Carbonates 01, Mineralogy

download Carbonates 01, Mineralogy

of 53

Transcript of Carbonates 01, Mineralogy

  • 7/29/2019 Carbonates 01, Mineralogy

    1/53

    Lock

    MINERALOGYOF

    CARBONATE

    ROCKS

  • 7/29/2019 Carbonates 01, Mineralogy

    2/53

    Lock

    Michel-Levy Color Chart

  • 7/29/2019 Carbonates 01, Mineralogy

    3/53

    Lock

    Michel-Levy Color Chart

    standard thin-section thickness

    first order second order third order

  • 7/29/2019 Carbonates 01, Mineralogy

    4/53

    Lock

    Michel-Levy Color Chart

    Carbonate minerals have very high order birefringence colors

  • 7/29/2019 Carbonates 01, Mineralogy

    5/53

    Lock

    calcite (in a marble), xp light, note pressure twinning.

  • 7/29/2019 Carbonates 01, Mineralogy

    6/53

    Lock

    Calcite, in a rather too thin slice of a fossil (Inoceramus): Note birefringence

    color bands (at least third order colors)

  • 7/29/2019 Carbonates 01, Mineralogy

    7/53Lock

    first order red

    2nd

    3rd

  • 7/29/2019 Carbonates 01, Mineralogy

    8/53Lock

    Main carbonate rock minerals

    Low Magnesian Calcite (LMC)

    High Magnesian Calcite (HMC)

    Ferroan Calcite

    Aragonite

    Dolomite

    Ankerite and Ferroan Dolomite

    Siderite

  • 7/29/2019 Carbonates 01, Mineralogy

    9/53Lock

    Calcium carbonate minerals

    LMC - low magnesian calcite - contains

    less than 5% magnesium

    HMC - high magnesian calcite - usuallycontains between 12 and 30%

    magnesium

    Ferroan calcite Aragonite - contains traces of strontium

  • 7/29/2019 Carbonates 01, Mineralogy

    10/53Lock

    Calcium magnesium

    carbonate minerals

    Dolomite - ordered, stoichiometric (50-50 Ca and Mg in alternating layers

    Protodolomite - disordered and non-stoichiometric, usually young and notdeeply buried

    Ankerite - CaCO3.(Mg,Fe)CO3

  • 7/29/2019 Carbonates 01, Mineralogy

    11/53Lock

    Carbonate Mineral

    Identification

    X-Ray Diffraction

  • 7/29/2019 Carbonates 01, Mineralogy

    12/53Lock

  • 7/29/2019 Carbonates 01, Mineralogy

    13/53LockX-Ray Diffraction permits determination of Ca++:Mg++ ratio in dolomite

  • 7/29/2019 Carbonates 01, Mineralogy

    14/53Lock

    Carbonate Mineral

    Identification

    X-Ray Diffraction

    staining

  • 7/29/2019 Carbonates 01, Mineralogy

    15/53Lock

    Stains Used with Carbonate

    Rocks Alizarin Red-S; stains calcite red

    applied by dipping rock or thin section briefly in

    slightly acid stain

    Titan Yellow; stains dolomite yellow applied by boiling sample in strong alkaline

    solution

    Potassium Ferricyanide

    stains iron-bearing mineral blue

    may be applied together with alizarin

  • 7/29/2019 Carbonates 01, Mineralogy

    16/53Lock

    calcite (stained red with Alizarin Red S) and unstained dolomite rhombs

    l i h ll ( i d d i h Ali i R d S)

  • 7/29/2019 Carbonates 01, Mineralogy

    17/53Lock

    calcite shell (stained red with Alizarin Red S)

    ferroan calcite cements in mold from dissolved aragoniteshells (stained purple (Alizarin and potassium ferricyanide)

    pore space

    (blue dye)

    glauconite

    (natural green)

  • 7/29/2019 Carbonates 01, Mineralogy

    18/53Lock

    Carbonate Mineral

    Identification

    X-Ray Diffraction

    staining

    S.E.M. - Scanning Electron Microscopy

  • 7/29/2019 Carbonates 01, Mineralogy

    19/53Lock

    it dl (SEM)

  • 7/29/2019 Carbonates 01, Mineralogy

    20/53

    Lock

    aragonite needles (SEM)

    Eff t f t ti t i l ith d l it t l

  • 7/29/2019 Carbonates 01, Mineralogy

    21/53

    Lock

    Effect of rotating stage in ppl, with dolomite crystals

    A

    B

    B

    A

    d l it t i d ith Tit Y ll l i lith i li t

  • 7/29/2019 Carbonates 01, Mineralogy

    22/53

    Lock

    dolomite, stained with TitanYellow, replacing ooliths in a limestone

  • 7/29/2019 Carbonates 01, Mineralogy

    23/53

    Lock

    Non-carbonate minerals

    Gypsum:

    grey-silver birefringence colors, like quartz,

    but good cleavages

    Anhydrite

    bright first order birefringence colors, right-

    angled cleavages

    Lenticular gypsum Note gray birefringence cleavage

  • 7/29/2019 Carbonates 01, Mineralogy

    24/53

    Lock

    Lenticular gypsum. Note gray birefringence, cleavage

    Anhydrite and dolomite Smackover Formation (Jurassic) Alabama subsurface

  • 7/29/2019 Carbonates 01, Mineralogy

    25/53

    Lock

    Anhydrite and dolomite, Smackover Formation (Jurassic), Alabama subsurface.

