Carbon Nanotube and Graphene Chemical Sensorsnanotube.msu.edu/nt06/presentations/NT06-Eklund.pdf ·...

38
NT ‘06 , Nagano Carbon Nanotube and Graphene Chemical Sensors Peter C. Eklund Dept’s of Physics and Materials Science and Engineering Pennsylvania State University University Park, PA 16802 USA [email protected]

Transcript of Carbon Nanotube and Graphene Chemical Sensorsnanotube.msu.edu/nt06/presentations/NT06-Eklund.pdf ·...

Page 1: Carbon Nanotube and Graphene Chemical Sensorsnanotube.msu.edu/nt06/presentations/NT06-Eklund.pdf · Carbon Nanotube and Graphene Chemical Sensors ... CH 3 0H Linear => Physisorption

NT ‘06 , Nagano

Carbon Nanotube and Graphene Chemical Sensors

Peter C. EklundDept’s of Physics and

Materials Science and EngineeringPennsylvania State University

University Park, PA 16802 USA

[email protected]

Page 2: Carbon Nanotube and Graphene Chemical Sensorsnanotube.msu.edu/nt06/presentations/NT06-Eklund.pdf · Carbon Nanotube and Graphene Chemical Sensors ... CH 3 0H Linear => Physisorption

NT ‘06 , Nagano

Outline

• SWNT and Nanowire Chemical Sensors– Where are we?– Thermoelectric Sensing of Gases with SWNT Mats

• Physisorption (e.g., C6H2n ring molecules)• Gas Collisions (inert gases)

• On to Graphene– n-graphene layer films (nGLs)– Phonon properties of nGLs– Sensor properties—not yet!

• Summary and Conclusions

Page 3: Carbon Nanotube and Graphene Chemical Sensorsnanotube.msu.edu/nt06/presentations/NT06-Eklund.pdf · Carbon Nanotube and Graphene Chemical Sensors ... CH 3 0H Linear => Physisorption

NT ‘06 , Nagano

Red (before) Blue (after) PSA

In2O3In2O3

SWNT SWNT

Page 4: Carbon Nanotube and Graphene Chemical Sensorsnanotube.msu.edu/nt06/presentations/NT06-Eklund.pdf · Carbon Nanotube and Graphene Chemical Sensors ... CH 3 0H Linear => Physisorption

NT ‘06 , Nagano

Page 5: Carbon Nanotube and Graphene Chemical Sensorsnanotube.msu.edu/nt06/presentations/NT06-Eklund.pdf · Carbon Nanotube and Graphene Chemical Sensors ... CH 3 0H Linear => Physisorption

NT ‘06 , Nagano

Static Gas-SWNT Interactions

+

-

van der Waals covalent ionic

weak strong intermediate

Physi-sorption Chemi-sorption

One might presume that only the chemisorbed atoms/molecules will significantly effect the transport of electrons in the tube wall….

current

Page 6: Carbon Nanotube and Graphene Chemical Sensorsnanotube.msu.edu/nt06/presentations/NT06-Eklund.pdf · Carbon Nanotube and Graphene Chemical Sensors ... CH 3 0H Linear => Physisorption

NT ‘06 , Nagano

Structural Considerations

EB= 0.119 eV�σ = 45 m2/gEB= 0.062 eV�σ = 783 m2/g

EB= 0.089 eV�σ = 22 m2/gEB= 0.049 eV�σ = 483 m2/g

pore

surface

groove

channel

•Molecular adsorption at interstitial, groove and pore sites.

•No “bulk atoms”…only surface atoms…electrical transport should be sensitive to gas:SWNT interactions

•It takes time for atoms and molecules to saturate the surface via diffusion and to gain access to internal pores and channels

Page 7: Carbon Nanotube and Graphene Chemical Sensorsnanotube.msu.edu/nt06/presentations/NT06-Eklund.pdf · Carbon Nanotube and Graphene Chemical Sensors ... CH 3 0H Linear => Physisorption

NT ‘06 , Nagano

c.f., H. Romero, G. U. Sumansekera, G.D. Mahan and P. C. Eklund, Phys. Rev. B., 65 (2002)

V2

{ CN (Constantan)

{ {

Cu CN Cu

HEATTT Δ+ TSWNT spaghetti

V1 V3

1 mm x 1mmx 0.2 mm

S = Seebeck Coefficient = V2/ΔT ; V2 = Open Circuit Voltage

Thermoelectric Power (TEP)

