Calorimetry + muon/p-id summary

17

description

Calorimetry + muon/p-id summary. Dhiman Chakraborty Northern Illinois University. Calorimetry. Performance goals Electromagnetic Calorimetry (ECal) Hadronic Calorimetry (HCal) Digital Analog Particle-flow algorithms (formerly energy-flow) Simulations - PowerPoint PPT Presentation

Transcript of Calorimetry + muon/p-id summary

Page 1: Calorimetry  + muon/p-id summary
Page 2: Calorimetry  + muon/p-id summary

Dhiman Chakraborty Calorimetry + muon/p-id summary LC workshop, Cornell, 16 July, '03

2

Calorimetry• Performance goals• Electromagnetic Calorimetry (ECal)• Hadronic Calorimetry (HCal)

– Digital– Analog

• Particle-flow algorithms (formerly energy-flow)– Simulations– Particle identification (Digi/Ana)

• Test Beam

Page 3: Calorimetry  + muon/p-id summary

Dhiman Chakraborty Calorimetry + muon/p-id summary LC workshop, Cornell, 16 July, '03

3

Performance goals• Jet energy measurement precise

enough to separate Ws and Zs in hadronic decays on an event-by-event basis: ΔE = 0.3 sqrt(E [GeV])

• Use track momenta for charged clusters; cal only for for neutrals: particle-flow algorithms

• Identify non-pointing neutral clusters

• Excellent hermeticity

Page 4: Calorimetry  + muon/p-id summary

Dhiman Chakraborty Calorimetry + muon/p-id summary LC workshop, Cornell, 16 July, '03

4

ECal

• Si-W (Oregon+SLAC)• Si-W-Scint (Kansas)• Scint-W (Colorado)• Crystal (Iowa+Caltech)• Cerenkov-compensated

(Iowa+Fairfield)All analog

Page 5: Calorimetry  + muon/p-id summary

Dhiman Chakraborty Calorimetry + muon/p-id summary LC workshop, Cornell, 16 July, '03

5

Si-W ECal• 0.5 cm x 0.5 cm• 0.3 mm Si • 3.5 mm/layer• 30 layers

• Rin = ~142 cm

• Zmax = 2.1m

• 20X0, 0.8λ0

• Sampling ~2%• 5T field

• Small Rm and fine segmentation aids PFAs

• Europe on board• Design well under way• Electronics rough draft

complete• Mechanical conceptual

design started.• Tests, more

simulations in the offing

Page 6: Calorimetry  + muon/p-id summary

Dhiman Chakraborty Calorimetry + muon/p-id summary LC workshop, Cornell, 16 July, '03

6

Si-W-Scint. & Scint.-W• More affordable than Si-W• Somewhat coarser segmentation –

limited by fiber routing• Fine sampling and timing• Efficiency and uniformity need to be

established – gang 3-5 tiles• Choice of photodet, fiber coupling …• Europe, Asia on board on scint. option • Detailed simulation studies in progress

Page 7: Calorimetry  + muon/p-id summary

Dhiman Chakraborty Calorimetry + muon/p-id summary LC workshop, Cornell, 16 July, '03

7

Crystal Cerenkov

• Inexpensive• Excellent E resol.(100% sampling)• No longitudinal

segmentation – limitation to PFA?

• Still in early stage• Extensive

simulations needed and planned

• Cerenkov-compensated precision calorimetry

• Uses Cerenkov light to measure e,γ; ionization for hadrons, e – combine the two

• Not much known

Page 8: Calorimetry  + muon/p-id summary

Dhiman Chakraborty Calorimetry + muon/p-id summary LC workshop, Cornell, 16 July, '03

8

HCal• RPC – Digital (ANL, U. Chicago, Boston,

FNAL)• Scintillator – Digital (?) (NIU, UIC)• GEM – Digital (U Texas - Arlington)• Scintillator – Analog (Colorado)

• ~34 layers, ~3.5 cm thick w/ 2.5 cm thick stainless steel or similar absorber

• ~ 4λ0, ~6% sampling • 1-10 cm2 cells

Page 9: Calorimetry  + muon/p-id summary

Dhiman Chakraborty Calorimetry + muon/p-id summary LC workshop, Cornell, 16 July, '03

9

RPC DHCal• Multiple gas gaps, glass substrate,

graphite/ink resistive layer

• Avalanche mode operation

• Prototypes constructed, electronics, DAQ in place, initial studies are very encouraging

