BROADBAND SATELLITE COMMUNICATIONS : …

24
1 ESA / ESTEC, Noordwijk, The Netherlands, 20 September 2004 Tesa Tesa Tesa Tesa © 2004 - SatNEx - All rights reserved Laurent CASTANET (ONERA/TéSA) BROADBAND SATELLITE COMMUNICATIONS : PROPAGATION INFLUENCE & SYSTEM ADAPTIVITY ASMS / EMPS Conference Tesa Tesa Tesa Tesa © 2004 - SatNEx - All rights reserved BBSatCom ESTEC, Noordwijk, The Netherland, 20 September 2004 CONTEXT RELATED TO BROADBAND SATCOM SYSTEMS TREND TO HIGH FREQUENCY BANDS Conventional bands (L, S, C) overcrowded & Ku-band almost saturated Increasing use of data rate-hungry multimedia applications Competition with terrestrial networks : need for larger bandwidths Military satcom systems : need for high discretion HIGH FREQUENCY BAND ADVANTAGES J Wide bandwidths : 1 GHz at Ka-band, 3 GHz at Q/V-band, 2 GHz at EHF band J Technology : reduced antenna and RF component size, J Narrow spot beams and high EIRP HIGH FREQUENCY BAND LIMITATIONS L Current technology not mature enough high development costs L Pointing accuracy more critical at equivalent antenna diameter L Propagation issue : influence of tropospheric effects Tesa Tesa Tesa Tesa © 2004 - SatNEx - All rights reserved BBSatCom ESTEC, Noordwijk, The Netherland, 20 September 2004 NEXT GENERATION OF SATCOM SYSTEMS FOR MULTIMEDIA APPLICATIONS Access to mass market with Ku/Ka-band transparent payloads & star networks Access to corporate market with Ku/Ka-band OBP payloads & mesh networks Backbone satcom systems with Ka/Q/V-band payloads CRITICAL ISSUES FOR MULTIMEDIA SATCOM SYSTEMS RELATED TO THE PROPAGATION CHANNEL Severe propagation effects for frequencies 20 GHz to be assessed Design of system margins and link availability assessment Design & implementation of Fade Mitigation Techniques Objective : compensate propagation impairments in real time Need for adaptive resource management protocols Dynamic resource allocation to optimise system capacity with FMTs CONTEXT RELATED TO BROADBAND SATCOM SYSTEMS

Transcript of BROADBAND SATELLITE COMMUNICATIONS : …

Page 1: BROADBAND SATELLITE COMMUNICATIONS : …

1

ESA / ESTEC, Noordwijk, The Netherlands, 20 September 2004

TesaTesaTesaTesa

© 2

00

4 -

Sat

NE

x -

All

righ

ts r

ese

rve

d

Laurent CASTANET (ONERA/TéSA)

BROADBAND SATELLITE COMMUNICATIONS :PROPAGATION INFLUENCE

& SYSTEM ADAPTIVITY

ASMS / EMPS Conference

TesaTesaTesaTesa

© 2

00

4 -

Sat

NE

x -

All

righ

ts r

ese

rve

d

BBSatCom ESTEC, Noordwijk, The Netherland, 20 September 2004

CONTEXT RELATED TO BROADBAND SATCOM SYSTEMS

❐ TREND TO HIGH FREQUENCY BANDS➢ Conventional bands (L, S, C) overcrowded & Ku-band almost saturated ➢ Increasing use of data rate-hungry multimedia applications

➢ Competition with terrestrial networks : need for larger bandwidths➢ Military satcom systems : need for high discretion

❐ HIGH FREQUENCY BAND ADVANTAGESJ Wide bandwidths : 1 GHz at Ka-band, 3 GHz at Q/V-band, 2 GHz at EHF bandJ Technology : reduced antenna and RF component size,

J Narrow spot beams and high EIRP

❐ HIGH FREQUENCY BAND LIMITATIONSL Current technology not mature enough � high development costs

L Pointing accuracy more critical at equivalent antenna diameterL Propagation issue : influence of tropospheric effects

TesaTesaTesaTesa

© 2

00

4 -

Sat

NE

x -

All

righ

ts r

ese

rve

d

BBSatCom ESTEC, Noordwijk, The Netherland, 20 September 2004

✈ NEXT GENERATION OF SATCOM SYSTEMSFOR MULTIMEDIA APPLICATIONS

➢ Access to mass market with Ku/Ka-band transparent p ayloads & star networks ➢ Access to corporate market with Ku/Ka-band OBP payl oads & mesh networks➢ Backbone satcom systems with Ka/Q/V-band payloads

✈ CRITICAL ISSUES FOR MULTIMEDIA SATCOM SYSTEMSRELATED TO THE PROPAGATION CHANNEL

➢ Severe propagation effects for frequencies ≥≥≥≥ 20 GHz to be assessed� Design of system margins and link availability assessment

➢ Design & implementation of Fade Mitigation Techniqu es� Objective : compensate propagation impairments in real time

➢ Need for adaptive resource management protocols � Dynamic resource allocation to optimise system capacity with FMTs

CONTEXT RELATED TO BROADBAND SATCOM SYSTEMS

Page 2: BROADBAND SATELLITE COMMUNICATIONS : …

2

TesaTesaTesaTesa

© 2

00

4 -

Sat

NE

x -

All

righ

ts r

ese

rve

d

BBSatCom ESTEC, Noordwijk, The Netherland, 20 September 2004

OUTLINE OF THE PRESENTATION

❒ INTRODUCTION

❒ PROPAGATION EFFECTS

■ Attenuation■ Scintillation■ Total impairment

❒ FADE MITIGATION TECHNIQUES (FMTs)

■ Review of FMT concepts■ Impact of FMTs on interference■ FMT implementation issues