Hot Coldee

e+ -

Page 8: Carbon Nanotube and Graphene Chemical Sensorsnanotube.msu.edu/nt06/presentations/NT06-Eklund.pdf · Carbon Nanotube and Graphene Chemical Sensors ... CH 3 0H Linear => Physisorption

NT ‘06 , Nagano

Two tubes in parallel (e.g., metallic and semiconducting)

S = (1/σ)[S1σ1 +S2σ2] ~ S1 and σ =[σ1 +σ2]~ σ1

Metallic tube (σ1) dominates: i.e., σ1>> σ2

=> Metallic tubes dominate the bundle transport

S =-π 2kB

2

3eT

d lnσ (E)dE

⎛ ⎝ ⎜

⎞ ⎠ ⎟

E F

Mott relation for a Metal

σ1 , S1

σ2 , S2

metallicsemiconducting

TEP(S) and Conductivity(σ) of a SWNT Bundle

Page 9: Carbon Nanotube and Graphene Chemical Sensorsnanotube.msu.edu/nt06/presentations/NT06-Eklund.pdf · Carbon Nanotube and Graphene Chemical Sensors ... CH 3 0H Linear => Physisorption

NT ‘06 , Nagano

Effect of additional impurity scattering channel

ρI << ρ0

S =-π 2kB

2

3eT

dlnσ (E)dE

⎛ ⎝ ⎜

⎞ ⎠ ⎟

EF

Mott relation for a Metal

σ(E)=e2v(E)2D(E)τ(E) σ = conductivity

v- free carrier velocity, D-density of states, τ-carrier lifetime

ρ = ρ0 + ρIMatheissen’s rule ⇒

⇒ S = SO +π 2kB

2T3e

ρI

ρ0

⎝ ⎜ ⎜

⎠ ⎟ ⎟

1τ I

dτ I

dE−

1τO

dτO

dE

⎝ ⎜ ⎜

⎠ ⎟ ⎟

EF

ρI due to gas

c.f., papers by: P.C. Eklund, H. Romero, et al.

Page 10: Carbon Nanotube and Graphene Chemical Sensorsnanotube.msu.edu/nt06/presentations/NT06-Eklund.pdf · Carbon Nanotube and Graphene Chemical Sensors ... CH 3 0H Linear => Physisorption

NT ‘06 , Nagano

H20

C4H90H

C3H70H

C2H50H

CH30H

Linear => Physisorption

(Linear) Thermopower vs. Extra Resistance(Physisorption)

Page 11: Carbon Nanotube and Graphene Chemical Sensorsnanotube.msu.edu/nt06/presentations/NT06-Eklund.pdf · Carbon Nanotube and Graphene Chemical Sensors ... CH 3 0H Linear => Physisorption

NT ‘06 , Nagano

Resistive Response to C6H2n Adsorption

*Increase in R related to scattering via π-electron coupling.

*Pyridine decreases the resistivity via creation of additional carriers.

3.0

2.8

2.6

2.4

2.2

Fou

r pro

be re

sist

ance

(Ω)

6543210Time (Hrs)

N

vapors in equilibrium with the liquid at 40 °C

R0

n=3

n=4

n=5

n=6

pyridine

Page 12: Carbon Nanotube and Graphene Chemical Sensorsnanotube.msu.edu/nt06/presentations/NT06-Eklund.pdf · Carbon Nanotube and Graphene Chemical Sensors ... CH 3 0H Linear => Physisorption

NT ‘06 , Nagano

Effects of Gas:SWNT Collisions

Gas molecule collisions with the tube wall should affect the electron mean free path:

• ?Direct scattering of electrons by atom collisions?

• ?Generate a transient “dent”; non-thermal phonons then scatter electrons?

