Brampton AD Report public - Brampton and Beyond...

94
Greenacres Energy Ltd Company no. 06983884 VAT no. 111 0565 70 Registered Office: 6 Brunswick Street, Carlisle, Cumbria, CA1 1PN, UK Rob Skinner: M: 07775 764263 E: [email protected] Gunter Woltron: 07739 456547 E: [email protected] Anaerobic Digestion Feedstock Study for Brampton and Beyond Energy Limited Issued to: Timothy Coombe, Project Chair for the Brampton AD, Brampton and Beyond Energy Limited Brampton Community Centre, Union Lane, Brampton, Cumbria, CA8 1BX T: 01697 745023 E: [email protected] Public Version Jan. 2014 Report produced by: Funded by: Greenacres Energy Ltd The Cooperative Enterprise Hub Supported by:

Transcript of Brampton AD Report public - Brampton and Beyond...

Greenacres  Energy  Ltd  ·∙  Company  no.  06983884  ·∙  VAT  no.  111  0565  70  Registered  Office:  6  Brunswick  Street,  Carlisle,  Cumbria,  CA1  1PN,  UK  

Rob  Skinner:  M:  07775  764263  ·∙  E:  [email protected]  Gunter  Woltron:  07739  456547  ·∙  E:  [email protected]  

 

 

Anaerobic  Digestion  Feedstock  Study  

for  

Brampton  and  Beyond  Energy  Limited  

   

Issued  to:  Timothy  Coombe,  Project  Chair  for  the  Brampton  AD,  Brampton  and  Beyond  Energy  Limited  

Brampton  Community  Centre,  Union  Lane,  Brampton,  Cumbria,  CA8  1BX  

T:  01697  745023  ·∙  E:  [email protected]    

 

 

 

 

Public  Version  

Jan.  2014  

 

 

Report  produced  by:         Funded  by:  

Greenacres  Energy  Ltd           The  Co-­‐operative  Enterprise  Hub    

                 

   

        Supported  by:  

     

 

   

BABE  –  Brampton  AD  Feedstock  Study  

 

Public  Version                                                                                                                                            page  2  of  94  

Confidential  

This   document   contains   proprietary   and   confidential   information.   All   data   submitted   to   Brampton  and  Beyond  Energy  Limited  (the  “Recipient”)  is  provided  in  reliance  upon  its  consent  not  to  disclose,  duplicate  or  distribute  any  information  contained  herein  (without  the  express  written  permission  of  Greenacres)   except   in   the   context   of   its   business   dealings   with   its   professional   advisors.   The  Recipient   agrees   to   inform   present   and   future   employees   or   board   members   of   Brampton   and  Beyond   Energy   Limited   and   professional   advisors   who   view   or   have   access   to   its   content   of   its  confidential  nature.  

The   information   in   this   publication  has   been   supplied   in   all   good   faith   and  believed   to  be   correct.  However,  all  advice,  analysis,  calculations,  information,  forecasts  and  recommendations  are  supplied  for  the  assistance  of  the  Recipient  and  are  not  to  be  relied  on  as  authoritative  or  as  in  substitution  for  the  exercise  of  judgement  by  that  Recipient  or  any  other  reader.  Greenacres  Energy  Ltd  nor  any  of  its  personnel  engaged  in  the  preparation  of  this  Report  shall  have  any  liability  whatsoever  for  any  direct  or   consequential   loss   arising   from   use   of   this   Report   or   its   contents   and   give   no   warranty   or  representation   (express   or   implied)   as   to   the   quality   or   fitness   for   the   purpose   of   any   process,  material,  product  or  system  referred  to  in  the  report.  

Any  liability  arising  out  of  use  by  a  third  party  of  this  document  for  purposes  not  wholly  connected  with  the  Recipient  shall  be  the  responsibility  of  that  party  who  shall  indemnify  Greenacres  Energy  Ltd  against  all  claims,  costs,  damages  and  losses  arising  out  of  such  use.  

All  rights  reserved.  No  part  of  this  publication  may  be  reproduced  or  transmitted  in  any  form  or  by  any  means   electronic,  mechanical,   photocopied,   recorded   or   otherwise,   or   stored   in   any   retrieval  system  of  any  nature  without  the  written  permission  of  the  copyright  holder.  

By   acceptance   of   this   document,   the   recipient   agrees   to   be   bound   by   the   aforementioned  statement.  

 

 

 

 

 

 

 

 

 

Motto  

"The  waste  management  industry  sits  at  the  heart  of  the  development  of  a  Circular  Economy"  

David  Palmer-­‐  Jones,  chairman  of  the  Environment  Services  Association  (ESA)    

   

BABE  –  Brampton  AD  Feedstock  Study  

 

Public  Version                                                                                                                                            page  3  of  94  

Content  

Confidentiality  Notice  

Chapter  1   Preliminaries  

1.1     Acknowledgements             05  

1.2     Abbreviations               05  

1.3     Glossary               06  

1.4     Translations               09  

Chapter  2   Executive  Summary               10  

Chapter  3   Introduction  

3.1     Context                 12  

3.2     Scope                 13  

Chapter  4   Feedstock  Assessment  

4.1     Resource  Survey  Basics             15  

4.1.1   Supply  Source  Area           15  4.1.2   Land  Classifications  and  Designations       16  4.1.3   Energy  Content  of  Biogas  Substrates       21  4.1.4   Assessment  Criteria           22  4.1.5   Initial  Feedback             22  

