + ℎ)2]

= limℎ→0

[−ℎ − 2𝑥

𝑥2(𝑥 + ℎ)2]

=0 − 2𝑥

𝑥2(𝑥 + 0)2

=−2

𝑥3

(iv) 𝑥+1

𝑥−1

Hint: 𝑓′(𝑎) = limℎ→0

𝑓(𝑎+ℎ)−𝑓(𝑎)

Solution:

Solution step 1: Let 𝑓(𝑥) =𝑥+1

𝑥−1. Accordingly, from the first principle,

𝑓′(𝑥) = limℎ→0

𝑓(𝑥 + ℎ) − 𝑓(𝑥)

= limℎ→0

(𝑥 + ℎ + 1𝑥 + ℎ − 1

−𝑥 + 1𝑥 − 1

)

= limℎ→0

1

ℎ[(𝑥 − 1)(𝑥 + ℎ + 1) − (𝑥 + 1)(𝑥 + ℎ − 1)

(𝑥 − 1)(𝑥 + ℎ − 1)]

= limℎ→0

1

ℎ[(𝑥2 + ℎ𝑥 + 𝑥 − 𝑥 − ℎ − 1) − (𝑥2 + ℎ𝑥 − 𝑥 + 𝑥 + ℎ − 1)

(𝑥 − 1)(𝑥 + ℎ − 1)]

= limℎ→0

1

ℎ[

−2ℎ

(𝑥 − 1)(𝑥 + ℎ − 1)]

= limℎ→0

[−2

(𝑥 − 1)(𝑥 + ℎ − 1)]

=−2

(𝑥 − 1)(𝑥 − 1)=

−2

(𝑥 − 1)2

Page 23: CBSE NCERT Solutions for Class 11 Mathematics Chapter 13 · 2019. 11. 29. · Class–XI–CBSE-Mathematics Limits and Derivatives 3 Practice more on Limits and Derivatives Hint:

Class–XI–CBSE-Mathematics Limits and Derivatives

23 Practice more on Limits and Derivatives www.embibe.com

5. For the function:

𝑓(𝑥) =𝑥100

100+

𝑥99

99+ ⋯ +

𝑥2

2+ 𝑥 + 1

Prove That 𝑓′(1) = 100𝑓′(0)

Hint: 𝑑

𝑑𝑥(𝑥𝑛) = 𝑛𝑥𝑛−1

Solution:

Solution step 1: The given function is

𝑓(𝑥) =𝑥100

100+

𝑥99

99+ ⋯ +

𝑥2

2+ 𝑥 + 1

𝑑

𝑑𝑥𝑓(𝑥) =

𝑑

𝑑𝑥[𝑥100

100+

𝑥99

99+ ⋯+

𝑥2

2+ 𝑥 + 1]

𝑑

𝑑𝑥𝑓(𝑥) =

𝑑

𝑑𝑥(𝑥100

100) +

𝑑

𝑑𝑥(𝑥99

99) + ⋯+

𝑑

𝑑𝑥(𝑥2

2) +

𝑑

𝑑𝑥(𝑥) +

𝑑

𝑑𝑥(1)

On using theorem 𝑑

𝑑𝑥(𝑥𝑛) = 𝑛𝑥𝑛−1, we obtain

𝑑

𝑑𝑥𝑓(𝑥) =

100𝑥99

100+

99𝑥98

99+ ⋯+

2𝑥

2+ 1 + 0

= 𝑥99 + 𝑥98 + ⋯+ 𝑥 + 1

∴ 𝑓′(𝑥) = 𝑥99 + 𝑥98 + ⋯+ 𝑥 + 1

At 𝑥 = 0,

𝑓′(0) = 1

At 𝑥 = 1,

𝑓′(1) = 199 + 198 + ⋯+ 1 + 1 = [1 + 1 + ⋯+ 1 + 1]100 terms = 1 × 100 = 100

Thus, 𝑓′(1) = 100 × 𝑓1(0)

6. Find the derivative of (𝑥𝑛 + 𝑎𝑥𝑛−1 + 𝑎2𝑥𝑛−2 + ⋯ + 𝑎𝑛−1𝑥 + 𝑎𝑛) for some fixed real number 𝑎.

Hint: 𝑑

𝑑𝑥(𝑥𝑛) = 𝑛𝑥𝑛−1

Solution:

Solution step 1: Let 𝑓(𝑥) = 𝑥𝑛 + 𝑎𝑥𝑛−1 + 𝑎2𝑥𝑛−2 + ⋯+ 𝑎𝑛−1𝑥 + 𝑎𝑛

Page 24: CBSE NCERT Solutions for Class 11 Mathematics Chapter 13 · 2019. 11. 29. · Class–XI–CBSE-Mathematics Limits and Derivatives 3 Practice more on Limits and Derivatives Hint:

Class–XI–CBSE-Mathematics Limits and Derivatives

24 Practice more on Limits and Derivatives www.embibe.com

∴ 𝑓′(𝑥) =𝑑

𝑑𝑥(𝑥𝑛 + 𝑎𝑥𝑛−1 + 𝑎2𝑥𝑛−2 + ⋯+ 𝑎𝑛−1𝑥 + 𝑎𝑛)

=𝑑

𝑑𝑥(𝑥𝑛) + 𝑎

𝑑

𝑑𝑥(𝑥𝑛−1) + 𝑎2

𝑑

𝑑𝑥(𝑥𝑛−2) + ⋯+ 𝑎𝑛−1

𝑑

𝑑𝑥(𝑥) + 𝑎𝑛

𝑑

𝑑𝑥(1)

On using theorem 𝑑

𝑑𝑥𝑥𝑛 = 𝑛𝑥𝑛−1, we obtain

𝑓′(𝑥) = 𝑛𝑥𝑛−1 + 𝑎(𝑛 − 1)𝑥𝑛−2 + 𝑎2(𝑛 − 2)𝑥𝑛−3 + ⋯+ 𝑎𝑛−1 + 𝑎𝑛(0)

= 𝑛𝑥𝑛−1 + 𝑎(𝑛 − 1)𝑥𝑛−2 + 𝑎2(𝑛 − 2)𝑥𝑛−3 + ⋯ + 𝑎𝑛−1

7. For some constants 𝑎 and 𝑏, find the derivative of:

(i) (𝑥 − 𝑎)(𝑥 − 𝑏)

Hint: 𝑑

𝑑𝑥(𝑥𝑛) = 𝑛𝑥𝑛−1

Solution:

Solution step 1: Let 𝑓(𝑥) = (𝑥– 𝑎)(𝑥– 𝑏)

⇒ 𝑓(𝑥) = 𝑥2 − (𝑎 + 𝑏)𝑥 + 𝑎𝑏

∴ 𝑓′(𝑥) =𝑑

𝑑𝑥(𝑥2 − (𝑎 + 𝑏)𝑥 + 𝑎𝑏)

=𝑑

𝑑𝑥(𝑥2) − (𝑎 + 𝑏)

𝑑

𝑑𝑥(𝑥) +

𝑑

𝑑𝑥(𝑎𝑏)

On using theorem 𝑑

𝑑𝑥(𝑥𝑛) = 𝑛𝑥𝑛−1, text we obtain

𝑓′(𝑥) = 2𝑥 − (𝑎 + 𝑏) + 0 = 2𝑥 − 𝑎 − 𝑏

(ii)(𝑎𝑥2 + 𝑏)2

Hint: 𝑑

𝑑𝑥(𝑥𝑛) = 𝑛𝑥𝑛−1

Solution:

Solution step 1: Let 𝑓(𝑥) = (𝑎𝑥2 + 𝑏)2

⇒ 𝑓(𝑥) = 𝑎2𝑥4 + 2𝑎𝑏𝑥2 + 𝑏2

∴ 𝑓′(𝑥) =𝑑

𝑑𝑥(𝑎2𝑥4 + 2𝑎𝑏𝑥2 + 𝑏2) = 𝑎2

𝑑

𝑑𝑥(𝑥4) + 2𝑎𝑏

𝑑

𝑑𝑥(𝑥2) +

𝑑

𝑑𝑥(𝑏2)

Page 25: CBSE NCERT Solutions for Class 11 Mathematics Chapter 13 · 2019. 11. 29. · Class–XI–CBSE-Mathematics Limits and Derivatives 3 Practice more on Limits and Derivatives Hint:

Class–XI–CBSE-Mathematics Limits and Derivatives

25 Practice more on Limits and Derivatives www.embibe.com

On using theorem 𝑑

𝑑𝑥𝑥𝑛 = 𝑛𝑥𝑛−1, we obtain

𝑓′(𝑥) = 𝑎2(4𝑥3) + 2𝑎𝑏(2𝑥) + 𝑏2(0)

= 4𝑎2𝑥3 + 4𝑎𝑏𝑥

= 4𝑎𝑥(𝑎𝑥2 + 𝑏)

(iii)𝑥−𝑎

𝑥−𝑏

Hint: 𝑑

𝑑𝑥(𝑥𝑛) = 𝑛𝑥𝑛−1

Solution:

Solution step 1: Let 𝑓(𝑥) =(𝑥−𝑎)

(𝑥−𝑏)

⇒ 𝑓′(𝑥) =𝑑

𝑑𝑥(𝑥 − 𝑎

𝑥 − 𝑏)

By quotient rule,

𝑓′(𝑥) =(𝑥 − 𝑏)

𝑑𝑑𝑥

(𝑥 − 𝑎) − (𝑥 − 𝑎)𝑑𝑑𝑥

(𝑥 − 𝑏)

(𝑥 − 𝑏)2

=(𝑥 − 𝑏)(1) − (𝑥 − 𝑎)(1)

(𝑥 − 𝑏)2

=𝑥 − 𝑏 − 𝑥 + 𝑎

(𝑥 − 𝑏)2

=𝑎 − 𝑏

(𝑥 − 𝑏)2

8. Find the derivative of 𝑥𝑛−𝑎𝑛

𝑥−𝑎 for some constant 𝑎.

Hint: 𝑑

𝑑𝑥(𝑥𝑛) = 𝑛𝑥𝑛−1

Solution:

Solution step 1: Let 𝑓(𝑥) =𝑥𝑛−𝑎𝑛

𝑥−𝑎

Page 26: CBSE NCERT Solutions for Class 11 Mathematics Chapter 13 · 2019. 11. 29. · Class–XI–CBSE-Mathematics Limits and Derivatives 3 Practice more on Limits and Derivatives Hint:

Class–XI–CBSE-Mathematics Limits and Derivatives

26 Practice more on Limits and Derivatives www.embibe.com

⇒ 𝑓′(𝑥) =𝑑

𝑑𝑥(𝑥𝑛 − 𝑎𝑛

𝑥 − 𝑎)

By quotient rule,

𝑓′(𝑥) =(𝑥 − 𝑎)

𝑑𝑑𝑥

(𝑥𝑛 − 𝑎𝑛) − (𝑥𝑛 − 𝑎𝑛)𝑑𝑑𝑥

(𝑥 − 𝑎)

(𝑥 − 𝑎)2

=(𝑥 − 𝑎)(𝑛𝑥𝑛−1 − 0) − (𝑥𝑛 − 𝑎𝑛)

(𝑥 − 𝑎)2

=𝑛𝑥𝑛 − 𝑎𝑛𝑥𝑛−1 − 𝑥𝑛 + 𝑎𝑛

(𝑥 − 𝑎)2

9. Find the derivative of

(i) 2𝑥 −3

4

Hint: 𝑑

𝑑𝑥(𝑥𝑛) = 𝑛𝑥𝑛−1

Solution:

Solution step 1:Let 𝑓(𝑥) = 2𝑥 −3

4

𝑓′(𝑥) =𝑑

𝑑𝑥(2𝑥 −

3

4)

= 2𝑑

𝑑𝑥(𝑥) −

𝑑

𝑑𝑥(3

4)

= 2 − 0

= 2

(ii)(5𝑥3 + 3𝑥 − 1)(𝑥 − 1)

Hint: 𝑑

𝑑𝑥(𝑥𝑛) = 𝑛𝑥𝑛−1

Solution:

Solution step 1: Let 𝑓(𝑥) = (5𝑥3 + 3𝑥 − 1)(𝑥 − 1)

By Leibnitz product rule,

Page 27: CBSE NCERT Solutions for Class 11 Mathematics Chapter 13 · 2019. 11. 29. · Class–XI–CBSE-Mathematics Limits and Derivatives 3 Practice more on Limits and Derivatives Hint:

Class–XI–CBSE-Mathematics Limits and Derivatives

27 Practice more on Limits and Derivatives www.embibe.com

𝑓′(𝑥) = (5𝑥3 + 3𝑥 − 1)𝑑

𝑑𝑥(𝑥 − 1) + (𝑥 − 1)

𝑑

𝑑𝑥(5𝑥3 + 3𝑥 − 1)

= (5𝑥3 + 3𝑥 − 1)(1) + (𝑥 − 1)(5.3𝑥2 + 3 − 0)

= (5𝑥3 + 3𝑥 − 1) + (𝑥 − 1)(15𝑥2 + 3)

= 5𝑥3 + 3𝑥 − 1 + 15𝑥3 + 3𝑥 − 15𝑥2 − 3

= 20𝑥3 − 15𝑥2 + 6𝑥 − 4

(iii)𝑥−3(5 + 3𝑥)