• Extensive testing, readout chip design in progress

• Backed by detailed simulation

Page 10: Calorimetry  + muon/p-id summary

Dhiman Chakraborty Calorimetry + muon/p-id summary LC workshop, Cornell, 16 July, '03

10

Scintillator DHCal• Proven technology

• Somewhat larger cells

• Cheap production by in-house extrusion

• MANY options for fiber routing, surface treatment, groove shape, transducer tested with encouraging results

• Cosmic ray prototype stack ~ready

• Bolstered by extensive simulation

Page 11: Calorimetry  + muon/p-id summary

Dhiman Chakraborty Calorimetry + muon/p-id summary LC workshop, Cornell, 16 July, '03

11

GEM DHCal• New technology

• Double-gap

• First prototype w/electronics assembled, operational

• Initial tests with CR, source at par with results shown by developers

• Multichannel prototypes under construction

• Backed up by extensive simulation

Page 12: Calorimetry  + muon/p-id summary

Dhiman Chakraborty Calorimetry + muon/p-id summary LC workshop, Cornell, 16 July, '03

12

Scint. HCal (analog)

• Similar to Scint DHCal, but ~2.5 times larger tiles

• Improve lateral resolution by staggering

• Cell prototyping done

• Stack prototype next

• Simulation studies in progress

Page 13: Calorimetry  + muon/p-id summary

Dhiman Chakraborty Calorimetry + muon/p-id summary LC workshop, Cornell, 16 July, '03

13

Particle-flow algorithms• Several calorimeter groups are

deeply involved in simulation and software development as well as PFA development (NIU, ANL, Colorado, UTA, …)

• First jet reconstruction results are most encouraging, prompting us to more realistic simulations and sophisticated reco algorithms

• Much effort invested

Page 14: Calorimetry  + muon/p-id summary

Dhiman Chakraborty Calorimetry + muon/p-id summary LC workshop, Cornell, 16 July, '03

14

R. Wilson – CSU: Particle ID Software Infrastructure Embedding PID in the overall LCD/JAS s/w infrastructure?

Fast Simulation/Reconstruction : dE/dx tool; code checks; muon fast simulation.

Cross subsystem PID.

Muon & PID Summary

A. Maciel – NIU: Simulation Software Development

Extension of generalized and universal simulation

framework – new worldwide effort.

Planar muon detector example with 45o strips.

Big advance! u vs. v for 2 tracks

Page 15: Calorimetry  + muon/p-id summary

Dhiman Chakraborty Calorimetry + muon/p-id summary LC workshop, Cornell, 16 July, '03

15

Muon & PID Summary (cont.)

C. Milstene – NIU: Muon ID Software Development

Resurrection of code.

Verification of M. Piccolo’s muon ID

for single particles and b-b events.

G. Fisk – Fermilab: Scintillator Muon Detector

Prototype Planes: Description

General description of scintillator strip layout.

M. Wayne – UND: Fiber Connections & Routing

Discussion of fiber associated with bringing the WLS light out of the scintillator strips and onto a multi-anode photomultiplier.

Page 16: Calorimetry  + muon/p-id summary

Dhiman Chakraborty Calorimetry + muon/p-id summary LC workshop, Cornell, 16 July, '03

16

Muon & PID Summary (cont.)

P. Karchin – WSU: MAPMT Readout and Calibration Issues

Test results on Hamamatsu M-16 multi-anode PMT. Calibration ideas.

R. Wilson – CSU Geiger Photodiode Array Readout Test

Description of tests performed on prototype APD (avalanche photo-diode).

M. Piccolo – INFN RPC Prototype Design Issues First test results for new glass RPCs.

Rate capability studies

Test Beam at Frascati

Plateaucurve

Page 17: Calorimetry  + muon/p-id summary

Dhiman Chakraborty Calorimetry + muon/p-id summary LC workshop, Cornell, 16 July, '03

17

Prototype Module Layout

2.5m

5.0 m

43 full strips

3.6m (L) x 4.1cm (W) x 1cm (T) 43 short strips3.6m => 0m long

Read out: both ends of full strips; one end of short strips (except the shortest 22).2*(43 + 21) fibers/side =128 channels = 8 (1.2mm dia) fibers/pix * 16(4 x 4mm2) pixels => Equivalent of One MAPMT/prototype plane