❒ CONCLUSION

TesaTesaTesaTesa

© 2

00

4 -

Sat

NE

x -

All

righ

ts r

ese

rve

d

BBSatCom ESTEC, Noordwijk, The Netherland, 20 September 2004

STRUCTURE OFTHE ATMOSPHERE

❒ IONOSPHERE

➢ High altitude layers➢ Ionised particles

due to sun influence➢ Sporadic medium

❒ TROPOSPHERE

➢ Ground to 10 km altitude

➢ Meteorological phenomena

� Clouds and Rain� Wind and Turbulence

TesaTesaTesaTesa

© 2

00

4 -

Sat

NE

x -

All

righ

ts r

ese

rve

d

BBSatCom ESTEC, Noordwijk, The Netherland, 20 September 2004

POWER BUDGET : PROPAGATION LOSS

❒ PROPAGATION ISSUES

➢ Ionospheric effects : important for frequencies lowe r than 5 GHz

➢ Tropospheric effects : dominant for frequencies highe r than 10 GHz

❒ ATTENUATION EFFECTS

➢ Gas attenuation : dry air (oxygen) and water vapour

➢ Hydrometeor attenuation : clouds, rain and melting l ayer

➢ Scintillation : clear sky conditions, with clouds, d uring rain

❒ INFLUENCE ON SATELLITE COMMUNICATIONS

➢ Strong impairments : A tot = Agaz . Arain

➢ Lower availability when frequency increasestotFS

RR AL

GEIRPP

⋅⋅=

Page 3: BROADBAND SATELLITE COMMUNICATIONS : …

3

TesaTesaTesaTesa

© 2

00

4 -

Sat

NE

x -

All

righ

ts r

ese

rve

d

BBSatCom ESTEC, Noordwijk, The Netherland, 20 September 2004

OUTLINE OF THE PRESENTATION

❒ INTRODUCTION

❒ PROPAGATION EFFECTS

■ Attenuation■ Scintillation■ Total impairment

❒ FADE MITIGATION TECHNIQUES (FMTs)

■ Review of FMT concepts■ Impact of FMTs on interference■ FMT implementation issues

❒ CONCLUSION

TesaTesaTesaTesa

© 2

00

4 -

Sat

NE

x -

All

righ

ts r

ese

rve

d

BBSatCom ESTEC, Noordwijk, The Netherland, 20 September 2004

➢ Total oxygen attenuation : AO2 [dB]

� Equivalent height of Oxygen :

➢ More precise expressions in Recommendation ITU-R P. 676

222OA OO h×= γkmhO 6

2=

PROPAGATION LOSS : OXYGEN ATTENUATION - 1/5

( )32

223 10

5.157

81.4

227.0

09.61019.7

2

−− ⋅×

+−+

++⋅= f

ffOγ

❒ OXYGEN ABSORPTION MODELLING

➢ Specific oxygen attenuation : γΟ2 [dB/km]

� Simplified expression for frequencies f [GHz] lower than 57 GHz :

➢ Dependency with respect to temperature

➢ Example of oxygen attenuation prediction

TesaTesaTesaTesa

© 2

00

4 -

Sat

NE

x -

All

righ

ts r

ese

rve

d

BBSatCom ESTEC, Noordwijk, The Netherland, 20 September 2004

PROPAGATION LOSS : OXYGEN ATTENUATION - 1/5

Page 4: BROADBAND SATELLITE COMMUNICATIONS : …

4

TesaTesaTesaTesa

© 2

00

4 -

Sat

NE

x -

All

righ

ts r

ese

rve

d

BBSatCom ESTEC, Noordwijk, The Netherland, 20 September 2004

➢ Total oxygen attenuation : AO2 [dB]

� Equivalent height of Oxygen :

➢ More precise expressions in Recommendation ITU-R P. 676

222OA OO h×= γkmhO 6

2=

PROPAGATION LOSS : OXYGEN ATTENUATION - 1/5

( )32

223 10

5.157

81.4

227.0

09.61019.7

2

−− ⋅×

+−+

++⋅= f

ffOγ

❒ OXYGEN ABSORPTION MODELLING

➢ Specific oxygen attenuation : γΟ2 [dB/km]

� Simplified expression for frequencies f [GHz] lower than 57 GHz :

➢ Dependency with respect to temperature

➢ Example of oxygen attenuation prediction

TesaTesaTesaTesa

© 2

00

4 -

Sat

NE

x -

All

righ

ts r

ese

rve

d

BBSatCom ESTEC, Noordwijk, The Netherland, 20 September 2004

➢ Total water vapour attenuation : AH2O [dB]

sat

OHtOH E

VA

sin2

2 ⋅⋅

γ

❒ WATER VAPOUR ABSORPTION MODELLING

➢ Specific water vapour attenuation : γΗ2Ο [dB/km]

� Simplified expression for frequencies f [GHz] lower than 57 GHz :

� More precise expression in Recommendation ITU-R P.6 76

( ) ( ) ( )42

222 103.264.325

9.8

0.93.183

6.10

5.82.22

6.30021.005.0

2

−⋅⋅×

+−+

+−+

+−+⋅+= ρργ f

fffOH

PROPAGATION LOSS : WATER VAPOUR ATTENUATION - 2/5

TesaTesaTesaTesa

© 2

00

4 -

Sat

NE

x -

All

righ

ts r

ese

rve

d

BBSatCom ESTEC, Noordwijk, The Netherland, 20 September 2004

PROPAGATION LOSS : WATER VAPOUR ATTENUATION - 2/5

Page 5: BROADBAND SATELLITE COMMUNICATIONS : …

5

TesaTesaTesaTesa

© 2

00

4 -

Sat

NE

x -

All

righ

ts r

ese

rve

d

BBSatCom ESTEC, Noordwijk, The Netherland, 20 September 2004

PROPAGATION LOSS : WATER VAPOUR ATTENUATION - 2/5

TesaTesaTesaTesa

© 2

00

4 -

Sat

NE

x -

All

righ

ts r

ese

rve

d

BBSatCom ESTEC, Noordwijk, The Netherland, 20 September 2004

➢ Total water vapour attenuation : AH2O [dB]

sat

OHtOH E

VA

sin2

2 ⋅⋅

γ

❒ WATER VAPOUR ABSORPTION MODELLING

➢ Specific water vapour attenuation : γΗ2Ο [dB/km]

� Simplified expression for frequencies f [GHz] lower than 57 GHz :

� More precise expression in Recommendation ITU-R P.6 76

( ) ( ) ( )42

222 103.264.325

9.8

0.93.183

6.10

5.82.22

6.30021.005.0

2

−⋅⋅×

+−+

+−+

+−+⋅+= ρργ f

fffOH

PROPAGATION LOSS : WATER VAPOUR ATTENUATION - 2/5

TesaTesaTesaTesa

© 2

00

4 -

Sat

NE

x -

All

righ

ts r

ese

rve

d

BBSatCom ESTEC, Noordwijk, The Netherland, 20 September 2004

PROPAG. LOSS : CLOUD ATT. - 3/5

sat

ltN E

KWA

sin=

❒ CLOUD ATTENUATION MODELLINGTotal cloud attenuation : Acl [dB]

� Wt : ILWC [kg/m2]

( ) GHzl fK ⋅+

=21"

819.0

ηε

� K l : Specific attenuation coefficient[(dB/km)/(g/m3)] @ 0°C

� Esat : Elevation angle [°]