Hint: 𝑑

𝑑𝑥(𝑥𝑛) = 𝑛𝑥𝑛−1

Solution:

Solution step 1: Let 𝑓(𝑥) = 𝑥−3(5 + 3𝑥)

By Leibnitz product rule,

𝑓′(𝑥) = 𝑥−3𝑑

𝑑𝑥(5 + 3𝑥) + (5 + 3𝑥)

𝑑

𝑑𝑥(𝑥−3)

= 𝑥−3(0 + 3) + (5 + 3𝑥)(−3𝑥−3−1)

= 𝑥−3(3) + (5 + 3𝑥)(−3𝑥−4)

= 3𝑥−3 − 15𝑥−4 − 9𝑥−3

= −6𝑥−3 − 15𝑥−4

= −3𝑥−3 (2 +5

𝑥)

=−3𝑥−3

𝑥(2𝑥 + 5)

=−3

𝑥4(5 + 2𝑥)

(iv)𝑥5(3 − 6𝑥−9)

Hint: 𝑑

𝑑𝑥(𝑥𝑛) = 𝑛𝑥𝑛−1

Solution:

Solution step 1: Let 𝑓(𝑥) = 𝑥5(3 − 6𝑥−9)

Page 28: CBSE NCERT Solutions for Class 11 Mathematics Chapter 13 · 2019. 11. 29. · Class–XI–CBSE-Mathematics Limits and Derivatives 3 Practice more on Limits and Derivatives Hint:

Class–XI–CBSE-Mathematics Limits and Derivatives

28 Practice more on Limits and Derivatives www.embibe.com

By Leibnitz product rule,

𝑓′(𝑥) = 𝑥5𝑑

𝑑𝑥(3 − 6𝑥−9) + (3 − 6𝑥−9)

𝑑

𝑑𝑥(𝑥5)

= 𝑥5{0 − 6(−9)𝑥−9−1} + (3 − 6𝑥−9)(5𝑥4)

= 𝑥5(54𝑥−10) + 15𝑥4 − 30𝑥−5

= 54𝑥−5 + 15𝑥4 − 30𝑥−5

= 24𝑥−5 + 15𝑥4

= 15𝑥4 +24

𝑥5

(v)𝑥−4(3 − 4𝑥−5)

Hint: 𝑑

𝑑𝑥(𝑥𝑛) = 𝑛𝑥𝑛−1

Solution:

Solution step 1: Let 𝑓(𝑥) = 𝑥−4(3 − 4𝑥−5)

By Leibnitz product rule,

𝑓′(𝑥) = 𝑥−4𝑑

𝑑𝑥(3 − 4𝑥−5) + (3 − 4𝑥−5)

𝑑

𝑑𝑥(𝑥−4)

= 𝑥−4{0 − 4(−5)𝑥−5−1} + (3 − 4𝑥−5)(−4)𝑥−4−1

= 𝑥−4(20𝑥−6) + (3 − 4𝑥−5)(−4𝑥−5)

= 20𝑥−10 − 12𝑥−5 + 16𝑥−10

= 36𝑥−10 − 12𝑥−5

= −12

𝑥5+

36

𝑥10

(vi)2

𝑥+1−

𝑥2

3𝑥−1

Hint: 𝑑

𝑑𝑥(𝑥𝑛) = 𝑛𝑥𝑛−1

Solution:

Solution step 1:Let 𝑓(𝑥) = 𝑐2

𝑥+1−

𝑥2

3𝑥−1

Page 29: CBSE NCERT Solutions for Class 11 Mathematics Chapter 13 · 2019. 11. 29. · Class–XI–CBSE-Mathematics Limits and Derivatives 3 Practice more on Limits and Derivatives Hint:

Class–XI–CBSE-Mathematics Limits and Derivatives

29 Practice more on Limits and Derivatives www.embibe.com

𝑓′(𝑥) =𝑑

𝑑𝑥(

2

𝑥 + 1) −

𝑑

𝑑𝑥(

𝑥2

3𝑥 − 1)

By quotient rule,

𝑓′(𝑥) = [(𝑥 + 1)

𝑑𝑑𝑥

(2) − 2𝑑𝑑𝑥

(𝑥 + 1)

𝑑𝑥] − [

(3𝑥 − 1)𝑑𝑑𝑥

(𝑥2) − 𝑥2 𝑑𝑑𝑥

(3𝑥 − 1)

𝑑𝑥]

= [(𝑥 + 1)(0) − 2(1)

(𝑥 + 1)2] − [

(3𝑥 − 1)(2𝑥) − (𝑥2)(3)

(3𝑥 − 1)2]

=−2

(𝑥 + 1)2− [

6𝑥2 − 2𝑥 − 3𝑥2

(3𝑥 − 1)2]

=−2

(𝑥 + 1)2− [

3𝑥2 − 2𝑥2

(3𝑥 − 1)2]

=−2

(𝑥 + 1)2−

𝑥(3𝑥 − 2)

(3𝑥 − 1)2

10. Find the derivative of cos 𝑥 from first principle.

Hint: 𝑓′(𝑎) = limℎ→0

𝑓(𝑎+ℎ)−𝑓(𝑎)

Solution:

Solution step 1: Let 𝑓(𝑥) = 𝑐𝑜𝑠 𝑥. Accordingly, from the first principle,

𝑓′(𝑥) = limℎ→0

𝑓(𝑥 + ℎ) − 𝑓(𝑥)

= limℎ→0

cos(𝑥 + ℎ) − cos𝑥

= limℎ→0

[cos𝑥cosℎ − sin𝑥sinℎ − cos𝑥

ℎ]

= limℎ→0

[−cos𝑥(1 − coshℎ) − sin𝑥sinℎ

ℎ]

= limℎ→0

[−cos𝑥(1 − cosℎ)

ℎ−

sin𝑥sinℎ

ℎ]

= −cos𝑥 (limℎ→0

1 − cosℎ

ℎ) − sin𝑥lim

ℎ→0(sinℎ

ℎ)

Page 30: CBSE NCERT Solutions for Class 11 Mathematics Chapter 13 · 2019. 11. 29. · Class–XI–CBSE-Mathematics Limits and Derivatives 3 Practice more on Limits and Derivatives Hint:

Class–XI–CBSE-Mathematics Limits and Derivatives

30 Practice more on Limits and Derivatives www.embibe.com

= −cos𝑥(0) − sin𝑥(1) [limℎ→0

1 − cosℎ

ℎ= 0 and lim

ℎ→0

sinℎ

ℎ= 1]

∴ 𝑓′(𝑥) = −sin𝑥

11. Find the derivative of the following functions:

(i) sin 𝑥 cos 𝑥

Hint: 𝑓′(𝑎) = limℎ→0

𝑓(𝑎+ℎ)−𝑓(𝑎)

Solution:

Solution step 1: Let 𝑓(𝑥) = sin 𝑥 cos 𝑥. Accordingly, from the first principle,

𝑓′(𝑥) = &limℎ→0

𝑓(𝑥 + ℎ) − 𝑓(𝑥)

= limℎ→0

sin(𝑥 + ℎ) cos(𝑥 + ℎ) − sin𝑥cos𝑥

= limℎ→0

1

2ℎ[2 sin(𝑥 + ℎ) cos(𝑥 + ℎ) − 2sin𝑥 cos𝑥]

= limℎ→0

1

2ℎ[sin2(𝑥 + ℎ) − sin2𝑥]

= limℎ→0

1

2ℎ[2cos

2𝑥 + 2ℎ + 2𝑥

2⋅ sin

2𝑥 + 2ℎ − 2𝑥

2]

= limℎ→0

1

ℎ[cos

4𝑥 + 2ℎ

2sin

2ℎ

2]

= limℎ→0

1

ℎ[cos(2𝑥 + ℎ) sinℎ]

= limℎ→0

cos(2𝑥 + ℎ) ⋅ limℎ→0

sinℎ

= cos(2𝑥 + 0) . 1

= cos2𝑥

(ii) sec 𝑥

Hint: 𝑓′(𝑎) = limℎ→0

𝑓(𝑎+ℎ)−𝑓(𝑎)

Page 31: CBSE NCERT Solutions for Class 11 Mathematics Chapter 13 · 2019. 11. 29. · Class–XI–CBSE-Mathematics Limits and Derivatives 3 Practice more on Limits and Derivatives Hint:

Class–XI–CBSE-Mathematics Limits and Derivatives

31 Practice more on Limits and Derivatives www.embibe.com

Solution:

Solution step 1: Let 𝑓(𝑥) = sec 𝑥. Accordingly, from the first principle,

𝑓′(𝑥) = limℎ→0

𝑓(𝑥 + ℎ) − 𝑓(𝑥)

= limℎ→0

sec(𝑥 + ℎ) − sec𝑥

= limℎ→0

1

ℎ[

1

cos(𝑥 + ℎ)−

1

cos𝑥]

= limℎ→0

1

ℎ[cos𝑥 − cos(𝑥 + ℎ)

cos𝑥cos(𝑥 + ℎ)]

=1

cos𝑥limℎ→0

1

ℎ[−2 sin (

𝑥 + 𝑥 + ℎ2 ) sin (

𝑥 − 𝑥 − ℎ2 )

cos(𝑥 + ℎ)]

=1

cos𝑥⋅ lim

ℎ→0

1

ℎ[−2 sin (

2𝑥 + ℎ2 ) sin (−

ℎ2)

cos(𝑥 + ℎ)]

=1

cos𝑥limℎ→0

[sin (2𝑥 + ℎ

2 )sin (

ℎ2)

(ℎ2)

]

cos(𝑥 + ℎ)

=1

cos𝑥⋅ lim

ℎ2→0

sin (ℎ2)

(ℎ2)

⋅ limℎ→0

sin (2𝑥 + ℎ

2 )

cos(𝑥 + ℎ)

=1

cos𝑥⋅ 1 ⋅

sin𝑥

cos𝑥

= sec𝑥 tan𝑥

(iii)5sec 𝑥 + 4cos 𝑥

Hint: 𝑓′(𝑎) = limℎ→0

𝑓(𝑎+ℎ)−𝑓(𝑎)

Solution:

Solution step 1: Let 𝑓(𝑥) = 5 𝑠𝑒𝑐𝑥 + 4 𝑐𝑜𝑠 𝑥. Accordingly, from the first principle,

𝑓′(𝑥) = limℎ→0

𝑓(𝑥 + ℎ) − 𝑓(𝑥)

Page 32: CBSE NCERT Solutions for Class 11 Mathematics Chapter 13 · 2019. 11. 29. · Class–XI–CBSE-Mathematics Limits and Derivatives 3 Practice more on Limits and Derivatives Hint:

Class–XI–CBSE-Mathematics Limits and Derivatives

32 Practice more on Limits and Derivatives www.embibe.com

= limℎ→0

5 sec(𝑥 + ℎ) + 4 cos(𝑥 + ℎ) − [5sec𝑥 + 4cos𝑥]

= 5limℎ→0

[sec(𝑥 + ℎ) − sec𝑥]

ℎ+ 4lim

ℎ→0

[cos(𝑥 + ℎ) − cos𝑥]

ℎ𝑙

= 5limℎ→0

1

ℎ[

1

cos(𝑥 + ℎ)−

1

cos𝑥] + 4lim

ℎ→0

1

ℎ[cos(𝑥 + ℎ) − cos𝑥]

= 5limℎ→0

1

ℎ[cos𝑥 − cos(𝑥 + ℎ)

cos𝑥cos(𝑥 + ℎ)] + 4lim

ℎ→0

1

ℎ[cos𝑥 cosℎ − sin𝑥 sinℎ − cos𝑥]

=5

cos𝑥limℎ→0

1

ℎ[−2 sin (

𝑥 + 𝑥 + ℎ2 ) sin (

𝑥 − 𝑥 − ℎ2 )

cos(𝑥 + ℎ)] + 4lim

ℎ→0

1

ℎ[−cos𝑥(1 − cosℎ) − sin𝑥sinℎ]

=5

cos𝑥⋅ lim

ℎ→0

1

ℎ[−2 sin (

2𝑥 + ℎ2 ) sin (−

ℎ2)

cos(𝑥 + ℎ)] + 4 [−cos𝑥lim

ℎ→0

(1 − cosℎ)

ℎ− sin𝑥lim

ℎ→0

sinℎ

ℎ]

=5

cos𝑥⋅ [lim

ℎ→0

sin (2𝑥 + ℎ

2 )

cos(𝑥 + ℎ)⋅ lim

ℎ→0

sin (ℎ2)

ℎ2

] − 4sin𝑥

=5

cos𝑥⋅sin𝑥

cos𝑥⋅ 1 − 4sin𝑥

= 5sec𝑥 tan𝑥 ⋅ −4sin𝑥

(iv) cosec 𝑥

Hint: 𝑓′(𝑎) = limℎ→0

𝑓(𝑎+ℎ)−𝑓(𝑎)

Solution:

Solution step 1: Let 𝑓(𝑥) = cosec 𝑥. Accordingly, from the first principle,

𝑓′(𝑥) = limℎ→0

𝑓(𝑥 + ℎ) − 𝑓(𝑥)

𝑓′(𝑥) = limℎ→0

1

ℎ[csc(𝑥 + ℎ) −  𝑐𝑜𝑠𝑒𝑐𝑥]