Page 13: Carbon Nanotube and Graphene Chemical Sensorsnanotube.msu.edu/nt06/presentations/NT06-Eklund.pdf · Carbon Nanotube and Graphene Chemical Sensors ... CH 3 0H Linear => Physisorption

NT ‘06 , Nagano

TEP Response to Inert Gases(Same sample: P=1atm and T=500 K)

-50

-45

-40

-35

-30

-25

S (µ

V/K

)

24201612840Time (hrs)

Ne

-50

-45

-40

-35

-30

-25

S (µ

V/K

)

24201612840Time (hrs)

Ar

-50

-45

-40

-35

-30

-25

S (µ

V/K

)

24201612840Time (hrs)

Kr

-50

-45

-40

-35

-30

-25

S (µ

V/K

)

24201612840Time (hrs)

Xe

-50

-45

-40

-35

-30

-25

S (µ

V/K

)

24201612840Time (hrs)

He

ΔS

SWNTs: PLV,buckypaper, purified at Rice Univ., annealed at Penn State in vacuum at 1000°C, 8hr

c.f., H. Romero, K. Bolton, A. Rosen and P. C. Eklund, Science (307) 2005

Page 14: Carbon Nanotube and Graphene Chemical Sensorsnanotube.msu.edu/nt06/presentations/NT06-Eklund.pdf · Carbon Nanotube and Graphene Chemical Sensors ... CH 3 0H Linear => Physisorption

NT ‘06 , Nagano

Inert Gas Collisions: TEP vs ResistivityS vs Δρ is linear, in accord with the Mott Equation and

a new scattering channel (gas collisons)

Slope depends on the mass of the colliding atom

P = 1atmT = 500 K

Same film sample; successive exposure to series of inert gases

c.f., H. Romero, K. Bolton, A. Rosen and P. C. Eklund, Science (307) 2005

Page 15: Carbon Nanotube and Graphene Chemical Sensorsnanotube.msu.edu/nt06/presentations/NT06-Eklund.pdf · Carbon Nanotube and Graphene Chemical Sensors ... CH 3 0H Linear => Physisorption

NT ‘06 , Nagano

Computed Transient Power Spectrum (Local Vibrational Modes)

Simulations by K. Bolton and A. Rosen, Goteborg University/Chalmers Tech. Univ.

•Local energy spectrum; Derived from motion of C-atom nearest the collision(Ttube= 0 K).

•The amplitude of vibration, not the frequencies, are sensitive to the collideratom mass m

•Radial component of kinetic energy is key parameter

•The tube wall is dented, and then it rings in the low frequency “squash” mode

•Significant vibrational energy remains after 10 ps; 2-acoustic phonon decay

-1500 cm

m=He,Ne,Xe(10,0)

0 cm-1

40 cm-1

Θi = 45°, KE =13kcal/mol

After 5 ps

After 10 ps

c.f., H. Romero, K. Bolton, A. Rosen and P. C. Eklund, Science (307) 2005

Page 16: Carbon Nanotube and Graphene Chemical Sensorsnanotube.msu.edu/nt06/presentations/NT06-Eklund.pdf · Carbon Nanotube and Graphene Chemical Sensors ... CH 3 0H Linear => Physisorption

NT ‘06 , Nagano

TEP (S) vs Pressure

Saturation => Dent-Dent overlap at ~ 0.2 - 0.5 atm ??

c.f., H. Romero, K. Bolton, A. Rosen and P. C. Eklund, Science (307) 2005

(T = 500 K)

Page 17: Carbon Nanotube and Graphene Chemical Sensorsnanotube.msu.edu/nt06/presentations/NT06-Eklund.pdf · Carbon Nanotube and Graphene Chemical Sensors ... CH 3 0H Linear => Physisorption

NT ‘06 , Nagano

Why do (S,ρ) saturate with pressure?

• Q = P/(2πmkT)1/2 collisions/area.time, P = pressure

• Overlapping Dents QAτ = 1 collision, Area A~d2

•Use Kinetic theory of Gases; Ask: What collision rate Q causes two dents with lifetime τ and diameter d to overlap?

He Ar Xedent lifetime (τ) ~100 psec ~100 psec ~100 psecdent diameter (d) 1.5 nm 4.3 nm 6.4 nmPsat(calc) 0.97 atm 0.66 atm 0.54 atmPsat(expt) 0.79 atm 0.56 atm 0.53 atm

diameter d

adjacent dents

c.f., H. Romero, K. Bolton, A. Rosen and P. C. Eklund, Science (307) 2005

Page 18: Carbon Nanotube and Graphene Chemical Sensorsnanotube.msu.edu/nt06/presentations/NT06-Eklund.pdf · Carbon Nanotube and Graphene Chemical Sensors ... CH 3 0H Linear => Physisorption