4.2     Stage  1:  Farms  with  available  Livestock  and  Land     24  

4.3     Stage  2:  Feedstock  Potential  –  Qualities  and  Quantities     26  

4.3.1   Feedstock  Potential  from  Livestock  Manures  and  Slurry   26  4.3.2   Feedstock  Potential  form  Grass  Silage       29  4.3.3   Feedstock  Potential  from  ‘Other  Substrates’     31  4.3.1   Supply  Source  Area           15  4.3.4   Conclusion             32  4.3.5   EWC  Listing             33  

4.4     Stage  3:  Potential  Biogas  Yield  and  Digestate  Output     34  

4.4.1   Biogas  Yields  –  Apples  and  Pears?       34  4.4.2   Methods  to  establish  the  Biogas  Potential     35  4.4.3   Biogas  Yield  Estimates           39  4.4.4   Digestate  Yield  Estimates         40  

4.5     Stage  4:  Electrical  and  Thermal  Output         42  

4.5.1   Background  Assumptions         42  4.5.2   Calorific  Energy             43  4.5.3   Output  Calculations           44  4.5.4   Parasitic  Energy  Demand  and  Exportable  Energy     47  

Chapter  5   Risks  and  Impacts  

5.1     Feedstock  Compatibility             49  

5.2     Feedstock  and  Consents           51  

5.2.1   The  Planning  Permit             51  5.2.2   The  Planning  Route             51  5.2.3   Key  Environmental  Impacts         52  5.2.4   The  Environmental  Permit           57  

   

BABE  –  Brampton  AD  Feedstock  Study  

 

Public  Version                                                                                                                                            page  4  of  94  

5.2.5   Management  Plans             53  5.2.6   Quality  Control  for  Digestate  Use       65  5.2.7   Accreditation  for  Quality  Digestate       66  

5.3     Feedstock-­‐related  Infrastructure         68  

5.3.1   Systems  Recommendations         68  5.3.2   Slurry  Storage  Volume  Calculation       68  5.3.3   Silage  Clamp  Volume  Calculation       68  5.3.2   Digestate  Storage  Volume  Calculation       69  

5.4     Feedstock  Yields:  Worst/Best  Case  Scenario       70  

5.4.1   The  ‘Worst  Case’  Scenario         71  5.4.2   The  ‘Best  Case’  Scenario         74  5.4.3   Impact  on  CHP  Selection  and  Plant  Expansion     77  

5.5     Security  of  Supply             78  

5.5.1   Contract  Strategy           78  5.5.2   Contracted  Volume           78  5.5.3   Back-­‐up  Feedstock           79  5.5.4   Contract  Risks             79  

Chapter  6   Considerations  

6.1     Supply  Contract  Terms               82  

6.1.1   Contract  Advice             82  6.1.2   Relevant  Contract  Terms         82  

6.2     Financial  Aspects             87  

6.2.1   Cost  Factor  and  Value  of  Silage         87  6.2.2   Cost  Factor  and  Value  of  Digestate       87  

6.3     Operational  Considerations           88  

6.3.1   Best  Practice             88  6.3.2   Land  Management           88  6.3.3   Silage  Clamp  Management         88  6.3.4   Feedstock  Reception  and  Handling       89  6.3.5   Feedstock  Measurement  and  Quality  Control     90  6.3.6   H&S,  OPRA  and  the  competent  Person       91  6.3.7   Machinery             91  6.3.8   Future  Proof             91  

6.4     Community               92  

6.5     Sustainability               93  

Appendices  

App  A:     References  and  Literature           95  

App  B:     Potential  Feedstock  Suppliers           97  

App  C:     Applied  Assumptions             98  

App  D:     Industry  Contacts                                    101  

App  E:     Traffic  Movements                                    103  

App  F:     Best  Practice  Guidance                                    104  

App  G:    Supply  Contract  –  Heads  of  Terms                                  105  

App  H:    Authors                                        114  

 

   

BABE  –  Brampton  AD  Feedstock  Study  

 

Public  Version                                                                                                                                            page  5  of  94  

1. Preliminaries  

1.1. Acknowledgements  

The   assistance   and   support   of   the   following   people   during   the   course   of   the   study   is   gratefully  acknowledged.  

Eleanor  Fielding,  Environment  Officer  Cumbria,  Environment  Agency  Gillan  Way,  Penrith  40  Business  Park,  Penrith,  Cumbria,  CA11  9BP;    <eleanor.fielding@environment-­‐agency.gov.uk  

Mark  Holtmann,  Project  Manager  UK  &  IRL  2G  Energietechnik  GmbH,  Benzstrasse  10,  48619  Heek,  DE;  <m.holtmann@2-­‐g.de>    

Maggie  Mason,  Senior  Planner,  Planning  and  Sustainability,  Environment,  Cumbria  County  Council  County  Offices,  Busher  Walk,  Kendal,  Cumbria,  LA9  4RQ;  <[email protected]>    

Barbara  McCarthy,  Team  Leader,  Geographical  Information  &  Analysis  Services  Team  Natural  England;  <[email protected]>  

Lucy  Nattrass,  Senior  Consultant,  NNFCC  Biocentre,  York  Science  Park,  Innovation  Way,  Heslington,  York,  YO10  5DG;  <[email protected]>    