Page 6: BROADBAND SATELLITE COMMUNICATIONS : …

6

TesaTesaTesaTesa

© 2

00

4 -

Sat

NE

x -

All

righ

ts r

ese

rve

d

BBSatCom ESTEC, Noordwijk, The Netherland, 20 September 2004

PROPAG. LOSS : CLOUD ATT. - 3/5

More precise expression of Kl

in Rec. ITU-R P.840

Double-Debye modelbased on Rayleigh scattering

0840-01

5 10 20 50 100 200

0° C

20° C

10° C

– 8° C

Frequency (GHz)

FIGURE 1

Specific attenuation by water droplets at varioustemperatures as function of frequency

Sp

eci

fic a

tte

nua

tion

coef

ficie

nt, K

l ((d

B/k

m)

/ (g/

m³)

)

0.01

0.02

0.05

0.1

0.2

0.5

1

2

5

10

TesaTesaTesaTesa

© 2

00

4 -

Sat

NE

x -

All

righ

ts r

ese

rve

d

BBSatCom ESTEC, Noordwijk, The Netherland, 20 September 2004

PROPAG. LOSS : CLOUD ATT. - 3/5

TesaTesaTesaTesa

© 2

00

4 -

Sat

NE

x -

All

righ

ts r

ese

rve

d

BBSatCom ESTEC, Noordwijk, The Netherland, 20 September 2004

PROPAG. LOSS : CLOUD ATT. - 3/5

More precise expression of Kl in Rec. ITU-R P.840Double-Debye model based on Rayleigh scattering

0840-01

5 10 20 50 100 200

0° C

20° C

10° C

– 8° C

Frequency (GHz)

FIGURE 1

Specific attenuation by water droplets at varioustemperatures as function of frequency

Sp

eci

fic a

tte

nua

tion

coef

ficie

nt, K

l ((d

B/k

m)

/ (g/

m³)

)

0.01

0.02

0.05

0.1

0.2

0.5

1

2

5

10

sat

ltN E

KWA

sin=

❒ CLOUD ATTENUATION MODELLINGTotal cloud attenuation : Acl [dB]

� Wt : ILWC [kg/m2]

( ) GHzl fK ⋅+

=21"

819.0

ηε

� K l : Specific attenuation coefficient[(dB/km)/(g/m3)] @ 0°C

� Esat : Elevation angle [°]

Page 7: BROADBAND SATELLITE COMMUNICATIONS : …

7

TesaTesaTesaTesa

© 2

00

4 -

Sat

NE

x -

All

righ

ts r

ese

rve

d

BBSatCom ESTEC, Noordwijk, The Netherland, 20 September 2004

PROPAGATION LOSS : RAIN ATTENUATION - 4/5

❒ TOTAL SLANT PATH ATTENUATION :

through N rain cells, with R not constant

in most of the statistical models : L001 = f(LES, Esat,hr,R001,F,γγγγ001)see Rec. ITU-R P.618

∑=

⋅=N

iii

satEsat RL

E

kA

1sinα

satE

LA

sin

⋅= γ

❒ SPECIFIC ATTENUATION : γ = k R α see Rec. ITU-R P.838

where k and αααα : coefficients, frequency and polarisation dependen t

( )∫ ⋅=L

dxxA0

γ❒ ATTENUATION THROUGH A PRECIPITATION OF LENGTH L :

where γγγγ(x) : specific attenuation [dB/km]

TesaTesaTesaTesa

© 2

00

4 -

Sat

NE

x -

All

righ

ts r

ese

rve

d

BBSatCom ESTEC, Noordwijk, The Netherland, 20 September 2004

PROPAGATION LOSS : RAIN ATTENUATION - 4/5

TesaTesaTesaTesa

© 2

00

4 -

Sat

NE

x -

All

righ

ts r

ese

rve

d

BBSatCom ESTEC, Noordwijk, The Netherland, 20 September 2004

PROPAGATION LOSS : RAIN ATTENUATION - 4/5

Page 8: BROADBAND SATELLITE COMMUNICATIONS : …

8

TesaTesaTesaTesa

© 2

00

4 -

Sat

NE

x -

All

righ

ts r

ese

rve

d

BBSatCom ESTEC, Noordwijk, The Netherland, 20 September 2004

PROPAGATION LOSS : RAIN ATTENUATION - 4/5

TesaTesaTesaTesa

© 2

00

4 -

Sat

NE

x -

All

righ

ts r

ese

rve

d

BBSatCom ESTEC, Noordwijk, The Netherland, 20 September 2004

PROPAGATION LOSS : RAIN ATTENUATION - 4/5

TesaTesaTesaTesa

© 2

00

4 -

Sat

NE

x -

All

righ

ts r

ese

rve

d

BBSatCom ESTEC, Noordwijk, The Netherland, 20 September 2004

PROPAGATION LOSS : RAIN ATTENUATION - 4/5

Page 9: BROADBAND SATELLITE COMMUNICATIONS : …

9

TesaTesaTesaTesa

© 2

00

4 -

Sat

NE

x -

All

righ

ts r

ese

rve

d

BBSatCom ESTEC, Noordwijk, The Netherland, 20 September 2004

PROPAGATION LOSS : RAIN ATTENUATION - 4/5

❒ TOTAL SLANT PATH ATTENUATION :

through N rain cells, with R not constant

in most of the statistical models : L001 = f(LES, Esat,hr,R001,F,γγγγ001)see Rec. ITU-R P.618

∑=

⋅=N

iii

satEsat RL

E

kA

1sinα

satE

LA

sin

⋅= γ

❒ SPECIFIC ATTENUATION : γ = k R α see Rec. ITU-R P.838

where k and αααα : coefficients, frequency and polarisation dependen t

( )∫ ⋅=L

dxxA0

γ❒ ATTENUATION THROUGH A PRECIPITATION OF LENGTH L :

where γγγγ(x) : specific attenuation [dB/km]

TesaTesaTesaTesa

© 2

00

4 -

Sat

NE

x -

All

righ

ts r

ese

rve

d

BBSatCom ESTEC, Noordwijk, The Netherland, 20 September 2004

OUTLINE OF THE PRESENTATION

❒ INTRODUCTION

❒ PROPAGATION EFFECTS

■ Attenuation■ Scintillation■ Total impairment

❒ FADE MITIGATION TECHNIQUES (FMTs)

■ Review of FMT concepts■ Impact of FMTs on interference■ FMT implementation issues

❒ CONCLUSION

TesaTesaTesaTesa

© 2

00

4 -

Sat

NE

x -

All

righ

ts r

ese

rve

d

BBSatCom ESTEC, Noordwijk, The Netherland, 20 September 2004

❒ QUIET ATMOSPHERE

� Stratified atmosphere : pressure, temperature & humidity profiles

� Slow variation of n(P,T,H) with altitude (as in the horizontal plane)� Low elevation : curved rays and multipaths� REFRACTION effect

❒ VERTICAL ATMOSPHERIC AIR CURRENTS (CLEAR SKY, CLOUD S)