= limℎ→0

1

ℎ[

1

sin(𝑥 + ℎ)−

1

sin𝑥]

= limℎ→0

1

ℎ[sin𝑥 − sin(𝑥 + ℎ)

sin(𝑥 + ℎ) sin𝑥]

Page 33: CBSE NCERT Solutions for Class 11 Mathematics Chapter 13 · 2019. 11. 29. · Class–XI–CBSE-Mathematics Limits and Derivatives 3 Practice more on Limits and Derivatives Hint:

Class–XI–CBSE-Mathematics Limits and Derivatives

33 Practice more on Limits and Derivatives www.embibe.com

= limℎ→0

1

ℎ[2 cos (

𝑥 + 𝑥 + ℎ2 ) ⋅ sin (

𝑥 − 𝑥 − ℎ2 )

sin(𝑥 + ℎ) sin𝑥]

= limℎ→0

1

ℎ[2 cos (

2𝑥 + ℎ2 ) sin (−

ℎ2)

sin(𝑥 + ℎ) sin𝑥]

= limℎ→0

−cos (2𝑥 + ℎ

2 ) ⋅sin (

ℎ2)

(ℎ2)

sin(𝑥 + ℎ) sin𝑥

= limℎ→0

(−cos (

2𝑥 + ℎ2 )

sin(𝑥 + ℎ) sin𝑥) ⋅ lim

ℎ2→0

sin (ℎ2)

(ℎ2)

= (−cos𝑥

sin𝑥 sin𝑥) . 1 = −cosec𝑥 cot𝑥

(v)3cot + 5cosec 𝑥

Hint: 𝑓′(𝑎) = limℎ→0

𝑓(𝑎+ℎ)−𝑓(𝑎)

Solution:

Solution step 1: Let 𝑓(𝑥) = 3𝑐𝑜𝑡 𝑥 + 5𝑐𝑜𝑠𝑒𝑐 𝑥. Accordingly, from the first principle,

𝑓′(𝑥) = limℎ→0

𝑓(𝑥 + ℎ) − 𝑓(𝑥)

= limℎ→0

3 cot(𝑥 + ℎ) + 5 𝑐𝑜𝑠𝑒𝑐(𝑥 + ℎ) − 3cot𝑥 − 5 𝑐𝑜𝑠𝑒𝑐𝑥

= 3limℎ→0

1

ℎ[cot(𝑥 + ℎ) − cot𝑥] + 5lim

ℎ→0

1

ℎ[ 𝑐𝑜𝑠𝑒𝑐(𝑥 + ℎ) −  𝑐𝑜𝑠𝑒𝑐𝑥]…… . (1)

Now, limℎ→0

1

ℎ[cot(𝑥 + ℎ) − cot𝑥]

= limℎ→0

1

ℎ[cos(𝑥 + ℎ)

sin(𝑥 + ℎ)−

cos𝑥

sin𝑥]

= limℎ→0

1

ℎ[cos(𝑥 + ℎ) sin𝑥 − cos𝑥sin(𝑥 + ℎ)

sin𝑥sin(𝑥 + ℎ)]

Page 34: CBSE NCERT Solutions for Class 11 Mathematics Chapter 13 · 2019. 11. 29. · Class–XI–CBSE-Mathematics Limits and Derivatives 3 Practice more on Limits and Derivatives Hint:

Class–XI–CBSE-Mathematics Limits and Derivatives

34 Practice more on Limits and Derivatives www.embibe.com

= limℎ→0

1

ℎ[sin(𝑥 − 𝑥 − ℎ)

sin𝑥sin(𝑥 + ℎ)]

= limℎ→0

1

ℎ[

sin(−ℎ)

sin𝑥sin(𝑥 + ℎ)]

= −(limℎ→0

sinℎ

ℎ) ⋅ (lim

ℎ→0

1

sin𝑥 ⋅ sin(𝑥 + ℎ))

= −1 ⋅1

sin𝑥 ⋅ sin(𝑥 + 0)=

−1

sin2𝑥= − 𝑐𝑜𝑠𝑒𝑐2𝑥 … (2)

limℎ→0

1

ℎ[ 𝑐𝑜𝑠𝑒𝑐(𝑥 + ℎ) −  𝑐𝑜𝑠𝑒𝑐𝑥]

= limℎ→0

1

ℎ[

1

sin(𝑥 + ℎ)−

1

sin𝑥]

= limℎ→0

1

ℎ[sin𝑥 − sin(𝑥 + ℎ)

sin(𝑥 + ℎ) sin𝑥]

= limℎ→0

1

ℎ[2 cos (

𝑥 + 𝑥 + ℎ2 ) ⋅ sin (

𝑥 − 𝑥 − ℎ2 )

sin(𝑥 + ℎ) sin𝑥]

= limℎ→0

1

ℎ[2 cos (

2𝑥 + ℎ2 ) sin (−

ℎ2)

sin(𝑥 + ℎ) sin𝑥]

= limℎ→0

−cos (2𝑥 + ℎ

2 ) ⋅sin (

ℎ2)

(ℎ2)

sin(𝑥 + ℎ) sin𝑥

= limℎ→0

(−cos (

2𝑥 + ℎ2 )

sin(𝑥 + ℎ) sin𝑥) ⋅ lim

ℎ→0

sin (ℎ2)

(ℎ2)

= (−cos𝑥

sin𝑥sin𝑥) ⋅ 1

= −cosec cot𝑥 …… (3)

From (1), (2) and (3) we obtain

𝑓′(𝑥) = −3 𝑐𝑜𝑠𝑒𝑐2𝑥 − 5 𝑐𝑜𝑠𝑒𝑐𝑥 cot 𝑥

(vi)5sin − 6cos 𝑥 + 7

Hint: 𝑓′(𝑎) = limℎ→0

𝑓(𝑎+ℎ)−𝑓(𝑎)

Page 35: CBSE NCERT Solutions for Class 11 Mathematics Chapter 13 · 2019. 11. 29. · Class–XI–CBSE-Mathematics Limits and Derivatives 3 Practice more on Limits and Derivatives Hint:

Class–XI–CBSE-Mathematics Limits and Derivatives

35 Practice more on Limits and Derivatives www.embibe.com

Solution:

Solution step 1: Let 𝑓(𝑥) = 5𝑠𝑖𝑛 𝑥– 6𝑐𝑜𝑠 𝑥 + 7. Accordingly, from the first principle,

𝑓′(𝑥) = limℎ→0

𝑓(𝑥 + ℎ) − 𝑓(𝑥)

= limℎ→0

1

ℎ[5 sin(𝑥 + ℎ) − 6 cos(𝑥 + ℎ) + 7 − 5sin𝑥 + 6cos𝑥 − 7]

= limℎ→0

1

ℎ[5{sin(𝑥 + ℎ) − sin𝑥} − 6{cos(𝑥 + ℎ) − cos𝑥}]

= 5limℎ→0

1

ℎ[2 cos (

𝑥 + ℎ + 𝑥

2) sin (

𝑥 + ℎ − 𝑥

2)] − 6lim

ℎ→0

cos𝑥cosℎ − sin𝑥sinℎ − cos𝑥

= 5limℎ→0

1

ℎ[2 cos (

2𝑥 + ℎ

2) sin

2] − 6lim

ℎ→0[−cos𝑥(1 − cosℎ) − sin𝑥sinℎ

ℎ]

= 5 [limℎ→0

cos (2𝑥 + ℎ

2)] [lim

sinℎ2

ℎ2

] − 6 [(−cos𝑥) (limℎ→0

1 − cosℎ

ℎ) − sin𝑥lim

ℎ→0(sinℎ

ℎ)]

= 5cos𝑥 ⋅ 1 − 6[(−cos𝑥) ⋅ (0) − sin𝑥. 1]

= 5cos𝑥 + 6sin𝑥

(vii)2tan 𝑥 − 7sec 𝑥

Hint: 𝑓′(𝑎) = limℎ→0

𝑓(𝑎+ℎ)−𝑓(𝑎)

Solution:

Solution step 1: Let 𝑓(𝑥) = 2 tan 𝑥 – 7 sec 𝑥. Accordingly, from the first principle,

𝑓′(𝑥) = limℎ→0

𝑓(𝑥 + ℎ) − 𝑓(𝑥)

= limℎ→0

1

ℎ[2 tan(𝑥 + ℎ) − 7 sec(𝑥 + ℎ) − 2tan𝑥 + 7sec𝑥]

= limℎ→0

1

ℎ[2{tan(𝑥 + ℎ) − tan𝑥} − 7{sec(𝑥 + ℎ) − sec𝑥}]

= 2limℎ→0

1

ℎ[sin(𝑥 + ℎ)

cos(𝑥 + ℎ)−

sin𝑥

cos𝑥] − 7lim

ℎ→0

1

ℎ[

1

cos(𝑥 + ℎ)−

1

cos𝑥]

= 2limℎ→0

1

ℎ[sin(𝑥 + ℎ) cos𝑥 − sin𝑥cos(𝑥 + ℎ)

cos𝑥cos(𝑥 + ℎ)] − 7lim

ℎ→0

1

ℎ[cos𝑥 − cos(𝑥 + ℎ)

cos𝑥cos(𝑥 + ℎ)]

Page 36: CBSE NCERT Solutions for Class 11 Mathematics Chapter 13 · 2019. 11. 29. · Class–XI–CBSE-Mathematics Limits and Derivatives 3 Practice more on Limits and Derivatives Hint:

Class–XI–CBSE-Mathematics Limits and Derivatives

36 Practice more on Limits and Derivatives www.embibe.com

= 2limℎ→0

1

ℎ[sin(𝑥 + ℎ − 𝑥)

cos𝑥cos(𝑥 + ℎ)] − 7lim

ℎ→0

1

ℎ[−2 sin (

𝑥 + 𝑥 + ℎ2 ) sin (

𝑥 − 𝑥 − ℎ2 )

cos𝑥cos(𝑥 + ℎ)]

= 2limℎ→0

[(sinℎ

ℎ)

1

cos𝑥cos(𝑥 + ℎ)] − 7lim

ℎ→0

1

ℎ[−2 sin (

2𝑥 + ℎ2 ) sin (−

ℎ2)

cos𝑥cos(𝑥 + ℎ)]

= 2.1 ⋅1

cos𝑥cos𝑥− 7.1 (

sin𝑥

cos𝑥cos𝑥)

= 2sec2𝑥 − 7sec𝑥 tan𝑥

Miscellaneous Exercise

1. Find the derivative of the following functions from first principle:

(i) −𝑥

Hint: 𝑓′(𝑎) = limℎ→0

𝑓(𝑎+ℎ)−𝑓(𝑎)

Solution:

Solution step 1: Let 𝑓(𝑥) =–𝑥. Accordingly, 𝑓(𝑥 + ℎ) = −(𝑥 + ℎ)

By first principle,

𝑓′(𝑥) = limℎ→0

𝑓(𝑥 + ℎ) − 𝑓(𝑥)

= limℎ→0

−(𝑥 + ℎ) − (−𝑥)

= limℎ→0

−𝑥 − ℎ + 𝑥

= limℎ→0

−ℎ

= limℎ→0

(−1) = −1

(ii)(−𝑥)−1

Hint: 𝑓′(𝑎) = limℎ→0

𝑓(𝑎+ℎ)−𝑓(𝑎)

Page 37: CBSE NCERT Solutions for Class 11 Mathematics Chapter 13 · 2019. 11. 29. · Class–XI–CBSE-Mathematics Limits and Derivatives 3 Practice more on Limits and Derivatives Hint:

Class–XI–CBSE-Mathematics Limits and Derivatives

37 Practice more on Limits and Derivatives www.embibe.com

Solution:

Solution step 1: Let 𝑓(𝑥) = (−𝑥)−1 =1

−𝑥=

−1

𝑥.