1.2. Abbreviations  

ABP     animal  by-­‐products  

ABC     ABC  Budgeting  &  Costings  Book  

AD     anaerobic  digestion  

ADBA     The  Anaerobic  Digestion  and  Biogas  Association  Ltd  

AFBI       Agri-­‐Food  and  Biosciences  Institute  

AHDB     Agricultural  &  Horticultural  Development  Board  

BABE     Brampton  and  Beyond  Energy  Limited  

BMP     biological  methane  potential  (test)  

CH4     methane  

CHP   -­‐   combined  heat  and  power  

CO2     carbon  dioxide  

DairyCo     DairyCo,  a  division  of  the  AHDB  

DEFRA     Department  for  Environment,  Food  and  Rural  Affairs  

DM     dry  mater  (content)  

EA     Environment  Agency  

FiT     Feed-­‐in  Tariff(s)  

FYM     farmyard  manure  

FW     fresh  weight,  also  abbreviated  as  WW  –  wet  weight    

GHG     green  house  gases  

HRT     hydraulic  retention  time  

KTBL     Kuratorium  für  Technik  und  Bauwesen  in  der  Landwirtschaft  e.V.  

LfL     Bayrische  Landesanstalt  für  Landwirtschaft  (Bavarian  Institute  for  Agriculture)  

kW     kilowatt  

   

BABE  –  Brampton  AD  Feedstock  Study  

 

Public  Version                                                                                                                                            page  6  of  94  

kWe     kilowatt  electric  

kWh     kilowatt  hour  

kWh  el     kilowatt  hour  electric  

kWh  th     kilowatt  hour  thermal  

ME     metabolic  energy  

MJ     megajoule  (1  MJ  =  1000  kJ  =  106  J)  

MW     megawatt  

MWe     megawatt  electric  

NFU       National  Farmers  Union  

Nl     norm(al)  litre  

Nm3     norm(al)  cubic  metre  

NNFCC     The  National  Non-­‐Food  Crops  Centre  

NPK     nitrates,  phosphates,  potassium  

NVZ     Nitrate  Vulnerable  Zone  

oDM     organic  dry  matter    

ORL     organic  loading  rate  

PGC     purpose  grown  crops  (i.e.  energy  crops)  

PPA     Power  Purchase  Agreement  (or  Power  Uptake  Agreement)  

STP     Standard  Temperature  and  Pressure,  describing  Standard  Conditions  for  gas  

RASE     Royal  Agricultural  Society  of  England  

t     metric  tonne  at  1,000  kg  

WRAP     Waste  &  Resource  Action  Programme  

1.3. Glossary  

This  document  will  use  the  following  terms  for  the  expressions  listed  below:  

Anaerobic  digestion  in  accordance  with  EA  &  WRAP  means  the  process  of  controlled  decomposition  of  biodegradable  materials  under  managed  conditions:  

• Where  free  oxygen  is  absent,    

• At   temperatures   suitable   for   naturally   occurring   mesophilic   or   thermophilic   anaerobic  and  facultative  bacteria  species,    

• That  convert  the  inputs  to  biogas  and  whole  digestate  

Anaerobic  digestion  in  accordance  with  Feed-­‐in  Tariffs  (Specified  maximum  Capacity  and  Functions)  Order   2010   means   the   bacterial   fermentation   of   organic   material   in   the   absence   of   free   oxygen  (excluding  anaerobic  digestion  from  sewage  and  material  in  a  landfill).    

Agricultural  manure  are  also  referred  to  as  livestock  manures  and  means  slurries  and  solid  manures,  including  farmyard  manures.  (A  definition  from  the  Codes  of  Good  Agricultural  Practice  also  includes  ‘dirty  water’.)  

Biodegradable  means  capable  of  undergoing  biologically  mediated  decomposition.  

Biowaste  means  waste   of   animal   or   plant   origin,   which   can   be   decomposed   by  micro-­‐organisms,  other  larger  soil-­‐borne  organisms  or  enzymes.  

Carbon  to  Nitrogen  ration  (C:N)  refers  to  the  relationship  between  the  amount  of  carbon  and  

   

BABE  –  Brampton  AD  Feedstock  Study  

 

Public  Version                                                                                                                                            page  7  of  94  

nitrogen  present  in  organic  materials.  

Calorific  value  is  also  referred  to  as  ‘heating  value’  or  ‘energy  value’  and  means  the  energy  value  of  a  substance,  e.g.  methane,  from  its  heat  released  during  the  combustion  of  a  specified  amount  under  standard  conditions.  The  calorific  value  is  measured  in  units  of  energy  per  unit  of  the  substance.  Of  the  two  versions,  the  ‘higher  calorific’,  ‘gross  calorific’  or  ‘upper’/superior  heating’  value  and  ‘lower  calorific’,  ‘net  calorific’  or  ‘inferior  heating’  value  the  latter  one  is  applied.  

Capacity  (or  installed  capacity)  means  the  maximum  load  a  generating  unit  (like  a  CHP  unit)  or  other  electrical  apparatus  is  rated  to  carry.  The  capacity  can  be  based  on  the  nameplate  rating  or  the  declared  net  (dependable)  capacity.  

Chemical  oxygen  demand  (COD)  means  an  indirect  measure  of  the  amount  of  organic  compounds  in  a  substance,   in  which  a  sample  of  the  substance  is   incubated  with  a  strong  chemical  oxidant  under  specific  temperature  conditions  and  for  particular  period  of  time.  