� Turbulent atmosphere instead of stratified atmosphere

� Small scale inhomogeneities of refractive index� Atmospheric multipaths : with incident ray predominant w.r.t. diffracted ones

� Fast fluctuations of amplitude, phase & angle-of-arrival of received signals� SCINTILLATION effect

PROPAGATION LOSS : SCINTILLATION - 5/5

Page 10: BROADBAND SATELLITE COMMUNICATIONS : …

10

TesaTesaTesaTesa

© 2

00

4 -

Sat

NE

x -

All

righ

ts r

ese

rve

d

BBSatCom ESTEC, Noordwijk, The Netherland, 20 September 2004

PROPAGATION LOSS : SCINTILLATION - 5/5

TesaTesaTesaTesa

© 2

00

4 -

Sat

NE

x -

All

righ

ts r

ese

rve

d

BBSatCom ESTEC, Noordwijk, The Netherland, 20 September 2004

PROPAGATION LOSS : SCINTILLATION - 5/5

TesaTesaTesaTesa

© 2

00

4 -

Sat

NE

x -

All

righ

ts r

ese

rve

d

BBSatCom ESTEC, Noordwijk, The Netherland, 20 September 2004

❒ METEOROLOGICAL DEPENDENCY

➢ Normalized scintillation STD : σσσσref = fct (N wet) see Rec. ITU-R P.618

➢ Meteorological parameters : Nwet, T, H, Whc

❒ LONG-TERM STATISTICAL DISTRIBUTION

➢ where a & b = polynomial (Log10p, d°3)

•=•=

χ

χ

σσ

%)(

%)(

pbx

pax

ev

renf

❒ DEPENDENCY W.R.T. LINK CHARACTERISTICS

➢ Scintillation STD on the considered period(T >> stationarity period)

➢ where αααα = 7/12 & ββββ = 1.20➢ and g(D) : antenna aperture factor

( )β

α

χ θσσ

sin)(

FDgref ••=

PROPAGATION LOSS : SCINTILLATION - 5/5

Page 11: BROADBAND SATELLITE COMMUNICATIONS : …

11

TesaTesaTesaTesa

© 2

00

4 -

Sat

NE

x -

All

righ

ts r

ese

rve

d

BBSatCom ESTEC, Noordwijk, The Netherland, 20 September 2004

❒ QUIET ATMOSPHERE

� Stratified atmosphere : pressure, temperature & humidity profiles

� Slow variation of n(P,T,H) with altitude (as in the horizontal plane)� Low elevation : curved rays and multipaths� REFRACTION effect

❒ VERTICAL ATMOSPHERIC AIR CURRENTS (CLEAR SKY, CLOUD S)

� Turbulent atmosphere instead of stratified atmosphere

� Small scale inhomogeneities of refractive index� Atmospheric multipaths : with incident ray predominant w.r.t. diffracted ones

� Fast fluctuations of amplitude, phase & angle-of-arrival of received signals� SCINTILLATION effect

❒ METEOROLOGICAL DEPENDENCY

➢ Normalized scintillation STD : σσσσref = fct (N wet) see Rec. ITU-R P.618

➢ Meteorological parameters : Nwet, T, H, Whc

❒ LONG-TERM STATISTICAL DISTRIBUTION

➢ where a & b = polynomial (Log10p, d°3)

•=•=

χ

χ

σσ

%)(

%)(

pbx

pax

ev

renf

❒ DEPENDENCY W.R.T. LINK CHARACTERISTICS

➢ Scintillation STD on the considered period(T >> stationarity period)

➢ where αααα = 7/12 & ββββ = 1.20➢ and g(D) : antenna aperture factor

( )β

α

χ θσσ

sin)(

FDgref ••=

PROPAGATION LOSS : SCINTILLATION - 5/5

TesaTesaTesaTesa

© 2

00

4 -

Sat

NE

x -

All

righ

ts r

ese

rve

d

BBSatCom ESTEC, Noordwijk, The Netherland, 20 September 2004

OUTLINE OF THE PRESENTATION

❒ INTRODUCTION

❒ PROPAGATION EFFECTS

■ Attenuation■ Scintillation■ Total impairment

❒ FADE MITIGATION TECHNIQUES (FMTs)

■ Review of FMT concepts■ Impact of FMTs on interference■ FMT implementation issues

❒ CONCLUSION

TesaTesaTesaTesa

© 2

00

4 -

Sat

NE

x -

All

righ

ts r

ese

rve

d

BBSatCom ESTEC, Noordwijk, The Netherland, 20 September 2004

%

At

%

Ar

%

Aml

RR(0.01 %) Rain height

&

Ac

%ILWC (0.1 %) ILWC (0.3 %) ILWC (1 %) ILWC (3 %) ILWC (10 %)

Awv

%IWVC (0.3 %) IWVC (1 %) IWVC (3 %) IWVC (10 %) IWVC (30 %)

Model

%

As

Nwet

AO

2

%Temperature

TOTAL IMPAIRMENT : METHODOLOGY - 1

Page 12: BROADBAND SATELLITE COMMUNICATIONS : …

12

TesaTesaTesaTesa

© 2

00

4 -

Sat

NE

x -

All

righ

ts r

ese

rve

d

BBSatCom ESTEC, Noordwijk, The Netherland, 20 September 2004

Total impairment @ 30 GHz Propagation loss @ 20 GHz

Predictions performed with Recommendation ITU-R P.6 18

TOTAL IMPAIRMENT : SINGLE LINK - 2

TesaTesaTesaTesa

© 2

00

4 -

Sat

NE

x -

All

righ

ts r

ese

rve

d

BBSatCom ESTEC, Noordwijk, The Netherland, 20 September 2004

Prediction performed for 0.5 % of an average year

Total impairment @ 30 GHz Propagation loss @ 20 GHz

TOTAL IMPAIRMENT : COVERAGE AREA - 3

TesaTesaTesaTesa

© 2

00

4 -

Sat

NE

x -

All

righ

ts r

ese

rve

d

BBSatCom ESTEC, Noordwijk, The Netherland, 20 September 2004

OUTLINE OF THE PRESENTATION

❒ INTRODUCTION

❒ PROPAGATION EFFECTS

■ Attenuation■ Scintillation■ Total impairment

❒ FADE MITIGATION TECHNIQUES (FMTs)

■ Review of FMT concepts■ Impact of FMTs on interference■ FMT implementation issues

❒ CONCLUSION

Page 13: BROADBAND SATELLITE COMMUNICATIONS : …

13

TesaTesaTesaTesa

© 2

00

4 -

Sat

NE

x -

All

righ

ts r

ese

rve

d

BBSatCom ESTEC, Noordwijk, The Netherland, 20 September 2004

FMT :POSITION OF THE PROBLEM

❒ SEVERE PROPAGATION EFFECTS !