    anhydrite replacement of foraminiferal carbonate mud

  • 7/29/2019 Carbonates 01, Mineralogy

    26/53

    Lock

    anhydrite replacement of foraminiferal carbonate mud

    miliolid foram "ghost"

    mud remnantdolomite rhombs

    anhydrite and dolomite

  • 7/29/2019 Carbonates 01, Mineralogy

    27/53

    Lock

    anhydrite and dolomite

    Anhydrite note cleavages at right angles bright first order interference colors

  • 7/29/2019 Carbonates 01, Mineralogy

    28/53

    Lock

    Anhydrite note cleavages at right angles, bright first order interference colors

    anhydrite note the replacement of a shell fragment

  • 7/29/2019 Carbonates 01, Mineralogy

    29/53

    Lock

    anhydrite note the replacement of a shell fragment

  • 7/29/2019 Carbonates 01, Mineralogy

    30/53

    Lock

    anhydrite deep subsurface diagenetic replacement

  • 7/29/2019 Carbonates 01, Mineralogy

    31/53

    Lock

    anhydrite, deep subsurface diagenetic replacement

  • 7/29/2019 Carbonates 01, Mineralogy

    32/53

    Lock

    Non-carbonate minerals

    Halite:

    isotropic, cubic

    halite (SEM)

  • 7/29/2019 Carbonates 01, Mineralogy

    33/53

    Lock

    ( )

    Halite cubes (isotropic) in porous limestone Sunniland Formation Florida

  • 7/29/2019 Carbonates 01, Mineralogy

    34/53

    Lock

    Halite cubes (isotropic), in porous limestone, Sunniland Formation, Florida,

    Note inclusion

  • 7/29/2019 Carbonates 01, Mineralogy

    35/53

    Lock

    Non-carbonate minerals

    Quartz and chert

    Chert replacing limestone.

  • 7/29/2019 Carbonates 01, Mineralogy

    36/53

    Lock

    Chert replacing limestone.

    Chert, replacing limestone.

  • 7/29/2019 Carbonates 01, Mineralogy

    37/53

    Lock

    Chert, replacing limestone.

    Quartz crystals, replacing limestone.

  • 7/29/2019 Carbonates 01, Mineralogy

    38/53

    Lock

    Qua c ys a s, ep ac g es o e

  • 7/29/2019 Carbonates 01, Mineralogy

    39/53

    Lock

    Non-carbonate minerals

    Glauconite

  • 7/29/2019 Carbonates 01, Mineralogy

    40/53

    LockAdams, MacKenzie and Guilford, 1984, "Atlas of Sedimentary RocksUnder the Microscope" Longman

  • 7/29/2019 Carbonates 01, Mineralogy

    41/53

    LockAdams, MacKenzie and Guilford, 1984, "Atlas of Sedimentary RocksUnder the Microscope" Longman

  • 7/29/2019 Carbonates 01, Mineralogy

    42/53

    Lock

    Looking at Carbonate Rocks

    Compare freshly broken surfaces withweathered surfaces the latter commonlyshow textures much better.

    In the lab, slabbing, polishing, acid etching,varnishing all improve visibility.

    In the field, etch with acid before using thehand lens.

  • 7/29/2019 Carbonates 01, Mineralogy

    43/53

    Lock

  • 7/29/2019 Carbonates 01, Mineralogy

    44/53

    Lock

  • 7/29/2019 Carbonates 01, Mineralogy

    45/53

    Lock

  • 7/29/2019 Carbonates 01, Mineralogy

    46/53

    Lock

  • 7/29/2019 Carbonates 01, Mineralogy

    47/53

    Lock

    The Carbonate Equation

    Ca++ + 2HCO3- = CaCO3 + CO2 + H2O

    dynamic equilibrium, so that removingCO2, for example, will cause movementto the right, precipitating more CaCO3.

    Note that CO2 + H2O = H2CO3 (carbonicacid)

  • 7/29/2019 Carbonates 01, Mineralogy

    48/53

    Lock

    Carbon dioxide controls

    CaCO3

    precipitation

    Adding CO2 will dissolve some

    carbonate Removing CO2 will precipitate more

    carbonate,

  • 7/29/2019 Carbonates 01, Mineralogy

    49/53

    Lock

    The Carbonate Equation (2)

    Controls on carbonate precipitation anddissolution:

    temperature CO2 solubility increases with colder

    temperature (compare warm and cold Coke) carbonates are readily precipitated in warm water

    (where CO2 easily escapes to the atmosphere as

    gas) carbonates dissolve in cold water, as in the deep

    ocean, hence carbonate compensation depth (CCD)below which fine-grained carbonate sediments donot accumulate.

  • 7/29/2019 Carbonates 01, Mineralogy

    50/53

    Lock

    The Carbonate Equation (3)

    Controls on carbonate precipitation and

    dissolution:

    pressure CO2 solubility increases with higher pressure

    (compare Coke before and after being

    uncapped)

    another factor in dissolution of carbonates in thedeep ocean

  • 7/29/2019 Carbonates 01, Mineralogy

    51/53

    Lock

    The Carbonate Equation (3)

    Controls on carbonate precipitation anddissolution:

    photosynthesis 6CO2 + 6H2O + sunlight energy = C6H12O6

    (sugars)

    this removes CO2, encourages CaCO3precipitation

    respiration the reverse of this reaction, releases CO2 and

    dissolves carbonates

  • 7/29/2019 Carbonates 01, Mineralogy

    52/53

    Lock

    The Carbonate Equation (3)

    Controls on carbonate precipitation and

    dissolution:

    water agitation (compare to stirring Coke) allows CO2 to escape from the water,

    encouraging carbonate precipitation

  • 7/29/2019 Carbonates 01, Mineralogy

    53/53

    The Carbonate Equation (4)

    Controls on carbonate precipitation anddissolution:

    oil generation is preceded by CO2generation during organic diagenesis

    carbonate dissolution results in the deepsubsurface