Combined   Heat   and   Power   (CHP)   means   the   simultaneous   conversion   of   implanted   energy   into  mechanical/electrical  energy  and  usable  heat  and  power.  In  accordance  with  the  FiT  scheme,  a  CHP  engine   or   turbine   (and   alternator)   is   part   of   the   ‘generating   equipment’  within   an   AD   installation,  which  converts  (bio)gas  formed  by  the  anaerobic  digestion  of  material  (which  is  neither  sewage  nor  material  in  a  landfill)  into  electricity.  

Digestate   is   also   referred   to   as   ‘whole   digestate’   or   ‘raw   digestate’   and   means   the   material   (or  residue)  remaining  after  the  anaerobic  digestion  process,  which  has  not  undergone  a  post-­‐digestion  treatment  (or  separation)  to  derive  separated  liquor  and  separated  fibre.  

Dirty   water  means   dilute   washings   from   dairy   and   milking   parlours   and   run-­‐off   from   yard   areas  slightly  contaminated  by  manure,  slurry  or  used  animal  bedding.  

Dry  matter  (DM)  is  also  referred  to  as  total  solids  (TS)  and  is  a  measure  for  dry  solids,  opposite  to  the  moisture  content  (under  the  BS  EN  14346  method  of  test).  Under  European  Standard  DM  is  defined  as  dry  residue  after  drying  according  to  the  specified  drying  process;  it  is  expressed  as  percentage  or  in  grams  per  kilogram.    Dry  matter   applies   to   the  material   left   after   an   evaporation  period   and   its   subsequent   drying   in   a  drying   oven   at   110˚C   and   cooling   off,   all   procedures   over   defined   periods.   Dry  matter   consists   of  ‘Total  Suspended  Solids’  and  ‘Total  Dissolved  Solids’.  

Feed-­‐in   Tariffs   (FiT)   means   a   GB-­‐wide   scheme   under   which   licensed   electricity   suppliers   will   pay  small-­‐scale   generators   (of   up   to   5MWe   installed   capacity)   of   renewable   electricity   at   prescribed  tariffs   for   the   amounts   of   electricity   that   they   generate   and   the   amounts   that   they   export   to   the  distribution  network.  

Hydraulic  retention  time  (HRT)  means  the  average  time  that  material  stays  in  the  digester  vessel  or  tank,  determined  by  the  loading  rate  and  operational  digester  capacity.  

Historic  Environment  means  ancient  monuments  (scheduled  and  unscheduled),  archaeological  sites  and  landscapes,  historic  buildings  (listed  and  unlisted  and  those  within  Conservation  Areas),  historic  gardens  and  designed  landscapes  and  includes  their  context  and  settings.  

Input  material  means   biodegradable  material   intended   for   feeding,   or   fed,   into   an   AD   process,   it  should  be  source  segregated  and  not  include  contaminated  wastes,  products  or  materials.  

Full  load  hours  means  the  period  of  an  installation  at  full  output  performance,  where  the  correlation  of   total  working  hours  and  average  output  efficiency  within  one  year   is  expressed  as  part  of  100%  efficiency  or  as  equivalent  hours  per  year.  

Manures  or  solid  manures  include  farmyard  manure  (FYM)  and  means  material  consisting  of  covered  straw  yards,  excreta  with  a   lot  of  bedding  material,   typically  straw,   in   it,  or  solids   from  mechanical  

   

BABE  –  Brampton  AD  Feedstock  Study  

 

Public  Version                                                                                                                                            page  8  of  94  

slurry   separators.   Solid  manures   can   generally   be   stacked.   (In   some   literature   ‘manure’   is   used   as  collective  term  for  solid  manure  and  slurry.)  

Mesophilic  means  a  temperature  range  for  organisms  for  which  optimum  growth  temperatures  are  within  the  spectrum  of  30°C  to  45°C.  

Methane   number   means   the   gas   resistance   of   knocking   in   a   combustion   engine.   By   definition,  methane  has  a  methane  number  of  100  while  carbon  dioxide  (in  the  biogas  mix)  increases  this  value.  

Micro-­‐generation  or  Micro-­‐renewables  means  the  generation,  from  low  or  zero-­‐carbon  sources,  of  electricity  of  up  to  50kW  capacity  and  heat  of  up  to  45kW  capacity,  as  set  by  the  Electricity  Act  2004.    

Mixed   farming   (system)   means,   as   defined   by   the   World   Health   Organisation   (WHO),   is   where  cropping  and  livestock  rearing  are  linked  activities,  in  which  more  than  10%  of  the  dry  matter  fed  to  the  livestock  comes  from  crop  by-­‐products  or  stubble,  or  where  more  than  10%  of  the  total  value  of  production  comes  from  non-­‐livestock  farming  activities.  Defra’s  definition  is  ‘where  crops  account  for  1/3,  but  less  than  2/3  of  total  standard  gross  margin  and  livestock  accounts  for  1/3,  but  less  than  2/3  of  total  standard  gross  margin’.  