NT ‘06 , Nagano

Mn Power Laws : Expt and Theory

All slopes in the plot represent M1/3 behavior

D

Mass M

“NanoDent”

T = 500 K P = 1 atm

c.f., H. Romero, K. Bolton, A. Rosen and P. C. Eklund, Science (307) 2005

Page 19: Carbon Nanotube and Graphene Chemical Sensorsnanotube.msu.edu/nt06/presentations/NT06-Eklund.pdf · Carbon Nanotube and Graphene Chemical Sensors ... CH 3 0H Linear => Physisorption

NT ‘06 , Nagano

Phonon Properties of UltrathinGraphitic Films

SWNT

Graphene

How are the phonon properties related???

nGL

Si : SiO2

nGL=n-layer graphene film

3-layer graphene

film

3-layer graphene

film

Let’s study the phonon properties vs n!

Page 20: Carbon Nanotube and Graphene Chemical Sensorsnanotube.msu.edu/nt06/presentations/NT06-Eklund.pdf · Carbon Nanotube and Graphene Chemical Sensors ... CH 3 0H Linear => Physisorption

NT ‘06 , Nagano

Motivation

• Exciting transport results in ultrathin graphitic films containing a few atomic layers have been reported– `High carrier mobility; gate-controlled transport;

Quantum Hall effect (Kim et al; de Heer et al)

• We call these carbon systems n-graphene layer films or nGL’s

• Using phonons to probe the system vs number of layers (n)…..how will the system evolve?

nGL

Si : SiO2

nGLnGL

Si : SiO2

Page 21: Carbon Nanotube and Graphene Chemical Sensorsnanotube.msu.edu/nt06/presentations/NT06-Eklund.pdf · Carbon Nanotube and Graphene Chemical Sensors ... CH 3 0H Linear => Physisorption

NT ‘06 , Nagano

nGL Film Preparation

substrate

n nGL

substrate

n nGL

SiO2: Si

n=2

n=1

n=8

n=19

n=5

HOPG

(top view)

(side view)

Film thickness measured by AFM z-scans

Page 22: Carbon Nanotube and Graphene Chemical Sensorsnanotube.msu.edu/nt06/presentations/NT06-Eklund.pdf · Carbon Nanotube and Graphene Chemical Sensors ... CH 3 0H Linear => Physisorption

NT ‘06 , Nagano

a) Plane view and b) electron diffraction pattern showing six-fold symmetry. In (a), the nGL has small contrast relative to the carbon TEM grid. Angles θ, θ’ in the figure are 120°, the angle between basal plane vectors in graphite

a) b)a) b)

θ

θ'

TEM image (a) and SAD (b) of nGL

Page 23: Carbon Nanotube and Graphene Chemical Sensorsnanotube.msu.edu/nt06/presentations/NT06-Eklund.pdf · Carbon Nanotube and Graphene Chemical Sensors ... CH 3 0H Linear => Physisorption

NT ‘06 , Nagano

AFM z-scans of n=3 nGLsubstrate n=3 nGL

Film thicknes via averaging the step heights of ~100 line scans

Page 24: Carbon Nanotube and Graphene Chemical Sensorsnanotube.msu.edu/nt06/presentations/NT06-Eklund.pdf · Carbon Nanotube and Graphene Chemical Sensors ... CH 3 0H Linear => Physisorption

NT ‘06 , Nagano

nGL thickness h(n) vs assigned n

8

6

4

2

0

Hei

ght (

nm)

20151050Estimated layers (n)

h = C*n + D

C = 0.35 ± 0.01 nmD = 0.33 ± 0.05 nm

h(1)= 0.7 nm

•AFM z-scan used to measure the height relative to substrate

•Least squares fit h vs n:

Slope= 0.35 nm ; slightly larger than c/2=0.335 nm

•h(1)= 0.35 + 0.33 = 0.68 nm extra thickness may reflect inherent difference in attractive AFM tip force

Page 25: Carbon Nanotube and Graphene Chemical Sensorsnanotube.msu.edu/nt06/presentations/NT06-Eklund.pdf · Carbon Nanotube and Graphene Chemical Sensors ... CH 3 0H Linear => Physisorption

NT ‘06 , Nagano

8

6

4

2

0

Inte

nsity

(A. U

.)