➢ Total impairment > 10 dB for p = 0.5 % of an average year @ 30 GHz

➢ VSAT networks : low margin � low availability

➢ Not acceptable for all kinds of services, especially interactive services

❒ HOW TO PROVIDE SUFFICIENT AVAILABILITY ?

➢ Large static margins not applicable (due to current technology)� Fade Mitigation Techniques (FMT)

❒ OBJECTIVE OF THIS PRESENTATION

➢ State of the art of FMT concepts➢ Review of Interference contributions

➢ Impact of FMTs on interference

TesaTesaTesaTesa

© 2

00

4 -

Sat

NE

x -

All

righ

ts r

ese

rve

d

BBSatCom ESTEC, Noordwijk, The Netherland, 20 September 2004

OUTLINE OF THE PRESENTATION

❒ INTRODUCTION

❒ PROPAGATION EFFECTS

■ Attenuation■ Scintillation■ Total impairment

❒ FADE MITIGATION TECHNIQUES (FMTs)

■ Review of FMT concepts■ Impact of FMTs on interference■ FMT implementation issues

❒ CONCLUSION

TesaTesaTesaTesa

© 2

00

4 -

Sat

NE

x -

All

righ

ts r

ese

rve

d

BBSatCom ESTEC, Noordwijk, The Netherland, 20 September 2004

FMT : MAIN OBJECTIVES

❒ POWER CONTROL : aims at keeping constant C/N 0

➣ Up-Link Power Control, End-to-End PC, Down-Link PC, On-Board Beam Shaping

❒ ADAPTIVE WAVEFORM : aims at reducing the required C /N0 at constant BER

➣ Adaptive Coding or Modulation : allows the required Eb/N0 to be decreased ➣ Data Rate Reduction : aims at decreasing the information data rate (Rb)

❒ DIVERSITY : aims at adopting a re-route strategy of the network

➣ Site Diversity, Satellite Diversity, Frequency Diversity

❒ LAYER 2 : aims at retransmiting

➣ Automatic Repeat reQuest, Time Diversity

Link performance equation :b

0

b

0

RNE

NC ×=

User 1

User 2

User N

Coding Modulation

Ru1

Ru2

RuNRb Rc Rs

Page 14: BROADBAND SATELLITE COMMUNICATIONS : …

14

TesaTesaTesaTesa

© 2

00

4 -

Sat

NE

x -

All

righ

ts r

ese

rve

d

BBSatCom ESTEC, Noordwijk, The Netherland, 20 September 2004

❒ UPLINK (ULPC)

➢ compensates for uplinkpropagation impairments

➢ allows operating at low powerin clear sky cond. to limit interference

➢ constant carrier power level at the transponder input(satellite antenna gain roll-off & mispointing, RF chains degradations)

➢ avoids satellite EIRP reduction due to uplink impairment

❒ EEPC (transparent repeater operated far from satura tion)

➢ maintains a constant margin on the overall link budget

➢ mitigates downlink impairments if sufficient repeater marginkeeping reasonable non-linear effects (intermodulation noise & capture effects)

POWER CONTROL - 1

OBBS

DLPC

ex : ULPC

TesaTesaTesaTesa

© 2

00

4 -

Sat

NE

x -

All

righ

ts r

ese

rve

d

BBSatCom ESTEC, Noordwijk, The Netherland, 20 September 2004

❒ ON-BOARD BEAM SHAPPING

➢ Objective : maintaining up - down and overall link budget s ➢ Action : adapting the size of spot beams to the propag ation conditions

through active antennas➟ Concerns all stations in the same beam

➟ Detection from short-term weather predictions (Meteorological Nowcasting of propagation conditions)

➢ Limitation : ground power flux density specification t o be respected

❒ DOWN-LINK POWER CONTROL

➢ Objective : maintaining the downlink budget➢ Action : adapting TWTA output power (weak extra powe r allocation)➢ Limitations :

➟ no channel interference or intermodulation products➟ ground power flux density specification

to be respected

POWER CONTROL - 2

TesaTesaTesaTesa

© 2

00

4 -

Sat

NE

x -

All

righ

ts r

ese

rve

d

BBSatCom ESTEC, Noordwijk, The Netherland, 20 September 2004

Adaptive PSK Modulation

ADAPTIVE WAVEFORM

AC, AM : Adaptive Coding or Modulation

OPERATION MODE :

Perf. objective : BER = Cte

� Constant bandwidth& variable info data rate (Rb)(Additional mitigation dueto DR adjustment)

� Variable bandwidth& constant info data rate (Rb)

Eb/N0 (dB)

Threshold

ρρρρ0000

ρρρρ1111

ρρρρ2222

M1 M0M2

10-3

10-9

10-6

BER

Page 15: BROADBAND SATELLITE COMMUNICATIONS : …

15

TesaTesaTesaTesa

© 2

00

4 -

Sat

NE

x -

All

righ

ts r

ese

rve

d

BBSatCom ESTEC, Noordwijk, The Netherland, 20 September 2004

❒ SITE DIVERSITY (SD)

➢ Principle :2 ES inter-connectedby a terrestrial link

➢ Limitations :uncorrelated fades=> convective cells

� Low percentages of time - Control ES or gateways

❒ FREQUENCY DIVERSITY (FD)

➢ Objective : in presence of fading, re-routing a com.through a lower frequency band payload

➢ Config. : Cross-shaping (OBP) or Double-hop (3rd ES)

DIVERSITY FMT

TesaTesaTesaTesa

© 2

00

4 -

Sat

NE

x -

All

righ

ts r

ese

rve

d

BBSatCom ESTEC, Noordwijk, The Netherland, 20 September 2004

❒ RETRANSMISSION TECHNIQUES

➢ Objective : waiting for good propagation conditionsinteresting for push services (file transfer, …)

➢ Messages re-sent regularly or randomly (ALOHA-type protocols) = ARQ➢ Use of propagation information to optimise system capacity = Time Diversity

❒ ADAPTIVE RESOURCE MANAGEMENT : not a FMT

➢ Objective : adjust the resource allocation to specific communication services depending on propagation conditions

➢ Need : detection of propagation conditions in the considered areamid-term weather forecast (Meteorological Nowcasting)

➢ Necessary in complement to FMTs,but High system complexity : CAC, DAMA, …

LAYER 2 FMT

TesaTesaTesaTesa

© 2

00

4 -

Sat

NE

x -

All

righ

ts r

ese

rve

d

BBSatCom ESTEC, Noordwijk, The Netherland, 20 September 2004

JOINT FMT

5 dB

10 dB

30 dB

40 dB

0.01 % 0.1 % 1 % 10 % % of year

Fade depth (dB)