Norm(al)  cubic  metre  (Nm3)  means  the  amount  of  gas  in  a  volume  of  a  cubic  metre  under  norm(al)  or  standard  conditions,  i.e.  0°C,  0%  humidity  and  1.01325  bar  pressure  level  

Organic  dry  matter   (oDM)   is  also  referred  to  as  volatile  solids   (VS)  or   loss  of   ignition  (LOI)  and   is  a  measure  for  organic  matter  and  means  those  solids  in  a  sample  of  material  that  are  lost  on  ignition  of  the  dry  solids  at  550˚C  within  a  high  temperature  muffle  furnace  and  over  a  defined  time  (applying  the  BS  EN  15169  method  of  test).    The   remaining  material   (of   the   test)   is  ash  made  up  of   inorganic  material   (e.g.  grit,  minerals,   salts,  etc)  and  also  referred  to  as  fixed  solids  (FS)  

Organic   loading   rate   (OLR)  means   the   fresh  weight   of   organic  matter   fed   to   a   unit   volume  of   the  digester  per  unit  time,  usually  per  day  

Pasteurization  means  a  process  step  during  which  the  numbers  of  pathogenic  bacteria,  viruses  and  other   harmful   organisms   in   material   undergoing   anaerobic   digestion   are   significantly   reduced   or  eliminated  by  heating  the  material  to  a  critical  temperature  for  a  minimum  specified  period  of  time.  

pH-­‐value  means  a  measure  for  the  acidity  or  alcality  of  a  substance  or  input  material  

Project  means  the  proposed  Brampton  AD  plant  by  Brampton  and  Beyond  Energy  Limited  

Raw   biogas   means   the   biogas   in   the   raw   state   immediately   after   the   AD   process   and   before   any  upgrade  process  and  refers  rather  to  AD  plants  where  biogas  is  adjusted  to  bio-­‐methane  for  gas  grid  injection  or  vehicle  fuel  rather  than  for  combustion  in  a  CHP  unit  

Recipient  means  Brampton  and  Beyond  Energy  Limited.  

Retention  time  means  the  time  that  a  substrate  resides  in  the  digester;  it  is  expressed  in  days  

Renewables  Obligation  Certificate  (ROC)  means  a  scheme  based  on  the  Renewables  Obligation  (RO)  legislation,  which   requires   licensed  electricity   suppliers   to  source  a  specific  and  annually   increasing  percentage  of  the  electricity  they  provide  from  renewable  sources,  each  megawatt  hour  certified  by  one  Renewables  Obligation  Certificate   (ROC).  Where  suppliers  have   insufficient  ROCs  to  meet  their  obligation,   they   have   to   make   a   payment   into   a   buy-­‐out   fund,   whose   proceeds   are   paid   back   to  suppliers   in  proportion   to  how  many  ROCs   they  have  presented.  Different   renewable   technologies  attract  different  ROC  values.  From  1st  April  2013  only  renewable  generating  stations  with  over  5MWe  installed   capacity   are   entitled   for   the   RO   system,   installations   generating   less   than   5MWe   are  exclusively  catered  for  by  Feed-­‐in  Tariffs.  

   

BABE  –  Brampton  AD  Feedstock  Study  

 

Public  Version                                                                                                                                            page  9  of  94  

Slurry  means  a  material  consisting  of  excreta  produced  by   livestock   in  a  yard  or  building  optionally  mixed  with  rainwater  and  wash  water  and  in  some  cases,  waste  bedding  material  and  feed.  Slurries  can  be  pumped  or  discharged  by  gravity.  

Source  segregated  means  the  input  materials  or  biowastes  of  the  types  and  sources  sought,  that  are  stored,   collected   and   not   subsequently   combined   with   any   non-­‐biodegradable   wastes,   or   any  potentially  polluting  or  toxic  materials  or  products,  during  treatment  or  storage  (whether  storage  is  before  or  after  treatment).  

Study  means  this  report.  

Supply   agreement  means   a   contract   between   an  AD   facility   operator   and   a   supplier   of   digestable  input  materials,  that  specifies  suitable  material  types,  quality,  options  and  actions  to  be  taken  in  the  event  of  contamination,  and  other  criteria  that  facilitate  input  material  control  

Thermophilic  means   a   temperature   range   for   organisms   for  which   optimum  growth   temperatures  are  within  the  spectrum  of  45°C  to  80°C  

Trust  means  Brampton  and  Beyond  Community  Trust  

Wobbe   Index  means   a   quality   reference   of   combustion   gases.   Similar  Wobbe   values   point   to   the  interchangeability  of  gases,  e.g.  without  further  modification  of  combustion  nozzles.  

1.4. Translations  

Considering   the   number   of   German   technology   providers   operating   in   UK,   the   following   industry  terms  might  help  to  avoid  any  communication  being  lost  in  translation.  

anaerobic  digester,  AD  plant     Biogasanlage  (BGA)  

combined  heat  and  power  plant     Blockheizkraftwerk  (BHKW)  

digestate           Gärreste,  Endsubstrat  

digestibility  value  (DV)       Verdauungsquotient  (VQ)  

dry  matter  (DM)       Trockenmasse  (TM),  Trockensubstanz  (TS)  

ear  emergence,  panicles  ripening   Rispenschieben  

farmyard  manure  (FYM)       Festmist,  Tretmist  

first  cut           erste  Fruchtfolge  

fresh  weight  (FW)       Frischmasse  (FM)  

full  load  hours         Volllaststunden,  Vollbenutzungsstunden  

generation  of  electricity       Verstromung  

input,  throughput       Durchsatz  

input  material         Einsatzstoffe  

livestock  unit  (LSU  or  LU)     Grossvieheinheit  (GVE  or  GV)  

lower  calorific/inferior  heating  value   unterer  Heizwert  

nitrates,  phosphates,  potassium     Stickstoff,  Phosphor,  Kalium  

organic  dry  matter  (oDM)     organische  Trockenmasse  (oTM),  org.  Trockensubstanz  (oTS)  

organic  loading  rate  (OLR)     Raumbelastung  

retention  time         Verweildauer,  Verweilzeit  

rye  grass         Weidelgras    

slurry           Gülle  

whole  crop  silage  (WCS)       Ganzpflanzensilage  (GPS)  