Accordingly, 𝑓(𝑥 + ℎ) =−1

(𝑥+ℎ)

By first principle,

𝑓′(𝑥) = limℎ→0

𝑓(𝑥 + ℎ) − 𝑓(𝑥)

= limℎ→0

1

ℎ[

−1

𝑥 + ℎ− (

−1

𝑥)]

= limℎ→0

1

ℎ[−𝑥 + (𝑥 + ℎ)

𝑥 + ℎ+

1

𝑥]

= limℎ→0

1

ℎ[−𝑥 + (𝑥 + ℎ)

𝑥(𝑥 + ℎ)]

= limℎ→0

1

ℎ[−𝑥 + (𝑥 + ℎ)

𝑥(𝑥 + ℎ)]

= limℎ→0

1

ℎ[

𝑥(𝑥 + ℎ)]

= limℎ→0

1

𝑥(𝑥 + ℎ)

=1

𝑥 ⋅ 𝑥=

1

𝑥2

(iii)sin(𝑥 + 1)

Hint: 𝑓′(𝑎) = limℎ→0

𝑓(𝑎+ℎ)−𝑓(𝑎)

Solution:

Solution step 1: Let 𝑓(𝑥) = sin(𝑥 + 1). Accordingly,𝑓(𝑥 + ℎ) = sin(𝑥 + ℎ + 1)

By first principle,

𝑓′(𝑥) = limℎ→0

𝑓(𝑥 + ℎ) − 𝑓(𝑥)

= limℎ→0

1

ℎ[sin(𝑥 + ℎ + 1) − sin(𝑥 + 1)]

= limℎ→0

1

ℎ[2 cos (

𝑥 + ℎ + 1 + 𝑥 + 1

2) sin (

𝑥 + ℎ + 1 − 𝑥 − 1

2)]

Page 38: CBSE NCERT Solutions for Class 11 Mathematics Chapter 13 · 2019. 11. 29. · Class–XI–CBSE-Mathematics Limits and Derivatives 3 Practice more on Limits and Derivatives Hint:

Class–XI–CBSE-Mathematics Limits and Derivatives

38 Practice more on Limits and Derivatives www.embibe.com

= limℎ→0

1

ℎ[2 cos (

2𝑥 + ℎ + 2

2) sin (

2)]

= limℎ→0

[cos (2𝑥 + ℎ + 2

2) ⋅

sin (ℎ2)

(ℎ2)

]

= limℎ→0

cos (2𝑥 + ℎ + 2

2) ⋅ lim

ℎ2→0

sin (ℎ2)

𝑏2 + 0

sin (ℎ2)

ℎ2 + 0

[𝐴𝑠ℎ → 0 ⇒ℎ

2→ 0]

= cos (2𝑥 + 0 + 2

2) ⋅ 1 [lim

𝑥→0

sin𝑥

𝑥= 1]

= cos(𝑥 + 1)

(iv)cos (𝑥 −𝜋

8)

Hint: 𝑓′(𝑎) = limℎ→0

𝑓(𝑎+ℎ)−𝑓(𝑎)

Solution:

Solution step 1: Let 𝑓(𝑥) = cos (𝑥 −𝜋

8)

Accordingly, 𝑓(𝑥 + ℎ) = cos (𝑥 + ℎ −𝜋

8)

By first principle,

𝑓′(𝑥) = limℎ→0

𝑓(𝑥 + ℎ) − 𝑓(𝑥)

= limℎ→0

1

ℎ[cos (𝑥 + ℎ −

𝜋

8) − cos (𝑥 −

𝜋

8)]

= limℎ→0

1

ℎ[−2sin

(𝑥 + ℎ −𝜋8 + 𝑥 −

𝜋8)

2sin(

𝑥 + ℎ −𝜋8 − 𝑥 +

𝜋8

2)]

= limℎ→0

1

ℎ[−2 sin(

2𝑥 + ℎ −𝜋4

2)sin

2]

= limℎ→0

[− sin(2𝑥 + ℎ −

𝜋4

2)

sin (ℎ2)

2]

]

Page 39: CBSE NCERT Solutions for Class 11 Mathematics Chapter 13 · 2019. 11. 29. · Class–XI–CBSE-Mathematics Limits and Derivatives 3 Practice more on Limits and Derivatives Hint:

Class–XI–CBSE-Mathematics Limits and Derivatives

39 Practice more on Limits and Derivatives www.embibe.com

= limℎ→0

[− sin(2𝑥 + ℎ −

𝜋4

2)] ∙ lim

ℎ2→0

sin (ℎ2)

(ℎ2)

[A𝑠 ℎ → 0 ⇒ℎ

2→ 0]

= −sin(2𝑥 + 0 −

𝜋4

2) . 1

= −sin (𝑥 −𝜋

8)

2. Find the derivative of the following functions (it is to be understood that 𝑎, 𝑏, 𝑐, 𝑑, 𝑝, 𝑞, 𝑟 and 𝑠 are

fixed non-zero constants and m and n are integers): (𝑥 + 𝑎)

Hint: 𝑓′(𝑎) = limℎ→0

𝑓(𝑎+ℎ)−𝑓(𝑎)

Solution:

Solution step 1: Let 𝑓(𝑥) = 𝑥 + 𝑎. Accordingly, 𝑓(𝑥 + ℎ) = −(𝑥 + ℎ)

By first principle,

𝑓′(𝑥) = limℎ→0

𝑓(𝑥 + ℎ) − 𝑓(𝑥)

= limℎ→0

𝑥 + ℎ + 𝑎 − 𝑥 − 𝑎

= limℎ→0

(ℎ

ℎ)

= limℎ→0

(1)

= 1

3. Find the derivative of the following functions (it is to be understood that 𝑎, 𝑏, 𝑐, 𝑑, 𝑝, 𝑞, 𝑟 and 𝑠 are

fixed non-zero constants and m and n are integers): (𝑝𝑥 + 𝑞) (𝑟

𝑥+ 𝑠)

Hint: 𝑑

𝑑𝑥(𝑥𝑛) = 𝑛𝑥𝑛−1

Solution:

Page 40: CBSE NCERT Solutions for Class 11 Mathematics Chapter 13 · 2019. 11. 29. · Class–XI–CBSE-Mathematics Limits and Derivatives 3 Practice more on Limits and Derivatives Hint:

Class–XI–CBSE-Mathematics Limits and Derivatives

40 Practice more on Limits and Derivatives www.embibe.com

Solution step 1: Let 𝑓(𝑥) = (𝑝𝑥 + 𝑞) (𝑟

𝑥+ 𝑠)

𝑓′(𝑥) = (𝑝𝑥 + 𝑞) (𝑟

𝑥+ 𝑠) + (

𝑟

𝑥+ 𝑠) (𝑝𝑥 + 𝑞)′

= (𝑝𝑥 + 𝑞)(𝑟𝑥−1 + 𝑠)′ + (𝑟

𝑥+ 𝑠) (𝑝)

= (𝑝𝑥 + 𝑞)(−𝑟𝑥−2) + (𝑟

𝑥+ 𝑠) 𝑝

= (𝑝𝑥 + 𝑞) (−𝑟

𝑥2) + (

𝑟

𝑥+ 𝑠) 𝑝

=−𝑝𝑟

𝑥−

𝑞𝑟

𝑥2+

𝑝𝑟

𝑥+ 𝑝𝑠

= 𝑝𝑠 −𝑞𝑟

𝑥2

4. Find the derivative of the following functions (it is to be understood that 𝑎, 𝑏, 𝑐, 𝑑, 𝑝, 𝑞, 𝑟 and 𝑠 are

fixed non-zero constants and m and n are integers): (𝑎𝑥 + 𝑏)(𝑐𝑥 + 𝑑)2

Hint: 𝑑

𝑑𝑥(𝑥𝑛) = 𝑛𝑥𝑛−1

Solution:

Solution step 1: Let 𝑓(𝑥) = (𝑎𝑥 + 𝑏)(𝑐𝑥 + 𝑑)2

By product rule,

𝑓′(𝑥) = (𝑎𝑥 + 𝑏)𝑑

𝑑𝑥(𝑐𝑥 + 𝑑)2 + (𝑐𝑥 + 𝑑)2

𝑑

𝑑𝑥(𝑎𝑥 + 𝑏)

= (𝑎𝑥 + 𝑏)𝑑

𝑑𝑥(𝑐2𝑥2 + 2𝑐𝑑𝑥 + 𝑑2) + (𝑐𝑥 + 𝑑)2

𝑑

𝑑𝑥(𝑎𝑥 + 𝑏)

= (𝑎𝑥 + 𝑏) [𝑑

𝑑𝑥(𝑐2𝑥2) +

𝑑

𝑑𝑥(2𝑐𝑑𝑥) +

𝑑

𝑑𝑥𝑑2] + (𝑐𝑥 + 𝑑)2 [

𝑑

𝑑𝑥𝑎𝑥 +

𝑑

𝑑𝑥𝑏]

= (𝑎𝑥 + 𝑏)(2𝑐2𝑥 + 2𝑐𝑑) + (𝑐𝑥 + 𝑑2)𝑎

= 2𝑐(𝑎𝑥 + 𝑏)(𝑐𝑥 + 𝑑) + 𝑎(𝑐𝑥 + 𝑑)2

5. Find the derivative of the following functions (it is to be understood that 𝑎, 𝑏, 𝑐, 𝑑, 𝑝, 𝑞, 𝑟 and 𝑠 are

fixed non-zero constants and m and n are integers): 𝑎𝑥+𝑏

𝑐𝑥+𝑑

Hint: 𝑑

𝑑𝑥(𝑥𝑛) = 𝑛𝑥𝑛−1

Page 41: CBSE NCERT Solutions for Class 11 Mathematics Chapter 13 · 2019. 11. 29. · Class–XI–CBSE-Mathematics Limits and Derivatives 3 Practice more on Limits and Derivatives Hint:

Class–XI–CBSE-Mathematics Limits and Derivatives

41 Practice more on Limits and Derivatives www.embibe.com

Solution:

Solution step 1: Let 𝑓(𝑥) =𝑎𝑥+𝑏

𝑐𝑥+𝑑

By quotient rule,

𝑓′(𝑥) =(𝑐𝑥 + 𝑑)

𝑑𝑑𝑥

(𝑎𝑥 + 𝑏) − (𝑎𝑥 + 𝑏)𝑑𝑑𝑥

(𝑐𝑥 + 𝑑)

(𝑐𝑥 + 𝑑)2(𝑐𝑥 + 𝑑)

=(𝑐𝑥 + 𝑑)(𝑎) − (𝑎𝑥 + 𝑏)(𝑐)

(𝑐𝑥 + 𝑑)2

=𝑎𝑐𝑥 + 𝑎𝑑 − 𝑎𝑐𝑥 − 𝑏𝑐

(𝑐𝑥 + 𝑑)2

=𝑎𝑑 − 𝑏𝑐

(𝑐𝑥 + 𝑑)2

6. Find the derivative of the following functions (it is to be understood that 𝑎, 𝑏, 𝑐, 𝑑, 𝑝, 𝑞, 𝑟 and 𝑠 are

fixed non-zero constants and m and n are integers): 1+

1

𝑥

1−1

𝑥

Hint: 𝑑

𝑑𝑥(𝑥𝑛) = 𝑛𝑥𝑛−1

Solution:

Solution step 1: 𝑓(𝑥) =1+

1

𝑥

1−1

𝑥

=𝑥+1

𝑥𝑥−1

𝑥

=𝑥+1

𝑥−1, where 𝑥 ≠ 0

By quotient rule,

𝑓′(𝑥) =(𝑥 − 1) − (𝑥 − 1) − (𝑥 + 1) − (𝑥 + 1)

(𝑥 − 1)2, 𝑥 ≠ 0,1

=(𝑥 − 1)(1) − (𝑥 + 1)(1)

(𝑥 − 1)2, 𝑥 ≠ 0,1

=𝑥 − 1 − 𝑥 − 1

(𝑥 − 1)2, 𝑥 ≠ 0,1

=−2

(𝑥 − 1)2, 𝑥 ≠ 0,1

Page 42: CBSE NCERT Solutions for Class 11 Mathematics Chapter 13 · 2019. 11. 29. · Class–XI–CBSE-Mathematics Limits and Derivatives 3 Practice more on Limits and Derivatives Hint:

Class–XI–CBSE-Mathematics Limits and Derivatives

42 Practice more on Limits and Derivatives www.embibe.com

7. Find the derivative of the following functions (it is to be understood that 𝑎, 𝑏, 𝑐, 𝑑, 𝑝, 𝑞, 𝑟 and 𝑠 are

fixed non-zero constants and m and n are integers): 1

𝑎𝑥2+𝑏𝑥+𝑐

Hint: 𝑑

𝑑𝑥(𝑥𝑛) = 𝑛𝑥𝑛−1

Solution:

Solution step 1: Let 𝑓(𝑥) =1

𝑎𝑥2+𝑏𝑥+𝑐

By quotient rule,

𝑓′(𝑥) =(𝑎𝑥2 + 𝑏𝑥 + 𝑐)

𝑑𝑑𝑥

(1) −𝑑𝑑𝑥

(𝑎𝑥2 + 𝑏𝑥 + 𝑐)

𝑑𝑥

=(𝑎𝑥2 + 𝑏𝑥 + 𝑐)(0) − (2𝑎𝑥 + 𝑏)

(𝑎𝑥2 + 𝑏𝑥 + 𝑐)2

=−(2𝑎𝑥 + 𝑏)

(𝑎𝑥2 + 𝑏𝑥 + 𝑐)2

8. Find the derivative of the following functions (it is to be understood that 𝑎, 𝑏, 𝑐, 𝑑, 𝑝, 𝑞, 𝑟 and 𝑠 are

fixed non-zero constants and m and n are integers): 𝑎𝑥+𝑏

𝑝𝑥2+𝑞𝑥+𝑟

Hint: 𝑑

𝑑𝑥(𝑥𝑛) = 𝑛𝑥𝑛−1

Solution:

Solution step 1: Let 𝑓(𝑥) =𝑎𝑥+𝑏

𝑝𝑥2+𝑞𝑥+𝑟

By quotient rule,

𝑓′(𝑥) =(𝑝𝑥2 + 𝑞𝑥 + 𝑟)

𝑑𝑑𝑥

(𝑎𝑥 + 𝑏) − (𝑎𝑥 + 𝑏)𝑑𝑑𝑥

(𝑝𝑥2 + 𝑞𝑥 + 𝑟)

(𝑝𝑥2 + 𝑞𝑥 + 𝑟)2

=(𝑝𝑥2 + 𝑞𝑥 + 𝑟)(𝑎) − (𝑎𝑥 + 𝑏)(2𝑝𝑥 + 𝑞)