20 dBSD

ULPC

AM

SatD

DLPC

OBBS

FD

AC

1

2

3

4

5

OBBS

OBBS + ULPC

OBBS + ULPC + AM

OBBS + ULPC + AM + SatD

OBBS + ULPC + AM + SatD + SD

2

3

4

5

1

Page 16: BROADBAND SATELLITE COMMUNICATIONS : …

16

TesaTesaTesaTesa

© 2

00

4 -

Sat

NE

x -

All

righ

ts r

ese

rve

d

BBSatCom ESTEC, Noordwijk, The Netherland, 20 September 2004

OUTLINE OF THE PRESENTATION

❒ INTRODUCTION

❒ PROPAGATION EFFECTS

■ Attenuation■ Scintillation■ Total impairment

❒ FADE MITIGATION TECHNIQUES (FMTs)

■ Review of FMT concepts■ Impact of FMTs on interference■ FMT implementation issues

❒ CONCLUSION

TesaTesaTesaTesa

© 2

00

4 -

Sat

NE

x -

All

righ

ts r

ese

rve

d

BBSatCom ESTEC, Noordwijk, The Netherland, 20 September 2004

❒ INTRA-SYST. INTERF.➢ Adjacent-channel

interference

INTERFERENCE SOURCES ON THE UPLINK

� At the input ofthe satellite transponder

UPLINKIntra-systemInterference

(no polar. re-use)

Orthogonalpolarisation

Samepolarisation≠ frequency

Useful ES

➢ Co-channel interf.Inter / intra beam

➢ Inter-beam cross-channelinterference

TesaTesaTesaTesa

© 2

00

4 -

Sat

NE

x -

All

righ

ts r

ese

rve

d

BBSatCom ESTEC, Noordwijk, The Netherland, 20 September 2004

❒ INTRA-SYST. INTERF.➢ Adjacent-channel

interference

INTERFERENCE SOURCES ON THE UPLINK

➢ Co-channel interf.Inter / intra beam

➢ Inter-beam cross-channelinterference

� At the input ofthe satellite transponder

UPLINKIntra-systemInterference

(with polar. re-use)

Useful ESInterfering ES

➢ Intra-beam cross-channelinterference

Page 17: BROADBAND SATELLITE COMMUNICATIONS : …

17

TesaTesaTesaTesa

© 2

00

4 -

Sat

NE

x -

All

righ

ts r

ese

rve

d

BBSatCom ESTEC, Noordwijk, The Netherland, 20 September 2004

❒ INTRA-SYST. INTERF.➢ Adjacent-channel

interference

INTERFERENCE SOURCES ON THE UPLINK

➢ Co-channel interf.Inter / intra beam

➢ Inter-beam cross-channelinterference

➢ Intra-beam cross-channelinterference

❒ INTER-SYST. INTERF.➢ Adjacent satcom

system interference

Interfering ES

� At the input ofthe satellite transponder

UPLINKAdjacentsystem

Interference

Useful ES

➢ Other system interference

InterferingadjacentFWBAsystem

TesaTesaTesaTesa

© 2

00

4 -

Sat

NE

x -

All

righ

ts r

ese

rve

d

BBSatCom ESTEC, Noordwijk, The Netherland, 20 September 2004

INTERFERENCE SOURCES ON THE UPLINK

� At the input ofthe satellite transponder❒ INTRA-SYSTEM INTERFERENCE

➢ Adjacent-channel interference : IES in the same spot beam,≠ frequency, same polarisation

➢ Co-channel interference : IES in a ≠ spot beam, same freq., same polar. (TDMA)IES in the same spot beam, same freq., same polar. (CDMA)

➢ Inter-beam cross-channel interference : IES in a ≠ spot beam,same frequency, orthogonal polarisation

➢ Intra-beam cross-channel interference : IES in the same spot beam,same frequency, orthogonal polarisation

❒ INTER-SYSTEM INTERFERENCE

➢ Adjacent satcom system interference : operating @ the same frequency & polarisation

➢ Other systems : Fixed Broadband Wireless Access systems, radar systems : negligible

TesaTesaTesaTesa

© 2

00

4 -

Sat

NE

x -

All

righ

ts r

ese

rve

d

BBSatCom ESTEC, Noordwijk, The Netherland, 20 September 2004

DOWNLINKIntra-systemInterference

(no polar. re-use)

INTERFERENCE SOURCES ON THE DOWNLINK

� At the input ofthe ES receiver❒ INTRA-SYST. INTERF.

➢ Co-channel interf.Inter / intra beam

➢ Inter-beam cross-channelinterference

➢ Multicarrier interf.

Orthogonalpolarisation

Useful ES

➢ Adjacent channel interf.

≠ frequencySame

polarisation

Page 18: BROADBAND SATELLITE COMMUNICATIONS : …

18

TesaTesaTesaTesa

© 2

00

4 -

Sat

NE

x -

All

righ

ts r

ese

rve

d

BBSatCom ESTEC, Noordwijk, The Netherland, 20 September 2004

INTERFERENCE SOURCES ON THE DOWNLINK

❒ INTRA-SYST. INTERF.

➢ Co-channel interf.Inter / intra beam

➢ Inter-beam cross-channelinterference

➢ Intra-beam cross-channelinterference

➢ Multicarrier interf.

DOWNLINKIntra-systemInterference

(with polar. re-use)

� At the input ofthe ES receiver

Useful linkInterfering ES

➢ Adjacent channel interf.

TesaTesaTesaTesa

© 2

00

4 -

Sat

NE

x -

All

righ

ts r

ese

rve

d

BBSatCom ESTEC, Noordwijk, The Netherland, 20 September 2004

❒ INTRA-SYST. INTERF.

➢ Co-channel interf.Inter / intra beam

➢ Inter-beam cross-channelinterference

➢ Intra-beam cross-channelinterference

❒ INTER-SYST. INTERF.➢ Adjacent satcom

system interference

➢ Other system interference

INTERFERENCE SOURCES ON THE DOWNLINK

➢ Multicarrier interf.

InterferingadjacentSatComsystem

InterferingadjacentFWBAsystem

DOWNLINKAdjacentsystem

Interference

� At the input ofthe ES receiver

Useful link

➢ Adjacent channel interf.