   

BABE  –  Brampton  AD  Feedstock  Study  

 

Public  Version                                                                                                                                            page  10  of  94  

2. Executive  Summary  

The  report  presents   the  results  of  a  study   into  the  detailed   feedstock  availability   for   the  Brampton  AD  project  based  on  a  catchment  area  of  5  km  within   the  Townfoot   Industrial  Estate   to   the  South  East  of  Brampton.  The  feedstock  study  followed  the  following  methodology:  

Identify  land  and  livestock-­‐based  supplies  of  input  material  for  the  AD     Assess  the  suitability  of  input  material  in  regard  to  quantity,  quality  and  compatibility   Assess  the  yield  or  output  potential  in  for  AD   Substantiate  the  supplies’  contractual,  environmental,  operational  and  regulatory  impact  

Findings  

The  study  identified  sufficient  input  material  to  sustain  a  commercial  anaerobic  digester  and  a  highly  compatible   feedstock   mix.   The   feedstock   is   sourced   from   four   farms   with   369   acres   in   principle  available   to   supply   energy   crops   (grass   silage)   and   ten   farms   supplying   livestock   manures   (dairy  slurry).  All  silage  supply  areas  are  marginal  land,  currently  allowing  for  improvements  in  agricultural  standards  for  biogas  production  and  not  used  for  direct  food  production.  The  break  crop,  as  part  of  a  wider  agricultural  management  plan,  would  be  whole  crop  or  clover  mixture.  

The   conservative   yield   for   grass   silage   is   expected   to   be   5,427   tons   of   fresh  weight   at   25%  of   dry  matter  content.  The  total  access   to  dairy  slurry   is  24,375  m3  before  any  dilution   from  rain  or  wash  water,  a  volume  far  in  excess  to  what  can  be  utilised  in  a  ‘silage  AD’  system.  The  technology  provider  to-­‐be  will  have  to  determine  the  actual  volume  of  slurry  required  for  optimal  operational  conditions.  

A  minor   feedstock   source   in   the   form  of  brewery  waste,   located  on   the  bespoke   industrial   estate,  would  be  disregarded.  The  absence  of   food  waste   in   the  feedstock  supply  should  simplify  planning  (HACCP  and  EIA),  regulatory  compliance  (PAS110)  and  operation  (no  pasteurisation).  

From   a   planning   and   permitting   perspective   the   Brampton   AD   scheme   represents   a   non-­‐farm   AD  based  on  agricultural   input  material.   The  cluster  of   suppliers  mirrors   In  effect  a   ‘Central  AD’   (CAD)  model,  which  lends  itself  favourably  to  cooperative  ownership  and  energy  and  digestate  usage.  

The  biogas  potential  of   the   identified  feedstock  would  result,  given   ideal   (weather)  conditions,   in  a  CHP  unit  in  the  range  of  250kWe  capacity.  The  Study  applied  several  restrictions  on  the  availability  of  land,   the  silage  yield  and  the  quality  of  slurry  and  adjusted  the  biogas  potential   to  a  more  realistic  and   continuously   achievable   level.   This   potential   is   matched   with   a   CHP   engine   of   an   installed  capacity  of  200kWe.  The  thermal  capacity  of  199kWth  is  applied  for  the  highest  RHI  bandwidth.  

The  estimated   typical   plant   output   per   year   (before  parasitic   demand   is   deducted)   from   the   given  input  material  is  1,560,000kWh  (or  1,566MWh)  electric  and  1,552,200kWh  (or  1,552MWh)  thermal,  with  a  small  margin  for  electrical  and  performance  uncertainties  already  considered.  

The  impact  of  the  proposed  AD  scheme  on  the  environment  would  be  none  (landscape)  or  minimal  (transport),  while  the  carbon  reduction  from  the  generation  of  renewable  electricity  and  heat  would  be  significant.  The   industrial  estate  would  absorb  the   installation  of  a  silage  clamp,  digester  tank(s)  and   plant   periphery.   The   impact   on   local   farming   would   be   positive   as   the   AD   scheme   nurtures  traditional  farming  methods  and  provides  local  farms  with  long-­‐term  source  of  income  and  fertiliser.  

Focus  Points  

The  type  of  feedstock  supply  arrangement,  with  an  agricultural  land  lease  preferred  over  a  tonnage-­‐based  supply  contract,  will  be  crucial  for  the  level  of  land  management  and  the  control  over  it.  

The  timing  for  land  preparation,  harvest  and  silage  is  to  be  streamlined  with  the  plant  start-­‐up.  

The  compliance  regime  for  the  distribution  of  digestate  would  be  simplified  if  all  supply  farms  would  own  an  even  nominal  share  of  the  SPV.  

   

BABE  –  Brampton  AD  Feedstock  Study  

 

Public  Version                                                                                                                                            page  11  of  94  

Summary  Table  

The  following  table  summarizes  the  findings  for  a  typical  year  of  operation,  the  generated  output  are  raw  figures  are  before  any  output  uncertainties  are  deducted.    