(𝑝𝑥2 + 𝑞𝑥 + 𝑟)2

=𝑎𝑝𝑥2 + 𝑎𝑞𝑥 + 𝑎𝑟 − 2𝑎𝑝𝑥2 − 𝑎𝑞𝑥 − 2𝑏𝑝𝑥 − 𝑏𝑞

(𝑝𝑥2 + 𝑞𝑥 + 𝑟)2

=−𝑎𝑝𝑥2 − 2𝑏𝑝𝑥 + 𝑎𝑟 − 𝑏𝑞

(𝑝𝑥2 + 𝑞𝑥 + 𝑟)2

Page 43: CBSE NCERT Solutions for Class 11 Mathematics Chapter 13 · 2019. 11. 29. · Class–XI–CBSE-Mathematics Limits and Derivatives 3 Practice more on Limits and Derivatives Hint:

Class–XI–CBSE-Mathematics Limits and Derivatives

43 Practice more on Limits and Derivatives www.embibe.com

9. Find the derivative of the following functions (it is to be understood that 𝑎, 𝑏, 𝑐, 𝑑, 𝑝, 𝑞, 𝑟 and 𝑠 are

fixed non-zero constants and m and n are integers): 𝑝𝑥2+𝑞𝑥+𝑟

𝑎𝑥+𝑏

Hint: 𝑑

𝑑𝑥(𝑥𝑛) = 𝑛𝑥𝑛−1

Solution:

Solution step 1: Let 𝑓(𝑥) =𝑝𝑥2+𝑞𝑥+𝑟

𝑎𝑥+𝑏

By quotient rule,

𝑓′(𝑥) =(𝑎𝑥 + 𝑏)

𝑑𝑑𝑥

(𝑝𝑥2 + 𝑞𝑥 + 𝑟) − (𝑝𝑥2 + 𝑞𝑥 + 𝑟)𝑑𝑑𝑥

(𝑎𝑥 + 𝑏)

(𝑎𝑥 + 𝑏)2

=(𝑎𝑥 + 𝑏)(2𝑝𝑥 + 𝑞) − (𝑝𝑥2 + 𝑞𝑥 + 𝑟)(𝑎)

(𝑎𝑥 + 𝑏)2

=2𝑎𝑝𝑥2 + 𝑎𝑞𝑥 + 2𝑏𝑝𝑥 + 𝑏𝑞 − 𝑎𝑝𝑥2 − 𝑎𝑞𝑥 − 𝑎𝑟

(𝑎𝑥 + 𝑏)2

=𝑎𝑝𝑥2 + 2𝑏𝑝𝑥 + 𝑏𝑞 − 𝑎𝑟

(𝑎𝑥 + 𝑏)2

10. Find the derivative of the following functions (it is to be understood that 𝑎, 𝑏, 𝑐, 𝑑, 𝑝, 𝑞, 𝑟 and 𝑠 are

fixed non-zero constants and m and n are integers): 𝑎

𝑥4 −𝑏

𝑥2 + cos

Hint: 𝑑

𝑑𝑥(𝑥𝑛) = 𝑛𝑥𝑛−1

Solution:

Solution step 1:

Let 𝑓(𝑥) = &𝑎

𝑥4 −𝑏

𝑥2 + cos𝑥

𝑓′(𝑥) =𝑑

𝑑𝑥(

𝑎

𝑥4) −

𝑑

𝑑𝑥(

𝑏

𝑥2) +

𝑑

𝑑𝑥(cos𝑥)

= 𝑎𝑑

𝑑𝑥(𝑥−4) − 𝑏

𝑑

𝑑𝑥(𝑥−2) +

𝑑

𝑑𝑥(cos𝑥)

(= 𝑎(−4𝑥−5) − 𝑏(−2𝑥−3) + (−sin𝑥) [𝑑

𝑑𝑥(𝑥𝑛) = 𝑛𝑥𝑛−1 and

𝑑

𝑑𝑥(cos𝑥) = −sin𝑥]

=−4𝑎

𝑥5+

2𝑏

𝑥3− sin𝑥

Page 44: CBSE NCERT Solutions for Class 11 Mathematics Chapter 13 · 2019. 11. 29. · Class–XI–CBSE-Mathematics Limits and Derivatives 3 Practice more on Limits and Derivatives Hint:

Class–XI–CBSE-Mathematics Limits and Derivatives

44 Practice more on Limits and Derivatives www.embibe.com

11. Find the derivative of the following functions (it is to be understood that 𝑎, 𝑏, 𝑐, 𝑑, 𝑝, 𝑞, 𝑟 and 𝑠 are

fixed non-zero constants and m and n are integers): 4√𝑥 − 2

Hint: 𝑑

𝑑𝑥(𝑥𝑛) = 𝑛𝑥𝑛−1

Solution:

Solution step 1: Let 𝑓(𝑥) = 4√𝑥 − 2

𝑓′(𝑥) =𝑑

𝑑𝑥(4√𝑥 − 2) =

𝑑

𝑑𝑥(4√𝑥) −

𝑑

𝑑𝑥(2)

= 4𝑑

𝑑𝑥(𝑥

12) − 0 = 4 (

1

2𝑥

12−1)

= (2𝑥−12) =

2

√𝑥

12. Find the derivative of the following functions (it is to be understood that 𝑎, 𝑏, 𝑐, 𝑑, 𝑝, 𝑞, 𝑟 and 𝑠 are

fixed non-zero constants and m and n are integers): (𝑎𝑥 + 𝑏)𝑛

Hint: 𝑓′(𝑎) = limℎ→0

𝑓(𝑎+ℎ)−𝑓(𝑎)

Solution:

Solution step 1: 𝑓(𝑥) = (𝑎𝑥 + 𝑏)𝑛

Accordingly, 𝑓(𝑥 + ℎ) = {𝑎(𝑥 + ℎ) + 𝑏}𝑛 = (𝑎𝑥 + 𝑎ℎ + 𝑏)𝑛

By first principle,

𝑓′(𝑥) = limℎ→0

𝑓(𝑥 + ℎ) − 𝑓(𝑥)

= limℎ→0

(𝑎𝑥 + 𝑎ℎ + 𝑏)𝑛 − (𝑎𝑥 + 𝑏)𝑛

= limℎ→0

(𝑎𝑥 + 𝑏)𝑛 (1 +𝑎ℎ

𝑎𝑥 + 𝑏)𝑛

− (𝑎𝑥 + 𝑏)𝑛

= (𝑎𝑥 + 𝑏)𝑛 limℎ→0

(1 +𝑎ℎ

𝑎𝑥 + 𝑏)𝑛

− 1

= (𝑎𝑥 + 𝑏)𝑛 limℎ→0

1

𝑛[{1 + 𝑛 (

𝑎ℎ

𝑎𝑥 + 𝑏) +

𝑛(𝑛 − 1)

∟2(

𝑎ℎ

𝑎𝑥 + 𝑏)

2

+ ⋯} − 1] (Using binomial theorem)

Page 45: CBSE NCERT Solutions for Class 11 Mathematics Chapter 13 · 2019. 11. 29. · Class–XI–CBSE-Mathematics Limits and Derivatives 3 Practice more on Limits and Derivatives Hint:

Class–XI–CBSE-Mathematics Limits and Derivatives

45 Practice more on Limits and Derivatives www.embibe.com

= (𝑎𝑥 + 𝑏)𝑛 limℎ→0

1

ℎ[𝑛(

𝑎ℎ

𝑎𝑥 + 𝑏) +

𝑛(𝑛 − 1)𝑎2ℎ2

∟2(𝑎𝑥 + 𝑏)2+ ⋯ (Terms containing higher degrees ofℎ)]

= (𝑎𝑥 + 𝑏)𝑛lim𝑏→0

[𝑛𝑎

(𝑎𝑥 + 𝑏)+

𝑛(𝑛 − 1)𝑎2ℎ

∟2(𝑎𝑥 + 𝑏)2+ ⋯]

= (𝑎𝑥 + 𝑏)𝑛 [𝑛𝑎

(𝑎𝑥 + 𝑏)+ 0]

= 𝑛𝑎(𝑎𝑥 + 𝑏)𝑛

(𝑎𝑥 + 𝑏)

= 𝑛𝑎(𝑎𝑥 + 𝑏)𝑛−1

13. Find the derivative of the following functions (it is to be understood that 𝑎, 𝑏, 𝑐, 𝑑, 𝑝, 𝑞, 𝑟 and 𝑠 are

fixed non-zero constants and m and n are integers): (𝑎𝑥 + 𝑏)𝑛(𝑐𝑥 + 𝑑)𝑚

Hint: 𝑓′(𝑎) = limℎ→0

𝑓(𝑎+ℎ)−𝑓(𝑎)

Solution:

Solution step 1: Let 𝑓(𝑥) = (𝑎𝑥 + 𝑏)𝑛(𝑐𝑥 + 𝑑)𝑚

𝑓′(𝑥) = (𝑎𝑥 + 𝑏)𝑛𝑑

𝑑𝑥(𝑐𝑥 + 𝑑)𝑚 + (𝑐𝑥 + 𝑑)𝑚

𝑑

𝑑𝑥(𝑎𝑥 + 𝑏)𝑛 … (1)

Now, let 𝑓1(𝑥) = (𝑐𝑥 + 𝑑)𝑚

𝑓1(𝑥 + ℎ) = (𝑐𝑥 + 𝑐ℎ + 𝑑)𝑚

𝑓1′(𝑥) = lim

ℎ→0

𝑓1(𝑥 + ℎ) − 𝑓1(𝑥)

= limℎ→0

(𝑐𝑥 + 𝑐ℎ + 𝑑)𝑚 − (𝑐𝑥 + 𝑑)𝑚

= (𝑐𝑥 + 𝑑)𝑚 limℎ→0

1

ℎ[(1 +

𝑐ℎ

𝑐𝑥 + 𝑑)𝑚

− 1]

= (𝑐𝑥 + 𝑑)𝑚 limℎ→0

1

ℎ[(1 +

𝑚𝑐ℎ

(𝑐𝑥 + 𝑑)+

𝑚(𝑚 − 1)

2

(𝑐2ℎ2)

(𝑐𝑥 + 𝑑)2+ ⋯) − 1]

= (𝑐𝑥 + 𝑑)𝑚 limℎ→0

1

ℎ[

𝑚𝑐ℎ

(𝑐𝑥 + 𝑑)+

𝑚(𝑚 − 1)𝑐2ℎ2

2(𝑐𝑥 + 𝑑)2+ ⋯ (Terms containing higher degrees of ℎ)]

= (𝑐𝑥 + 𝑑)𝑚 limℎ→0

[𝑚𝑐

(𝑐𝑥 + 𝑑)+

𝑚(𝑚 − 1)𝑐2ℎ

2(𝑐𝑥 + 𝑑)2+ ⋯ ]

Page 46: CBSE NCERT Solutions for Class 11 Mathematics Chapter 13 · 2019. 11. 29. · Class–XI–CBSE-Mathematics Limits and Derivatives 3 Practice more on Limits and Derivatives Hint:

Class–XI–CBSE-Mathematics Limits and Derivatives

46 Practice more on Limits and Derivatives www.embibe.com

= (𝑐𝑥 + 𝑑)𝑚 [𝑚𝑐

𝑐𝑥 + 𝑑+ 0]

=𝑚𝑐(𝑐𝑥 + 𝑑)𝑚

(𝑐𝑥 + 𝑑)

= 𝑚𝑐(𝑐𝑥 + 𝑑)𝑚−1

𝑑

𝑑𝑥(𝑐𝑥 + 𝑑)𝑚 = 𝑚𝑐(𝑐𝑥 + 𝑑)𝑚−1 …(2)

Similarly, 𝑑

𝑑𝑥(𝑎𝑥 + 𝑏)𝑛 = 𝑛𝑎(𝑎𝑥 + 𝑏)𝑛−1 …(3)

Therefore, from (1), (2) and (3) we obtain

𝑓′(𝑥) = (𝑎𝑥 + 𝑏)𝑛{𝑚𝑐(𝑐𝑥 + 𝑑)𝑚−1} + (𝑐𝑥 + 𝑑)𝑚{𝑛𝑎(𝑎𝑥 + 𝑏)𝑛−1}

= (𝑎𝑥 + 𝑏)𝑛−1(𝑐𝑥 + 𝑑)𝑚−1[𝑚𝑐(𝑎𝑥 + 𝑏) + 𝑛𝑎(𝑐𝑥 + 𝑑)]

14. Find the derivative of the following functions (it is to be understood that 𝑎, 𝑏, 𝑐, 𝑑, 𝑝, 𝑞, 𝑟 and 𝑠 are

fixed non-zero constants and m and n are integers): sin(𝑥 + 𝑎)

Hint: 𝑓′(𝑎) = limℎ→0

𝑓(𝑎+ℎ)−𝑓(𝑎)

Solution:

Solution step 1: Let 𝑓(𝑥) = sin(𝑥 + 𝑎), therefore 𝑓(𝑥 + ℎ) = sin(𝑥 + ℎ + 𝑎)

By first principle,

 𝑓′(𝑥) = limℎ→0

𝑓(𝑥 + ℎ) − 𝑓(𝑥)