TesaTesaTesaTesa

© 2

00

4 -

Sat

NE

x -

All

righ

ts r

ese

rve

d

BBSatCom ESTEC, Noordwijk, The Netherland, 20 September 2004

INTERFERENCE SOURCES ON THE DOWNLINK

� At the input ofthe ES receiver

❒ INTRA-SYSTEM INTERFERENCE

➢ Multi-carrier interference : intermodulation noise,carrier suppression effects

➢ Adjacent channel interference : carrier to the same spot beamsame frequency, same polarisation

➢ Co-channel interference : carrier to a ≠ spot beam, same freq., same polar. (TDMA)carrier to the same spot beam, same freq., same polar. (CDMA)

➢ Inter-beam cross-channel interference : carrier to a ≠ spot beam,same frequency, orthogonal polarisation

➢ Intra-beam cross-channel interference : carrier to the same spot beam,same frequency, orthogonal polarisation

❒ INTER-SYSTEM INTERFERENCE

➢ Adjacent satcom system interference : operating @ the same frequency& @ the same polarisation

➢ Other systems : Fixed Broadband Wireless Access systems,radar systems : coordination

Page 19: BROADBAND SATELLITE COMMUNICATIONS : …

19

TesaTesaTesaTesa

© 2

00

4 -

Sat

NE

x -

All

righ

ts r

ese

rve

d

BBSatCom ESTEC, Noordwijk, The Netherland, 20 September 2004

IMPACT OF POWER CONTROL ON INTERFERENCE LEVEL

❒ DLPC (analysis for unicast) :

➢ Objective : ct power flux density @ ground level ?

➢ Static compensation ? LdwnES

➢ Dynamic compensation : Adwn� Clear sky conditions ⇒ Limited IM (w.r.t. system operated @ saturation)

� Rain conditions ⇒ Higher interference during activation

❒ ULPC : maximum Tx power fixed from SoA & technology

➢ Objective : ct carrier level @ transponder input

➢ Static compensation : Grsat->ES - LupES

➢ Dynamic compensation : Aup� Clear sky conditions ⇒ Lower nominal power to limit uplink interference� Rain conditions ⇒ Constant uplink interference during activation

inside ULPC dynamic range

TesaTesaTesaTesa

© 2

00

4 -

Sat

NE

x -

All

righ

ts r

ese

rve

d

BBSatCom ESTEC, Noordwijk, The Netherland, 20 September 2004

IMPACT OF ADAPTIVE WAVEFORM ON INTERFERENCE LEVEL

❒ ADAPTIVE CODING / MODULATION

➢ Objective : improve spectral efficiency in clear sky conditions� Higher interference level due to more limited range of ULPC (w.r.t. ULPC only)

➢ Constant bandwidth : with appropriate adjustment of information data rate � Different attenuation per UES : ≠ carrier levels @ the transponder input ⇒ variable uplink C/I

➢ Variable bandwidth : constant information data rate� During AC or AM activation ⇒ variable interference (I0)

❒ DATA RATE REDUCTION

➢ Objective : adjust data rate to meet the required Eb/N0

� Constant transmitted data rate : possible if fade spreading

➢ Impact on interference : � Depends if bandwidth is kept constant or not

TesaTesaTesaTesa

© 2

00

4 -

Sat

NE

x -

All

righ

ts r

ese

rve

d

BBSatCom ESTEC, Noordwijk, The Netherland, 20 September 2004

IMPACT OF OTHER FMT ON INTERFERENCE LEVEL

❒ DIVERSITY

➢ Site Diversity : interference to be calculated with respect to

� ≠ diversity schemes : Double ground segment, 2 or more smaller Gateways instead of 1,Limited number of spare gateways in different beams, Same number of gateways connected to the terrestrial backbone...

� Switched diversity vs simultaneous operation

➢ Frequency Diversity : interference to be calculated @ each frequency band

� No clear tendency, scenario dependent

❒ LAYER 2

➢ ARQ & Time Diversity :

� No change on the physical layer ⇒ transparent w.r.t. interference

Page 20: BROADBAND SATELLITE COMMUNICATIONS : …

20

TesaTesaTesaTesa

© 2

00

4 -

Sat

NE

x -

All

righ

ts r

ese

rve

d

BBSatCom ESTEC, Noordwijk, The Netherland, 20 September 2004

IMPACT OF FMT ON INTERFERENCE LEVEL

❒ SUMMARY

➢ Impact of FMT on interference if in presence of fad ing :

� Real time adjustment of power : ULPC, EEPC, DLPC, OBBS

� No adjustment of C/N0 : AC, AM, DRR� Real time adjustment of bandwidth : AC, AM, DRR

➢ No clear impact for diversity :

� Impact depends on Earth station relative position for SD� Impact depends on back-up payload configuration for FD

� To be analysed from system configuration and FMT solutions

➢ No impact on interference :

� Only for re-transmission FMTs

TesaTesaTesaTesa

© 2

00

4 -

Sat

NE

x -

All

righ

ts r

ese

rve

d

BBSatCom ESTEC, Noordwijk, The Netherland, 20 September 2004

OUTLINE OF THE PRESENTATION

❒ INTRODUCTION

❒ PROPAGATION EFFECTS

■ Attenuation■ Scintillation■ Total impairment

❒ FADE MITIGATION TECHNIQUES (FMTs)

■ Review of FMT concepts■ Impact of FMTs on interference■ FMT implementation issues

❒ CONCLUSION

TesaTesaTesaTesa

© 2

00

4 -

Sat

NE

x -

All

righ

ts r

ese

rve

d

BBSatCom ESTEC, Noordwijk, The Netherland, 20 September 2004

DETECTION & DECISION SCHEMES (D&D)

❒ OBJECTIVES

➢ Estimate of variable parameters impacting the physi cal layer :� Interference contributions internal/external to the system� Atmospheric propagation impairments

� Hardware issues : Satellite antenna gain roll-off & mispointing RF chain degradations ⇒ both supposed to be known

➢ Necessity to separate :� Propagation impairments / interference contributions� Uplink / downlink propagation impairments

❒ POSSIBLE D&D SCHEMES

➢ Open-loop : Retrieval of propagation fades from direct measurements➢ Closed-loop : QoL estimation from physical layer performance monitoring @ Rx

➢ Hybrid-loop : Combination of both open-loop & closed-loop techniques

Page 21: BROADBAND SATELLITE COMMUNICATIONS : …

21

TesaTesaTesaTesa

© 2

00

4 -

Sat

NE

x -

All

righ

ts r

ese

rve

d

BBSatCom ESTEC, Noordwijk, The Netherland, 20 September 2004

DISTRIBUTED D&D SCHEMES

Open-loop Hybrid-loopClosed-loop

Measurement, signalling, com. link

TesaTesaTesaTesa

© 2

00

4 -

Sat

NE

x -

All

righ

ts r

ese

rve

d

BBSatCom ESTEC, Noordwijk, The Netherland, 20 September 2004

CENTRALIZED D&D SCHEMES : BENT-PIPE SYSTEM

UES NCC

GES

Open-loop Closed-loop

UES NCC

GES

Measurement, signalling, com. link

Hybrid-loop

TesaTesaTesaTesa

© 2

00

4 -

Sat

NE

x -

All

righ

ts r

ese

rve

d

BBSatCom ESTEC, Noordwijk, The Netherland, 20 September 2004

❒ OPEN-LOOP FADE ESTIMATION

➢ Meteorological measurements : bucket rain-gauge, optical rain-gauge, disdrometer� Rain rate measurements� Radiometer measurements