3000250020001500Wave Number ( cm-1)

n=1

n=2

n=3

n=4

n=5

n=8n=19

HOPG

G-band

High Freq. Raman Spectrum of nGLs

2nd order

Page 26: Carbon Nanotube and Graphene Chemical Sensorsnanotube.msu.edu/nt06/presentations/NT06-Eklund.pdf · Carbon Nanotube and Graphene Chemical Sensors ... CH 3 0H Linear => Physisorption

NT ‘06 , Nagano

G-band vs n

1 6 0 0

Raman Frequency Shift ( cm-1)

n=1n=2n=3n=4n=5n=8n=19

HOPG

~6 cm-1

substrate

n nGL

G-bands are all well fit with a single Lorentzian (Voight analysis)

“G”

Page 27: Carbon Nanotube and Graphene Chemical Sensorsnanotube.msu.edu/nt06/presentations/NT06-Eklund.pdf · Carbon Nanotube and Graphene Chemical Sensors ... CH 3 0H Linear => Physisorption

NT ‘06 , Nagano

G-Band Frequency vs 1/n

substrate

n nGL

HOPG

ωG ~ 1/n

IIIIIII∞ n=1234510

“G”

5.5 cm-1

Page 28: Carbon Nanotube and Graphene Chemical Sensorsnanotube.msu.edu/nt06/presentations/NT06-Eklund.pdf · Carbon Nanotube and Graphene Chemical Sensors ... CH 3 0H Linear => Physisorption

NT ‘06 , Nagano

Phonon and Electron Dispersion in Graphene

c.f., C. Mapeli et al., Politecnico di Milano (1998) in A. Ferrari and J. Robertson, Phys Rev B61 (2000)

~1375 cm-1

~1500 cm-1

~710 cm-1

Phonon DOS

phonons

electrons

Page 29: Carbon Nanotube and Graphene Chemical Sensorsnanotube.msu.edu/nt06/presentations/NT06-Eklund.pdf · Carbon Nanotube and Graphene Chemical Sensors ... CH 3 0H Linear => Physisorption

NT ‘06 , Nagano

Hg line G-band

1 2

Other weak 1st order Scattering

D-band

“D”=Disorder-induced Scattering•Dispersive mode

•Zone edge mode

•Intensity decreases with increasing n

1“D”

0.35

0.30

0.25

0.20

0.15

0.10

0.05

160014001200

n=1

n=2

n=3

n=4

n=5

n=8

n=19

HOPG

Raman Frequency Shift ( cm-1)

Ram

an In

tens

ity (C

ount

s/m

W-S

ec)

Page 30: Carbon Nanotube and Graphene Chemical Sensorsnanotube.msu.edu/nt06/presentations/NT06-Eklund.pdf · Carbon Nanotube and Graphene Chemical Sensors ... CH 3 0H Linear => Physisorption

NT ‘06 , Nagano

D/G Raman Band Intensity vs 1/n

substrate

n nGL

substrate

n=2

n=3

n=12 nm rms

Page 31: Carbon Nanotube and Graphene Chemical Sensorsnanotube.msu.edu/nt06/presentations/NT06-Eklund.pdf · Carbon Nanotube and Graphene Chemical Sensors ... CH 3 0H Linear => Physisorption

NT ‘06 , Nagano

8

6

4

2

0

Inte

nsity

(A. U

.)

3000250020001500Wave Number ( cm-1)

n=1

n=2

n=3

n=4

n=5

n=8n=19

HOPG

G-band

High Freq. Raman Spectrum of nGLs

2nd order

Page 32: Carbon Nanotube and Graphene Chemical Sensorsnanotube.msu.edu/nt06/presentations/NT06-Eklund.pdf · Carbon Nanotube and Graphene Chemical Sensors ... CH 3 0H Linear => Physisorption

NT ‘06 , NaganoRaman Frequency Shift ( cm-1)

Inte

nsity

(A.U

.)2nd Order Raman Spectra of nGLs

280027002600250024502400 33003200

n=1

n=2

n=3

n=4

n=5

n=8

n=19

HOPG

n=1

n=2

n=3

n=4

n=5

n=8

n=19

HOPG

Page 33: Carbon Nanotube and Graphene Chemical Sensorsnanotube.msu.edu/nt06/presentations/NT06-Eklund.pdf · Carbon Nanotube and Graphene Chemical Sensors ... CH 3 0H Linear => Physisorption