= limℎ→0

sin(𝑥 + ℎ + 𝑎) − sin(𝑥 + 𝑎)

= limℎ→0

1

ℎ[2 cos (

𝑥 + ℎ + 𝑎 + 𝑥 + 𝑎

2) sin (

𝑥 + ℎ + 𝑎 − 𝑥 − 𝑎

2)]

= limℎ→0

1

ℎ[2 cos (

2𝑥 + 2𝑎 + ℎ

2) sin (

2)]

= limℎ→0

[cos (2𝑥 + 2𝑎 + ℎ

2){

sin (ℎ2)

(ℎ2)

}]

= limℎ→0

cos (2𝑥 + 2𝑎 + ℎ

2) lim

𝑏2→0

{sin (

𝑛2)

(ℎ2)

} [ As ℎ → 0 ⇒ℎ

2→ 0]

Page 47: CBSE NCERT Solutions for Class 11 Mathematics Chapter 13 · 2019. 11. 29. · Class–XI–CBSE-Mathematics Limits and Derivatives 3 Practice more on Limits and Derivatives Hint:

Class–XI–CBSE-Mathematics Limits and Derivatives

47 Practice more on Limits and Derivatives www.embibe.com

= cos (2𝑥 + 2𝑎

2) × 1 [lim

𝑥→0

sin𝑥

𝑥= 1]

= cos(𝑥 + 𝑎)

15. Find the derivative of the following functions (it is to be understood that 𝑎, 𝑏, 𝑐, 𝑑, 𝑝, 𝑞, 𝑟 and 𝑠 are

fixed non-zero constants and m and n are integers): cosec 𝑥 cot 𝑥

Hint: 𝑓′(𝑎) = limℎ→0

𝑓(𝑎+ℎ)−𝑓(𝑎)

Solution:

Solution step 1: Let 𝑓(𝑥) = cosec𝑥 cot𝑥

By product rule,

 𝑓′(𝑥) = cosec𝑥(cot𝑥)′ + cot𝑥(cosec𝑥)′…(1)

Let 𝑓1(𝑥) = cot𝑥. Accordingly,𝑓1(𝑥 + ℎ) = cot(𝑥 + ℎ)

By first principle,

𝑓1′(𝑥) = lim

ℎ→0

𝑓1(𝑥 + ℎ) − 𝑓1(𝑥)

= limℎ→0

cot(𝑥 + ℎ) − cot𝑥

= limℎ→0

1

ℎ(cos(𝑥 + ℎ)

sin(𝑥 + ℎ)−

cos𝑥

sin𝑥)

= limℎ→0

1

ℎ[sin𝑥cos(𝑥 + ℎ) − cos𝑥sin(𝑥 + ℎ)

sin𝑥sin(𝑥 + ℎ)]

= limℎ→0

1

ℎ[sin(𝑥 − 𝑥 − ℎ)

sin𝑥sin(𝑥 + ℎ)]

=1

sin𝑥limℎ

1

ℎ[

sin(−ℎ)

sin(𝑥 + ℎ)]

=−1

sin𝑥⋅ (lim

ℎ→0

sinℎ

ℎ) (lim

ℎ→0

1

sin(𝑥 + ℎ))

=−1

sin𝑥⋅ 1 ⋅ (

1

sin(𝑥 + 0))

=−1

sin2𝑥

= − 𝑐𝑜𝑠𝑒𝑐2𝑥

Page 48: CBSE NCERT Solutions for Class 11 Mathematics Chapter 13 · 2019. 11. 29. · Class–XI–CBSE-Mathematics Limits and Derivatives 3 Practice more on Limits and Derivatives Hint:

Class–XI–CBSE-Mathematics Limits and Derivatives

48 Practice more on Limits and Derivatives www.embibe.com

∴ (cot𝑥)′ = −cosec2𝑥 … (2)

Now, let 𝑓2(𝑥) = 𝑐𝑜𝑠𝑒𝑐 𝑥.

Accordingly, 𝑓2(𝑥 + ℎ) = 𝑐𝑜𝑠𝑒𝑐 (𝑥 + ℎ)

By first principle,

𝑓2′(𝑥) = lim

ℎ→0

𝑓2(𝑥 + ℎ) − 𝑓2(𝑥)

= limℎ→0

1

ℎ[ 𝑐𝑜𝑠𝑒𝑐(𝑥 + ℎ) −  𝑐𝑜𝑠𝑒𝑐𝑥] = lim

ℎ→0

1

ℎ[

1

sin(𝑥 + ℎ)−

1

sin𝑥]

= limℎ→0

1

ℎ[sin𝑥 − sin(𝑥 + ℎ)

sin𝑥sin(𝑥 + ℎ)]

=1

sin𝑥∙ limℎ→0

1

ℎ[2 cos (

𝑥 + 𝑥 + ℎ2 ) sin (

𝑥 − 𝑥 − ℎ2 )

sin(𝑥 + ℎ)]

=1

sin𝑥∙ limℎ→0

1

ℎ= [

2 cos (2𝑥 + ℎ

2 ) sin (−ℎ2 )

sin(𝑥 + ℎ)]

=1

sin𝑥∙ limℎ→0

[− sin (

ℎ2)

(ℎ2)

⋅cos (

2𝑥 + ℎ2 )

sin(𝑥 + ℎ)]

=−1

sin𝑥∙ limℎ→0

sin (ℎ2)

(ℎ2)

⋅ limℎ→0

cos (2𝑥 + ℎ

2 )

sin(𝑥 + ℎ)

=−1

sin𝑥. 1.

cos (2𝑥 + 0

2 )

sin(𝑥 + 0)

=−1

sin𝑥⋅cos𝑥

sin𝑥

= −cosec𝑥 ⋅ cot𝑥

∴ ( 𝑐𝑜𝑠𝑒𝑐𝑥)′ = − 𝑐𝑜𝑠𝑒𝑐𝑥. cot𝑥 …(3)

From (1), (2) and (3) we obtain

𝑓′(𝑥) =  𝑐𝑜𝑠𝑒𝑐𝑥(− 𝑐𝑜𝑠𝑒𝑐2𝑥) + cot𝑥(− 𝑐𝑜𝑠𝑒𝑐𝑥cot𝑥)

= − 𝑐𝑜𝑠𝑒𝑐3𝑥 − cot2𝑥 𝑐𝑜𝑠𝑒𝑐𝑥

Page 49: CBSE NCERT Solutions for Class 11 Mathematics Chapter 13 · 2019. 11. 29. · Class–XI–CBSE-Mathematics Limits and Derivatives 3 Practice more on Limits and Derivatives Hint:

Class–XI–CBSE-Mathematics Limits and Derivatives

49 Practice more on Limits and Derivatives www.embibe.com

16. Find the derivative of the following functions (it is to be understood that 𝑎, 𝑏, 𝑐, 𝑑, 𝑝, 𝑞, 𝑟 and 𝑠 are

fixed non-zero constants and m and n are integers): cos𝑥

1+sin𝑥

Hint: 𝑓′(𝑎) = limℎ→0

𝑓(𝑎+ℎ)−𝑓(𝑎)

Solution:

Solution step 1: Let

𝑓(𝑥) =cos𝑥

1 + sin𝑥

By quotient rule, 𝑓′(𝑥) =(1+sin𝑥)

𝑑

𝑑𝑥(cos𝑥)−(cos𝑥)

𝑑

𝑑𝑥(1+sin𝑥)

(1+sin𝑥)2

=(1 + sin𝑥)(−sin𝑥) − (cos𝑥)(cos𝑥)

(1 + sin𝑥)2

=−sin𝑥 − sin2𝑥 − cos2𝑥

(1 + sin𝑥)2

=−sin𝑥 − (sin2𝑥 + cos2𝑥)

(1 + sin𝑥)2

=−sin𝑥 − 1

(1 + sin𝑥)2

=−(1 + sin𝑥)

(1 + sin𝑥)2

=−1

(1 + sin𝑥)

17. Find the derivative of the following functions (it is to be understood that 𝑎, 𝑏, 𝑐, 𝑑, 𝑝, 𝑞, 𝑟 and 𝑠 are

fixed non-zero constants and m and n are integers): sin𝑥+cos𝑥

sin𝑥−cos𝑥

Hint: 𝑓′(𝑎) = limℎ→0

𝑓(𝑎+ℎ)−𝑓(𝑎)

Solution:

Solution step 1: Let 𝑓(𝑥)sin𝑥+cos𝑥

sin𝑥−cos𝑥

By quotient rule,

Page 50: CBSE NCERT Solutions for Class 11 Mathematics Chapter 13 · 2019. 11. 29. · Class–XI–CBSE-Mathematics Limits and Derivatives 3 Practice more on Limits and Derivatives Hint:

Class–XI–CBSE-Mathematics Limits and Derivatives

50 Practice more on Limits and Derivatives www.embibe.com

𝑓′(𝑥) =(sin𝑥 − cos𝑥)

𝑑𝑑𝑥

(sin𝑥 + cos𝑥) − (sin𝑥 + cos𝑥)𝑑𝑑𝑥

(sin𝑥 − cos𝑥)

(sin𝑥 − cos𝑥)2

=(sin𝑥 − cos𝑥)(cos𝑥 − sin𝑥) − (sin𝑥 + cos𝑥)(cos𝑥 + sin𝑥)

(sin𝑥 − cos𝑥)2

=−(sin𝑥 − cos𝑥)2 − (sin𝑥 + cos𝑥)2

(sin𝑥 − cos𝑥)2

=−[sin2𝑥 + cos2𝑥 − 2sin𝑥cos𝑥 + sin2𝑥 + cos2𝑥 + 2sin𝑥cos𝑥]

(sin𝑥 − cos𝑥)2

=−[1 + 1]

(sin𝑥 − cos𝑥)2

=−2

(sin𝑥 − cos𝑥)2

18. Find the derivative of the following functions (it is to be understood that 𝑎, 𝑏, 𝑐, 𝑑, 𝑝, 𝑞, 𝑟 and 𝑠 are

fixed non-zero constants and m and n are integers): sec𝑥−1

sec𝑥+1

Hint: 𝑑

𝑑𝑥(𝑥𝑛) = 𝑛𝑥𝑛−1

Solution:

Solution step 1: Let

𝑓(𝑥) =sec𝑥 − 1

sec𝑥 + 1 𝑓(𝑥) =

1cos𝑥 − 1

1cos𝑥

+ 1=

1 − cos𝑥

1 + cos𝑥

By quotient rule,

𝑓′(𝑥) =(1 + cos𝑥)

𝑑𝑑𝑥

(1 − cos𝑥) − (1 − cos𝑥)𝑑𝑑𝑥

(1 + cos𝑥)

(1 + cos𝑥)2

=(1 + cos𝑥)(sin𝑥) − (1 − cos𝑥)(− sin 𝑥)

(1 + cos𝑥)2

=sin𝑥 + cos𝑥sin𝑥 + sin𝑥 − sin𝑥cos𝑥

(1 + cos𝑥)2

=2sin𝑥

(1 + cos𝑥)2

Page 51: CBSE NCERT Solutions for Class 11 Mathematics Chapter 13 · 2019. 11. 29. · Class–XI–CBSE-Mathematics Limits and Derivatives 3 Practice more on Limits and Derivatives Hint:

Class–XI–CBSE-Mathematics Limits and Derivatives

51 Practice more on Limits and Derivatives www.embibe.com

=2sin𝑥

(1 +1

sec𝑥)2 =

2sin𝑥

(sec𝑥 + 1)2

sec2𝑥

=2sin𝑥sec2𝑥

(sec𝑥 + 1)2

=

2sin𝑥cos 𝑥 sec 𝑥

(sec𝑥 + 1)2

=2sec𝑥 + tan𝑥

(sec𝑥 + 1)2

19. Find the derivative of the following functions (it is to be understood that 𝑎, 𝑏, 𝑐, 𝑑, 𝑝, 𝑞, 𝑟 and 𝑠 are

fixed non-zero constants and m and n are integers): sin𝑛 𝑥

Full marks: 3

Overall difficulty Level: M

Hint: 𝑑

𝑑𝑥(sin𝑛𝑥) = 𝑛sin(𝑛−1)𝑥cos𝑥

Solution:

Solution step 1: Let 𝑦 = sin𝑛 𝑥

Accordingly, for 𝑛 = 1, 𝑦 = sin 𝑥

∴𝑑𝑦

𝑑𝑥= cos𝑥, i.e.,

𝑑

𝑑𝑥sin𝑥 = cos𝑥

For 𝑛 = 1, 𝑦 = sin2 𝑥

∴𝑑𝑦

𝑑𝑥=

𝑑

𝑑𝑥(sin𝑥sin𝑥)

= (sin𝑥)′sin𝑥 + sin𝑥(sin𝑥)′ [By Leibnitz product rule]

= cos𝑥sin𝑥 + sin𝑥cos𝑥

= 2 sin 𝑥 cos 𝑥 … (1)

For 𝑛 = 1, 𝑦 = sin3 𝑥

∴𝑑𝑦

𝑑𝑥=

𝑑

𝑑𝑥(sin𝑥sin2𝑥)

Page 52: CBSE NCERT Solutions for Class 11 Mathematics Chapter 13 · 2019. 11. 29. · Class–XI–CBSE-Mathematics Limits and Derivatives 3 Practice more on Limits and Derivatives Hint:

Class–XI–CBSE-Mathematics Limits and Derivatives

52 Practice more on Limits and Derivatives www.embibe.com

= (sin𝑥)′sin2𝑥 + sin𝑥(sin2𝑥)′ [By Leibnitz product rule]

= cos𝑥sin2𝑥 + sin𝑥(2sin𝑥cos𝑥)[Using(1)]

=cosxsin2x+2sin2xcosx

=3sin2xcosx

We assert that 𝑑

𝑑𝑥(sin𝑛𝑥) = 𝑛sin(𝑛−1)𝑥cos𝑥

Let our assertion be true for 𝑛 = 𝑘.

i.e., 𝑑

𝑑𝑥(sin𝑘𝑥) = 𝑘sin(𝑘−1)𝑥cos𝑥 … (2)

Consider 𝑑

𝑑𝑥(sin𝑘+1𝑥) =

𝑑

𝑑𝑥(sin𝑥sin𝑘𝑥)

= (sin𝑥)′sin𝑘𝑥 + sin𝑥(sin𝑘𝑥)′ [By Leibnitz product rule]

= cos𝑥 sin𝑘𝑥 + sin𝑥(𝑘sin(𝑘−1)𝑥cos𝑥)[Using(2)]

= cos 𝑥 sinkx+ksinkx cos 𝑥

= (k+1)sinkx cos 𝑥

Thus, our assertion is true for 𝑛 = 𝑘 + 1

Hence, by mathematical induction, 𝑑

𝑑𝑥(sin𝑛𝑥) = 𝑛sin(𝑛−1)𝑥cos𝑥

20. Find the derivative of the following functions (it is to be understood that 𝑎, 𝑏, 𝑐, 𝑑, 𝑝, 𝑞, 𝑟 and 𝑠 are

fixed non-zero constants and m and n are integers): 𝑎+𝑏sin𝑥

𝑐+𝑑cos𝑥

Hint: 𝑑

𝑑𝑥(𝑥𝑛) = 𝑛𝑥𝑛−1

Solution:

Solution step 1: Let 𝑓(𝑥) =𝑎+𝑏sin𝑥

𝑐+𝑑cos𝑥

By quotient rule,

𝑓′(𝑥) =(𝑐 + 𝑑cos𝑥)

𝑑𝑑𝑥

(𝑎 + 𝑏sin𝑥) − (𝑎 + 𝑏sin𝑥)𝑑𝑑𝑥

(𝑐 + 𝑑cos𝑥)

(𝑐 + 𝑑cos𝑥)2

=(𝑐 + 𝑑cos𝑥)(𝑏cos𝑥) − (𝑎 + 𝑏cos𝑥)(−𝑑sin𝑥)

(𝑐 + 𝑑cos𝑥)2

=𝑐𝑏cos𝑥 + 𝑏𝑑cos2𝑥 + 𝑎𝑑sin𝑥 + 𝑏𝑑sin2𝑥

(𝑐 + 𝑑cos𝑥)2

Page 53: CBSE NCERT Solutions for Class 11 Mathematics Chapter 13 · 2019. 11. 29. · Class–XI–CBSE-Mathematics Limits and Derivatives 3 Practice more on Limits and Derivatives Hint:

Class–XI–CBSE-Mathematics Limits and Derivatives

53 Practice more on Limits and Derivatives www.embibe.com

=𝑏𝑐cos𝑥 + 𝑎𝑑sin𝑥 + 𝑏𝑑(cos2𝑥 + sin2𝑥)

(𝑐 + 𝑑cos𝑥)2

=𝑏𝑐cos𝑥 + 𝑎𝑑sin𝑥 + 𝑏𝑑

(𝑐 + 𝑑cos𝑥)2

21. Find the derivative of the following functions (it is to be understood that 𝑎, 𝑏, 𝑐, 𝑑, 𝑝, 𝑞, 𝑟 and 𝑠 are

fixed non-zero constants and m and n are integers): sin(𝑥+𝑎)

cos𝑥

Hint: 𝑑

𝑑𝑥(𝑥𝑛) = 𝑛𝑥𝑛−1

Solution:

Solution step 1:

Let 𝑓(𝑥) =sin(𝑥+𝑎)

cos𝑥

By quotient rule,

𝑓′(𝑥) =cos𝑥

𝑑𝑑𝑥

[sin(𝑥 + 𝑎)] − sin(𝑥 + 𝑎)𝑑𝑑𝑥

cos𝑥

cos2𝑥

𝑓′(𝑥) =cos𝑥

𝑑𝑑𝑥

[sin(𝑥 + 𝑎)] − sin(𝑥 + 𝑎) (−sin𝑥)

cos2𝑥… (𝑖)

Let 𝑔(𝑥) = sin(𝑥 + 𝑎) Accordingly, 𝑔(𝑥 + ℎ) = sin(𝑥 + ℎ + 𝑎)

By first principle,

𝑔′(𝑥) = limℎ→0

𝑔(𝑥 + ℎ) − 𝑔(𝑥)

= limℎ→0

1

ℎ[sin(𝑥 + ℎ + 𝑎) − sin(𝑥 + 𝑎)]

= limℎ→0

1

ℎ[2 cos (

𝑥 + ℎ + 𝑎 + 𝑥 + 𝑎

2) sin (

𝑥 + ℎ + 𝑎 − 𝑥 − 𝑎

2)]

= limℎ→0

1

ℎ[2 cos (

2𝑥 + ℎ + 𝑎 + ℎ

2) sin (

2)]

= limℎ→0

[cos (2𝑥 + 2𝑎 + ℎ

2){

sin (ℎ2)

(ℎ2)

}]

Page 54: CBSE NCERT Solutions for Class 11 Mathematics Chapter 13 · 2019. 11. 29. · Class–XI–CBSE-Mathematics Limits and Derivatives 3 Practice more on Limits and Derivatives Hint:

Class–XI–CBSE-Mathematics Limits and Derivatives

54 Practice more on Limits and Derivatives www.embibe.com

= limℎ→0

cos (2𝑥 + 2𝑎 + ℎ

2) lim

ℎ2,0

{sin (

ℎ2)

(ℎ2)

} [ As ℎ → 0 ⇒ℎ

2→ 0]

= cos(𝑥 + 𝑎) … (𝑖𝑖)

From (𝑖) and (𝑖𝑖), we obtain

𝑓′(𝑥) =cos𝑥 ⋅ cos(𝑥 + 𝑎) + sin𝑥sin(𝑥 + 𝑎)

cos2𝑥

=cos(𝑥 + 𝑎 − 𝑥)

cos2𝑥

=cos𝑎

cos2𝑥

22. Find the derivative of the following functions (it is to be understood that 𝑎, 𝑏, 𝑐, 𝑑, 𝑝, 𝑞, 𝑟 and 𝑠 are

fixed non-zero constants and m and n are integers): (𝑥4)(5sin𝑥 − 3cos𝑥)

Hint: 𝑑

𝑑𝑥(𝑥𝑛) = 𝑛𝑥𝑛−1

Solution:

Solution step 1: Let 𝑓(𝑥)=(𝑥4)(5sin𝑥 − 3cos𝑥)

By product rule,

𝑓′(𝑥) = 𝑥4𝑑

𝑑𝑥(5sin𝑥 − 3cos𝑥) + (5sin𝑥 − 3cos𝑥)

𝑑

𝑑𝑥(𝑥4)

= 𝑥4 [5𝑑

𝑑𝑥(sin𝑥) − 3

𝑑

𝑑𝑥(cos𝑥)] + (5sin𝑥 − 3cos𝑥)

𝑑

𝑑𝑥(𝑥4)

= 𝑥4[5cos𝑥 − 3(−sin𝑥)] + (5sin𝑥 − 3cos𝑥)(4𝑥3)

= 𝑥3[5𝑥cos𝑥 + 3𝑥sin𝑥 + 20sin𝑥 − 12cos𝑥]

23. Find the derivative of the following functions (it is to be understood that 𝑎, 𝑏, 𝑐, 𝑑, 𝑝, 𝑞, 𝑟 and 𝑠 are

fixed non-zero constants and m and n are integers): (𝑥2 + 1)cos𝑥

Hint: Apply product rule.

Solution:

Page 55: CBSE NCERT Solutions for Class 11 Mathematics Chapter 13 · 2019. 11. 29. · Class–XI–CBSE-Mathematics Limits and Derivatives 3 Practice more on Limits and Derivatives Hint:

Class–XI–CBSE-Mathematics Limits and Derivatives

55 Practice more on Limits and Derivatives www.embibe.com

Solution step 1:

Let 𝑓(𝑥) = (𝑥2 + 1)cos𝑥

By product rule,

𝑓′(𝑥) = (𝑥2 + 1)𝑑

𝑑𝑥(cos𝑥) + cos𝑥

𝑑

𝑑𝑥(𝑥2 + 1)

= (𝑥2 + 1)(−sin𝑥) + cos𝑥(2𝑥)

= −𝑥2sin𝑥 − sin𝑥 + 2𝑥cos𝑥

24. Find the derivative of the following functions (it is to be understood that 𝑎, 𝑏, 𝑐, 𝑑, 𝑝, 𝑞, 𝑟 and 𝑠 are

fixed non-zero constants and m and n are integers): (𝑎𝑥2 + sin𝑥)(𝑝 + 𝑞cos𝑥)

Hint: Apply product rule.

Solution:

Solution step 1:

Let 𝑓(𝑥) = (𝑎𝑥2 + sin𝑥)(𝑝 + 𝑞cos𝑥)

By product rule,

 𝑓′(𝑥) = (𝑎𝑥2 + sin𝑥)𝑑

𝑑𝑥(𝑝 + 𝑞cos𝑥) + (𝑝 + 𝑞cos𝑥)

𝑑

𝑑𝑥(𝑎𝑥2 + sin𝑥)

= (𝑎𝑥2 + sin𝑥)(−𝑞sin𝑥) + (𝑝 + 𝑞cos𝑥)(2𝑎𝑥 + cos𝑥)

= −𝑞sin𝑥(𝑎𝑥2 + sin𝑥) + (𝑝 + 𝑞cos𝑥)(2𝑎𝑥 + cos𝑥)

25. Find the derivative of the following functions (it is to be understood that 𝑎, 𝑏, 𝑐, 𝑑, 𝑝, 𝑞, 𝑟 and 𝑠 are

fixed non-zero constants and m and n are integers): (𝑥 + cos𝑥)(𝑥 − tan𝑥)

Hint: Apply product rule.

Solution:

Solution step 1: Let 𝑓(𝑥) = (𝑥 + cos𝑥)(𝑥 − tan𝑥)

By product rule,

Page 56: CBSE NCERT Solutions for Class 11 Mathematics Chapter 13 · 2019. 11. 29. · Class–XI–CBSE-Mathematics Limits and Derivatives 3 Practice more on Limits and Derivatives Hint:

Class–XI–CBSE-Mathematics Limits and Derivatives

56 Practice more on Limits and Derivatives www.embibe.com

𝑓′(𝑥) = (𝑥 + cos𝑥)𝑑

𝑑𝑥(𝑥 − tan𝑥) + (𝑥 − tan𝑥)

𝑑

𝑑𝑥(𝑥 + cos𝑥)

= (𝑥 + cos𝑥) [𝑑

𝑑𝑥(𝑥) −

𝑑

𝑑𝑥(tan𝑥)] + (𝑥 − tan𝑥)(1 − sin𝑥)

= (𝑥 + cos𝑥) [1 −𝑑

𝑑𝑥tan𝑥] + (𝑥 − tan𝑥)(1 − sin𝑥)… (𝑖)

Let 𝑔(𝑥) = tan 𝑥 Accordingly, 𝑔(𝑥 + ℎ) = tan(𝑥 + ℎ)

By first principle,

𝑔′(𝑥) = limℎ→0

𝑔(𝑥 + ℎ) − 𝑔(𝑥)

ℎ= lim

ℎ→0(tan(𝑥 + ℎ) − tan𝑥

ℎ)

= limℎ→0

1

ℎ[sin(𝑥 + ℎ)

cos(𝑥 + ℎ)−

sin𝑥

cos𝑥]

= limℎ→0

1

ℎ[sin(𝑥 + ℎ) cos𝑥 − sin𝑥cos(𝑥 + ℎ)

cos(𝑥 + ℎ) cos𝑥]

=1

cos𝑥⋅ lim

ℎ→1ℎ

[sin(𝑥 + ℎ − 𝑥)

cos(𝑥 + ℎ)]

=1

cos𝑥⋅ lim

ℎ→0

1

ℎ[

sinℎ

cos(𝑥 + ℎ)]

=1

cos𝑥⋅ (lim

ℎ→0

sinℎ

ℎ) ⋅ ( lim

ℎ→∞

1

cos(𝑥 + ℎ))

=1

cos𝑥⋅ 1 ⋅

1

cos(𝑥 + 0)

=1

cos2𝑥

= sec2𝑥 … (𝑖𝑖)

Therefore, from (𝑖) and (𝑖𝑖) we obtain

𝑓′(𝑥) = (𝑥 + cos𝑥)(1 − sec2𝑥) + (𝑥 − tan𝑥)(1 − sin𝑥)

= (𝑥 + cos𝑥)(−tan2𝑥) + (𝑥 − tan𝑥)(1 − sin𝑥)

= −tan2𝑥(𝑥 + cos𝑥) + (𝑥 − tan𝑥)(1 − sin𝑥)

26. Find the derivative of the following functions (it is to be understood that 𝑎, 𝑏, 𝑐, 𝑑, 𝑝, 𝑞, 𝑟 and 𝑠 are

fixed non-zero constants and m and n are integers): 4𝑥+5sin𝑥

3𝑥+7cos𝑥

Page 57: CBSE NCERT Solutions for Class 11 Mathematics Chapter 13 · 2019. 11. 29. · Class–XI–CBSE-Mathematics Limits and Derivatives 3 Practice more on Limits and Derivatives Hint:

Class–XI–CBSE-Mathematics Limits and Derivatives

57 Practice more on Limits and Derivatives www.embibe.com

Hint: Apply quotient rule .