 

Table  1:  Summary  of  findings  

1)  LfL  applies  different  values  for  first  and  second  grass  cuttings,  which  could  not  be  displayed  in  the  spreadsheet  

2)  Efficiency  values  are  from  a  200kWe  CHP  unit  

3)  Raw  figures  before  any  final  risk  considerations  are  applied  

 

   

BABE  –  Brampton  AD  Feedstock  Study  

 

Public  Version                                                                                                                                            page  12  of  94  

3. Introduction  

3.1. Context  

Brampton   and   Beyond   Community   Trust   is   a   community   trust   based   in   the   east   of   Cumbria,  established  with  the  aim  to  promote  and  demonstrate  a  sustainable  way  of  art,  health  and  work.    

One  of   its  projects   is  to  establish  an  asset   in  the  form  of  an  anaerobic  digestion  facility,  set  up  and  operated   in   a   sustainable   and   cost   effective  manner.   It   aims   to   utilize   locally   available   agricultural  surplus  material  and  optionally  discarded  food  resources  and  to  generate  renewable  energy.  Along  goes  a  vision  for  community  engagement,  covering  cooperative  ownership,  supply  partnership  and  a  cooperative   use   of   plant   outputs   like   heat.   Such   a   successful   project  would   put   Brampton   on   the  forefront  of  sustainability  in  a  rural  context.  

The   Trust   commissioned   an   initial   feedstock   assessment   and   a   generic   capability   study.   The   topics  covered  by  the  study  of  the  University  of  Newcastle,  outside  the  scope  of  this  Study,  are:    

• Environmental  and  agronomic  benefits  of  AD  

• Financial  mechanisms  for  AD  

• Political  framework  of  renewable  energy  

• Technical  design  concepts  

The  subsequent  view  of  how  an  AD  plant  could  function  within  the  local  community  is,  also  for  the  sake  of  clarity,  compacted  in  the  following  illustration.  It  shows  in  principle  the  material  and  energy  movements  of  a  (wet)  AD  plant  as  envisaged  for  the  Brampton  AD  scheme.  

 

Illustration  1:  Schematic  material  and  energy  flow  of  an  agricultural  AD  plant  

The   initial   results   provided   the   Trust   with   sufficient   know   how   and   confidence   to   establish   a  dedicated  development  organisation,  aptly  named  ‘Brampton  and  Beyond  Energy  Limited’.  It  gained  its   incorporation   in   December   2012   as   an   Industrial   and   Provident   Society   (IPS).   Throughout   the  Study  Brampton  and  Beyond  Energy  Limited  is  abbreviated  as  ‘BABE’.    

BABE  opted  for  an  AD  technology  type  –  a  wet  and  continuous  system  –  and  for  a  preferred  location  of  the  proposed  Brampton  AD  plant,  the  Townfoot  Industrial  Estate  at  the  outskirts  of  Brampton.  The  development  would  be  located  wholly  within  the  boundaries  of  the  industrial  estate  and  not  within  

   

BABE  –  Brampton  AD  Feedstock  Study  

 

Public  Version                                                                                                                                            page  13  of  94  

any  flood  risk  zone.  The  industrial  and  light  industrial  use  of  the  Industrial  estate  would  offer  wide-­‐ranging  opportunities  for  the  sale  of  power  and  heat.  

As  a  next  step  the  Brampton  AD  Project  requires  a  detailed  feedstock  study  to  confirm  and  amplify  the  findings  of  the  preliminary  feedstock  assessment  and  draft  business  plan.  Such  a  detailed  supply  resource   assessment   will   feed   into   planning,   technical   design   and   a   refined   business   and   finance  plan.  The  latter  will  require  robust  information  to  present  an  internal  risk  assessment  and  to  handle  the  scrutiny  of  a  due  diligence  exercise  by  finance  providers.  

The   Study   is   undertaken  with   a   backdrop   of   an   increasing   interest   in   community   renewables   and  agricultural  AD,  which  puts  BABE  in  the  centre  of   interest.  BABE  has  recognised  the  need  voiced  by  funders,   both   from   a   private   and   institutional   background,   for   realistically   achievable   and  contractually  secured  supply  volumes.  

3.2. Scope  

The   AD   business   is   unusual   by   having   practically   no   exposure   to   risks   from   end   users   because   of  payment  system  offered  by  Feed-­‐in  Tariffs.   (The  same  applies  to  AD  businesses   in  countries,  which  have   implemented   the   same   or   a   similar   tariff   system.)   Naturally   such   conditions   have   created   a  boom  over  the  last  few  years,  which  can  be  witnessed  on  numerous  conferences  and  exhibition  with  an   ever-­‐increasing   audience.   Despite   the   growing   maturity   of   the   sector   not   everything   is   going  according   to   plan:   the   number   of   completed   AD   facilities   is   lacking   behind   predictions,   a   few  operational   plants   are   clearly   behind   commercial   expectations,   some   AD   development   companies  have  closed  down  and  a  good  number  of  permitted  AD  projects  are  not  attracting  funding.    

The   above   situation   applies   to   AD   projects   based   on   agricultural   feedstock   as  well   as   food  waste.  While   both   sectors   have   in   common   an   evolving   attitude   by   developers   and   funders   to   risks   and  profits   associated  with  AD,   the   agricultural  AD   sector   faces   an   additional   hurdle.   Putting   aside   the  different   lingos  and  cultures  between  the   finance  and   farming  world,   the   ‘feedstock  security   issue’  has  been  identified  as  one  of  the  key  issues  for  successful  project  finance.    