NT ‘06 , Nagano

Summary: Chemical Sensors• Carbon Nanotube and Semiconducting

Nanowire FETs show great promise as real-time analytical tools– There is much to be learned about the sensing

mechanism (charge transfer vs electronic scattering)

• HOWEVER, the SWNT cylindrical shell geometry should be the most sensitive. We find it is even sensitive to:– physisorption (with little or no charge transfer)– even collisions of inert gas atoms with the tube wall

Page 34: Carbon Nanotube and Graphene Chemical Sensorsnanotube.msu.edu/nt06/presentations/NT06-Eklund.pdf · Carbon Nanotube and Graphene Chemical Sensors ... CH 3 0H Linear => Physisorption

NT ‘06 , Nagano

Summary: Raman Scattering from nGLs

• Raman Scattering useful to characterize the number of layers in an nGL film

• 1st order G-band– Contains one Lorentzian– G-band upshifts with decreasing n: ωG(n) ~ ωGraphite + 7 cm-1(1/n)

• 2nd Order bands – Stronger than G-band for n<5 (unusual behavior!)– Mid-freq band (~2700 cm-1) exhibits shape specific to n– ~2450 cm-1 and ~3250 cm-1 bands not sensitive to n

• D-bands– Intensity decreases exponentially with n– D-scattering may indicate an n-dependent bending of the thinnest

films to conform to the substrate roughness– A weak ~1500 cm-1 D-band is also n-specific; downshifts with

increasing n

Page 35: Carbon Nanotube and Graphene Chemical Sensorsnanotube.msu.edu/nt06/presentations/NT06-Eklund.pdf · Carbon Nanotube and Graphene Chemical Sensors ... CH 3 0H Linear => Physisorption

NT ‘06 , Nagano

Acknowledgements

Penn State: Dr. Gugang ChenAwnish GuptaProf S. TadigadapaPrasoon Joshi

Prof K. Bolton, Chalmers/GoteborgProf Arne Rosen, Chalmers/GoteborgProf. G.D. Mahan, Penn State Dr. Hugo Romero (U, Penn)Prof. G. Sumanasekera (U. Lou’ville)Dr. UnJeong Kim (Samsung)

SWNT Gas Sensors:n-Graphene Layer Films

Funding/Support: United States National Science Foundation, Penn State Materials Research Institute, CarboLex, Inc.

Page 36: Carbon Nanotube and Graphene Chemical Sensorsnanotube.msu.edu/nt06/presentations/NT06-Eklund.pdf · Carbon Nanotube and Graphene Chemical Sensors ... CH 3 0H Linear => Physisorption

NT ‘06 , Nagano

Supplementary Slides

Page 37: Carbon Nanotube and Graphene Chemical Sensorsnanotube.msu.edu/nt06/presentations/NT06-Eklund.pdf · Carbon Nanotube and Graphene Chemical Sensors ... CH 3 0H Linear => Physisorption

NT ‘06 , Nagano

(Non-Linear) Thermopower vs. Extra Resistance(Chemisorption)

-60

-50

-40

-30

-20

-10

0

10S

(μV

/K)

80x10-36040200ρa / ρo

O2

NH3

T=300 KO2: weak electron acceptor

NH3: weak electron donor

Page 38: Carbon Nanotube and Graphene Chemical Sensorsnanotube.msu.edu/nt06/presentations/NT06-Eklund.pdf · Carbon Nanotube and Graphene Chemical Sensors ... CH 3 0H Linear => Physisorption

NT ‘06 , Nagano

P. G. Collins,…, A. Zettl, Science 287, 1801 (2000)G.U. Sumanasekera,…,P.C. Eklund, Phys. Rev. Lett. 85, 1096 (2000)K. Bradley et al, Phys. Rev. Lett. 85, 4361 (2000) H. Romero,…, P. C. Eklund, Phys. Rev. B., 65, 2054 (2002)

30

20

10

0

-10

S (µ

V/K

)

1086420Time (hrs)

O2 desorption

O2 adsorption

T = 500 K

A

B

C

D

S(μV/K)

25

20

15

10

5

0

-5

-10

-15S

(µV

/K)

500400300200100T (K)

(D) High-T O2-doped(irreversible)

(A) Ambient O2-doped(reversible)

(B) Compensated

(C) Degassed @500 Kin vacuum

S~T

S(μV/K)

15

10

Effects of Oxygen Exposure