� Radar measurements� Satellite imagery

➢ Beacon measurement

❒ CLOSED-LOOP FADE ESTIMATION

➢ Data link layer performance estimation

➢ Link quality estimation from BER measurements

➢ Link quality estimation from Power measurements� Measurement of the average amplitude of the received symbols� Signal to Noise + Interf. Ratio Estimation (SNORE)

FADE ESTIMATION TECHNIQUES

Page 22: BROADBAND SATELLITE COMMUNICATIONS : …

22

TesaTesaTesaTesa

© 2

00

4 -

Sat

NE

x -

All

righ

ts r

ese

rve

d

BBSatCom ESTEC, Noordwijk, The Netherland, 20 September 2004

❒ DETECTION OF THE CHANNEL BEHAVIOUR

� Purpose :real-time estimateof current fade level

� Real-time estimateof overall SNIR

❒ SHORT-TERM PREDICTION

� Purpose : compensation of the system reaction time

� Filtering of fast varying component, frequency scaling, short-term prediction

❒ DECISION FUNCTION

� Purpose : to authorise & trigger a given mitigation� Introduction of local margins to compensate control loop inaccuracies

FMT CONTROL LOOP CONFIGURATION

Monitoredsignal

® State of the art : design of only very simple loop

TesaTesaTesaTesa

© 2

00

4 -

Sat

NE

x -

All

righ

ts r

ese

rve

d

BBSatCom ESTEC, Noordwijk, The Netherland, 20 September 2004

EVENT-BASED ANALYSIS WITH FMT

TesaTesaTesaTesa

© 2

00

4 -

Sat

NE

x -

All

righ

ts r

ese

rve

d

BBSatCom ESTEC, Noordwijk, The Netherland, 20 September 2004

IMPLEMENTATION OF ULPC

❒ APPLICATION DOMAIN

� Possible whatever the type of service :real time or not, reliable or not, ...

❒ DEFINITION OF ULPC

� Output power : from 600 mW to 2 W� ULPC dynamic range ≈ 6 dB

Frequency 29.75 GHz 29.75 GHzCoding rate 2/3 2/3Uplink information data rate 2272 kbit/s 2272 kbit/sNominal SSPA output power 600 mW 2 WUplink Eb/(N0+I0) 6.35 dB 11.5 dBRequired Eb/ N0 (BER = 1.4*10-9) 4.6 dB 4.6 dBUplink margin 1.75 dB 6.9 dBULPC dynamic range / 5.2 dB

Requiredavailability= 99.8 %

Page 23: BROADBAND SATELLITE COMMUNICATIONS : …

23

TesaTesaTesaTesa

© 2

00

4 -

Sat

NE

x -

All

righ

ts r

ese

rve

d

BBSatCom ESTEC, Noordwijk, The Netherland, 20 September 2004

JOINT FMT IMPLEMENTATION

❒ DEFINITION OF THE JOINT FMT

� ULPC : from 800 mW to 2 W

� AC : Constant Tx DR : Rc = 3019 kbit/s

� DRR : DR / 2 and DR / 4

� FMT dynamic range : 16.0 dB

Frequency 29.75 GHz 29.75 GHz 29.75 GHz 29.75 GHzCoding rate 3/4 1/2 1/3 1/3Uplink info. data rate 2272 kbit/s 1515 kbit/s 1010 kbit/s 505 / 252 kbit/sSSPA output power 0.8 / 2 W 2.0 W 2.0 W 2.0 WUplink Eb/(N0+I0) 7.0/11.0 dB 12.7 dB 14.5 dB 17.5 / 20.5 dBReq. Eb/ N0 (1.4*10-9) 5.4 dB 3.6 dB 2.9 dB 2.9 dBUplink margin 1.6 / 5.6 dB 9.1 dB 11.6 dB 14.6 / 17.6 dBFMT dynamic range - / 4.0 dB 7.5 dB 10.0 dB 13.0 / 16.0 dB

Requiredavailability= 99.8 %

TesaTesaTesaTesa

© 2

00

4 -

Sat

NE

x -

All

righ

ts r

ese

rve

d

BBSatCom ESTEC, Noordwijk, The Netherland, 20 September 2004

OUTLINE OF THE PRESENTATION

❒ INTRODUCTION

❒ PROPAGATION EFFECTS

■ Attenuation■ Scintillation■ Total impairment

❒ FADE MITIGATION TECHNIQUES (FMTs)

■ Review of FMT concepts■ Impact of FMTs on interference■ FMT implementation issues

❒ CONCLUSION

TesaTesaTesaTesa

© 2

00

4 -

Sat

NE

x -

All

righ

ts r

ese

rve

d

BBSatCom ESTEC, Noordwijk, The Netherland, 20 September 2004

FMT PRINCIPLE & IMPLEMENTATION : SUMMARY

AvailabilityUser

data rateAffected nb

of usersReaction

time SignallingComplexity

/ cost

ULPC ++ 0 local ++ 0 ++

DLPC + 0 beam + 0 +

OBBS + 0 beam + 0 --

AC + - channel/TDM - -- -

AM + - channel/TDM - -- --

DRR ++ -- local + - +

SD +++ 0 local/global + - --

SatD + 0 global - -- --

FD ++ 0 global - -- --

TD ++ - global -- - ++

Already used

Planned

Not mature

Page 24: BROADBAND SATELLITE COMMUNICATIONS : …

24

TesaTesaTesaTesa

© 2

00

4 -

Sat

NE

x -

All

righ

ts r

ese

rve

d

BBSatCom ESTEC, Noordwijk, The Netherland, 20 September 2004

SYSTEM PERFORMANCE

❒ PERFORMANCE ASSESSMENT

➢ User point of view :� Service availability : function of link outage @ physical layer ⇐ mitigation� Minimum data rate : impact Quality of Service and user perception

➢ Operator point of view :� Spectral efficiency (modulation & coding) : directly impact system capacity� Interference : strong limitation on link budgets (high sporadic traffic)

❒ FMT DESIGN FOR PERFORMANCE IMPROVEMENT

➢ Choice of FMT strongly dependent on systems characteristics

➢ Interest to combine ≠ FMT : better mitigation performances & system efficiency

➢ Trade- off : MITIGATION - CAPACITY - INTERFERENCE