Solution:

Solution step 1: Let 𝑓(𝑥) =4𝑥+5sin𝑥

3𝑥+7cos𝑥

By quotient rule,

𝑓′(𝑥) =(3𝑥 + 7cos𝑥)

𝑑𝑑𝑥

(4𝑥 + 5sin𝑥) − (4𝑥 + 5sin𝑥)𝑑𝑑𝑥

(3𝑥 + 7cos𝑥)

(3𝑥 + 7cos𝑥)2

=(3𝑥 + 7cos𝑥) [4

𝑑𝑑𝑥

(𝑥) + 5𝑑𝑑𝑥

(sin𝑥)] − (4𝑥 + 5sin𝑥) [3𝑑𝑑𝑥

𝑥 + 7𝑑𝑑𝑥

cos𝑥]

(3𝑥 + 7cos𝑥)2

=(3𝑥 + 7cos𝑥)(4 + 5cos𝑥) − (4𝑥 + 5sin𝑥)(3 − 7sin𝑥)

(3𝑥 + 7cos𝑥)2

=12𝑥 + 15𝑥cos𝑥 + 28cos𝑥 + 35cos2𝑥 − 12𝑥 + 28𝑥sin𝑥 − 15sin𝑥 + 35sin2𝑥

(3𝑥 + 7cos𝑥)2

=15𝑥cos𝑥 + 28cos𝑥 + 28𝑥sin𝑥 − 15sin𝑥 + 35(cos2𝑥 + sin2𝑥)

(3𝑥 + 7cos𝑥)2

=35 + 15𝑥cos𝑥 + 28cos𝑥 + 28𝑥sin𝑥 − 15sin𝑥

(3𝑥 + 7cos𝑥)2

27. Find the derivative of the following functions (it is to be understood that 𝑎, 𝑏, 𝑐, 𝑑, 𝑝, 𝑞, 𝑟 and 𝑠 are

fixed non-zero constants and m and n are integers): 𝑥2 cos(

𝜋

4)

sin𝑥

Hint: Apply quotient rule .

Solution:

Solution step 1: Let 𝑓(𝑥) =𝑥2 cos(

𝜋

4)

sin𝑥

By quotient rule,

𝑓′(𝑥) = cos𝜋

4⋅ [

sin𝑥𝑑𝑑𝑥

(𝑥2) − 𝑥2 𝑑𝑑𝑥

(sin𝑥)

sin2𝑥]

= cos𝜋

4⋅ [

sin𝑥 ⋅ 2𝑥 − 𝑥2cos𝑥

sin2𝑥]

Page 58: CBSE NCERT Solutions for Class 11 Mathematics Chapter 13 · 2019. 11. 29. · Class–XI–CBSE-Mathematics Limits and Derivatives 3 Practice more on Limits and Derivatives Hint:

Class–XI–CBSE-Mathematics Limits and Derivatives

58 Practice more on Limits and Derivatives www.embibe.com

=𝑥cos

𝜋4

[2sin𝑥 − 𝑥cos𝑥]

sin2𝑥

28. Find the derivative of the following functions (it is to be understood that 𝑎, 𝑏, 𝑐, 𝑑, 𝑝, 𝑞, 𝑟 and 𝑠 are

fixed non-zero constants and m and n are integers): 𝑥

1+tan𝑥

Hint: Apply quotient rule .

Solution:

Solution step 1: Let 𝑓(𝑥) =𝑥

1+tan𝑥

𝑓′(𝑥) =(1 + tan𝑥)

𝑑𝑑𝑥

(𝑥) − 𝑥𝑑𝑑𝑥

(1 + tan𝑥)

(1 + tan𝑥)2

𝑓′(𝑥) =(1 + tan𝑥) − 𝑥 ⋅

𝑑𝑑𝑥

(1 + tan𝑥)

(1 + tan𝑥)2…(𝑖)

Let 𝑔(𝑥) = 1 + tan𝑥. Accordingly 𝑔(𝑥 + ℎ) = 1 + tan(𝑥 + ℎ).

By first principle,

𝑔′(𝑥) = limℎ→0

𝑔(𝑥 + ℎ) − 𝑔(𝑥)

= limℎ→0

[1 + tan(𝑥 + ℎ) − 1 − tan𝑥

ℎ]

= limℎ→0

1

ℎ[sin(𝑥 + ℎ)

cos(𝑥 + ℎ)−

sin𝑥

cos𝑥]

= limℎ→0

1

ℎ[sin(𝑥 + ℎ) cos𝑥 − sin𝑥cos(𝑥 + ℎ)

cos(𝑥 + ℎ) cos𝑥]

= limℎ→0

1

ℎ[sin(𝑥 + ℎ − 𝑥)

cos(𝑥 + ℎ) cos𝑥]

= limℎ→0

1

ℎ[

sinℎ

cos(𝑥 + ℎ) cos𝑥]

= (limℎ→0

sinℎ

ℎ) ⋅ (lim

ℎ→0

1

cos(𝑥 + ℎ) cos𝑥)

= 1 ×1

cos2𝑥= sec2𝑥

Page 59: CBSE NCERT Solutions for Class 11 Mathematics Chapter 13 · 2019. 11. 29. · Class–XI–CBSE-Mathematics Limits and Derivatives 3 Practice more on Limits and Derivatives Hint:

Class–XI–CBSE-Mathematics Limits and Derivatives

59 Practice more on Limits and Derivatives www.embibe.com

⇒𝑑

𝑑𝑥(1 + tan𝑥) = sec2𝑥 …(𝑖𝑖)

From (𝑖) and (𝑖𝑖), we obtain

𝑓′(𝑥) =1 + tan𝑥 − 𝑥sec2𝑥

(1 + tan𝑥)2

29. Find the derivative of the following functions (it is to be understood that 𝑎, 𝑏, 𝑐, 𝑑, 𝑝, 𝑞, 𝑟 and 𝑠 are

fixed non-zero constants and m and n are integers): (𝑥 + sec 𝑥)(𝑥 − tan 𝑥)

Hint: Apply product rule.

Solution:

Solution step 1: Let 𝑓(𝑥) = (𝑥 + sec𝑥)(𝑥 − tan𝑥)

By product rule,

𝑓′(𝑥) = (𝑥 + sec𝑥)𝑑

𝑑𝑥(𝑥 − tan𝑥) + (𝑥 − tan𝑥)

𝑑

𝑑𝑥(𝑥 + sec𝑥)

= (𝑥 + sec𝑥) [𝑑

𝑑𝑥(𝑥) −

𝑑

𝑑𝑥tan𝑥] + (𝑥 − tan𝑥) [

𝑑

𝑑𝑥(𝑥) +

𝑑

𝑑𝑥sec𝑥]

= (𝑥 + sec𝑥) [1 −𝑑

𝑑𝑥tan𝑥] + (𝑥 − tan𝑥) [1 +

𝑑

𝑑𝑥sec𝑥]… (𝑖)

Let 𝑓1(𝑥) = tan 𝑥 , 𝑓2(𝑥) = sec 𝑥

Accordingly, 𝑓1(𝑥 + ℎ) = tan(𝑥 + ℎ) and 𝑓2(𝑥 + ℎ) = sec(𝑥 + ℎ)

𝑓1′(𝑥) = lim

ℎ→0(𝑓1(𝑥 + ℎ) − 𝑓1(𝑥)

ℎ)

= limℎ→0

(tan(𝑥 + ℎ) − tan𝑥

ℎ)

= limℎ→0

[tan(𝑥 + ℎ) − tan𝑥

ℎ]

= limℎ→0

1

ℎ[sin(𝑥 + ℎ)

cos(𝑥 + ℎ)−

sin𝑥

cos𝑥]

= limℎ→0

1

ℎ[sin(𝑥 + ℎ) cos𝑥 − sin𝑥cos(𝑥 + ℎ)

cos(𝑥 + ℎ) cos𝑥]

= limℎ→0

1

ℎ[sin(𝑥 + ℎ − 𝑥)

cos(𝑥 + ℎ) cos𝑥]

Page 60: CBSE NCERT Solutions for Class 11 Mathematics Chapter 13 · 2019. 11. 29. · Class–XI–CBSE-Mathematics Limits and Derivatives 3 Practice more on Limits and Derivatives Hint:

Class–XI–CBSE-Mathematics Limits and Derivatives

60 Practice more on Limits and Derivatives www.embibe.com

= limℎ→0

1

ℎ[

sinℎ

cos(𝑥 + ℎ) cos𝑥]

= (limℎ→0

sinℎ

ℎ) ⋅ (lim

ℎ→0

1

cos(𝑥 + ℎ) cos𝑥)

= 1 ×1

cos2𝑥= sec2𝑥

⇒𝑑

𝑑𝑥tan𝑥 = sec2𝑥 … (𝑖𝑖)

𝑓2′(𝑥) = lim

ℎ→0(𝑓2(𝑥 + ℎ) − 𝑓2(𝑥)

ℎ)

= limℎ→0

(sec(𝑥 + ℎ) − sec𝑥

ℎ)

= limℎ→0

1

ℎ[

1

cos(𝑥 + ℎ)−

1

cos𝑥]

= limℎ→0

1

ℎ[cos𝑥 − cos(𝑥 + ℎ)

cos(𝑥 + ℎ) cos𝑥]

=1

cos𝑥⋅ lim

ℎ→0

1

ℎ[−2 sin (

𝑥 + 𝑥 + ℎ2

) ⋅ sin (𝑥 − 𝑥 − ℎ

2)

cos(𝑥 + ℎ)]

=1

cos𝑥⋅ lim

ℎ→0

1

ℎ[−2 sin (

2𝑥 + ℎ2 ) ⋅ sin (

−ℎ2 )

cos(𝑥 + ℎ)]

=1

cos𝑥⋅ lim

ℎ→0

[ sin (

2𝑥 + ℎ2 ){

sin (ℎ2)

ℎ2

}

cos(𝑥 + ℎ)

]

= sec𝑥 ⋅

{limℎ→0

sin (2𝑥 + ℎ

2 )} {limℎ2→0

sin (ℎ2)

ℎ2 → 0

ℎ2}

limℎ→0

cos(𝑥 + ℎ)

= sec𝑥 ⋅sin𝑥 ⋅ 1

cos𝑥

⇒𝑑

𝑑𝑥sec𝑥 = sec𝑥 tan𝑥 … (𝑖𝑖𝑖)

From (𝑖), (𝑖𝑖) and (𝑖𝑖𝑖), we obtain

Page 61: CBSE NCERT Solutions for Class 11 Mathematics Chapter 13 · 2019. 11. 29. · Class–XI–CBSE-Mathematics Limits and Derivatives 3 Practice more on Limits and Derivatives Hint:

Class–XI–CBSE-Mathematics Limits and Derivatives

61 Practice more on Limits and Derivatives www.embibe.com

𝑓′(𝑥) = (𝑥 + sec𝑥)(1 − sec2𝑥) + (𝑥 − tan𝑥)(1 + sec𝑥 tan𝑥)

30. Find the derivative of the following functions (it is to be understood that 𝑎, 𝑏, 𝑐, 𝑑, 𝑝, 𝑞, 𝑟 and 𝑠 are

fixed non-zero constants and m and n are integers): 𝑥

sin𝑛𝑥

Hint: Apply quotient rule.

Solution:

Solution step 1: Let 𝑓(𝑥) =𝑥

sin𝑛𝑥

By quotient rule,

𝑓′(𝑥) =sin𝑛𝑥

𝑑𝑑𝑥

𝑥 − 𝑥𝑑𝑑𝑥

sin𝑛𝑥

sin2𝑛𝑥

It can be easily shown that 𝑑

𝑑𝑥sin𝑛𝑥 = 𝑛sin𝑛−1𝑥cos𝑥

Therefore,

𝑓′(𝑥) =sin𝑛𝑥

𝑑𝑑𝑥

𝑥 − 𝑥𝑑𝑑𝑥

sin𝑛𝑥

sin2𝑛𝑥

=sin𝑛𝑥 ⋅ 1 − 𝑥(𝑛sin𝑛−1𝑥cos𝑥)

sin2𝑛𝑥

=sin𝑛−1𝑥(sin𝑥 − 𝑛𝑥cos𝑥)

sin2𝑛𝑥

=sin𝑥 − 𝑛𝑥cos𝑥

sin𝑛+1𝑥