While   both   sides   are   trying   to   find   creative   farming   and   financial   solutions   for   bridging   the   gap  between  short-­‐term  cropping  practises  and  the  need  for  long-­‐term  supply  contracts,  the  contribution  from   community   and   farming   groups   or   cooperatives   ought   to   be   of   even   more   interest   to   the  industry.  Any  cooperative  approach  should  have  a  wider  arsenal  of  creative  solutions  at  its  disposal  than  a  single  ownership  perspective.    

The   internal   and  external   risks   associated  with   feedstock  or   ‘input  material’   for  AD  are  numerous.  The   aim   of   this   Study   is   to   provide   facts   in   line   with   our   approach   of   ‘risk   equals   measurable  uncertainty’;   to  achieve   this  aim  we  apply   the   first   two  phases  of   the   following  methodology.   (The  latter  two  phases  are  to  be  dealt  with  during  live  operations.)  

• Risk  identification  

• Risk  evaluation  

• Risk  management  and  risk  diversification  

• Risk  controlling  

The   risk   exposure   in   regard   to   input   material   is   at   the   beginning   of   a   chain   of   several   energy  conversions  in  an  AD  plant,  which  are:  

• Cultivating   and/or   capturing   calorific   energy   from   Input   material,   which   includes  harvesting/  collecting  and  silage  making/storing  of  slurry  

• Converting  calorific  energy  from  carbon-­‐based  material  to  biogas  through  the  anaerobic  digestion  process  

• Combusting  methane  to  electricity  (and  heat)  in  a  CHP  unit  

   

BABE  –  Brampton  AD  Feedstock  Study  

 

Public  Version                                                                                                                                            page  14  of  94  

The  illustration  below  shows  the  remit  of  the  Study  within  this  energy  conversion  chain  and  factors  impacting  on  the  energy  carrying  material:  

 

 

Illustration  2:  Thematic  scope  (coloured  area)  within  the  AD  plant  energy  conversion  chain  

Crucially,  any  risk   leading  to  energy  potential   lost   in  an  early  phase  cannot  be  regained   in  the  next  phase.  Therefore  any   risk  affecting   the   loss  of  quantity  or  quality   (and   the  continuity)  of   feedstock  cannot  be  compensated  at  a  later  phase.  

The  AD  Feedstock  Study  is  an  integrated  field  and  desktop  study  and  consists  of  two  main  sections:  the   first   part   will   assess   the   feedstock   potential   and   its   energy   potential,   the   second   section   will  investigate   any   regulatory,   technical,   commercial   and   legal   risks   and   impacts   for   the   identified  feedstock  selection.  The  main  objectives  of  the  Study  are:    

• To  determine  the  types,  the  quantity  and  quality  of  AD-­‐suitable  feedstock  that  could  be  supplied  from  farms  within  an  agreed  supply  source  area  

• To  estimate  the  AD  plant’s  energy  output  using  a  biogas-­‐fuelled  CHP  engine  

• To  estimate  the  cost  to  the  AD  project  from  acquiring  feedstock  

• To  evaluate  risks  and  impacts  to  the  feedstock  from  different  farming  methods  

• To  evaluate  risks  and  impacts  to  the  feedstock  from  regulatory  and  financial  aspects    

• To  prepare  a  template  for  a  supply  contract  that  could  be  used  for  any  potential  supplier.    

• To  recommend  how  different  forms  of  feedstock  should  be  stored  and  prepared  prior  to  being  used  in  the  AD  plant  

 

   

BABE  –  Brampton  AD  Feedstock  Study  

 

Public  Version                                                                                                                                            page  15  of  94  

4. Feedstock  Assessment  

At   the   very  outset  of   this   feedstock   study  all   parties   committed   themselves   to  work  with   an  open  mind  to  first  identify  any  available  sources  of  input  material  and  decide  on  their  usefulness  after  the  information   gathering.   During   a   feedback   meeting   halfway   through   the   feedstock   data   collection  phase  the  BABE  project  board  announced  a  change  of  strategy  in  so  far  as  to  abandon  the  search  for  food  waste  and  ABP  material  from  e.g.  abattoirs.    

The  following  chapters  are  going  to  reflect  on  the  redefined  focus  on  livestock  manures  and  slurries,  grass   silage  and  agricultural   surplus  material,   either  on-­‐farm  organic   agricultural  waste  or  off-­‐farm  process  waste  of  agricultural  material.  

In  order  to  identify  and  manage  any  individual  risk  factor,  the  feedstock  study  follows  the  following  methodology:  

To  identify  land  and  livestock  capable  of  supplying  input  material  for  the  AD  project  

To  assess  the  potential  quantity  and  quality  of  the  supply  material  

To  assess  the  potential  biogas  yield  and  digestate  output  from  the  anaerobic  digester  

To  estimate  the  likely  electric  and  thermal  output  from  the  attached  CHP  unit  

4.1. Resource  Survey  Basics  

4.1.1. Supply  Source  Area  

The   study   focussed   on   potential   agricultural   feedstock   suppliers   within   an   agreed   supply   source  search  area,  a  5km  radius  of  the  proposed  plant  location,  the  Townfoot  Industrial  Estate,  Brampton,  Cumbria,  CA8  1SW.  Brampton  is  117m  above  sea  level.  

The  BABE  project  board  chose  the  Townfoot  Industrial  Estate  for  its  convenient  access,  unused  land  available  for  rental  and  near-­‐by  grid  connection  points.  

At  the  start  of  the  study  a  web  site  listed  20  businesses  located  at  the  industrial  estate,  which  offered  a   prospect   of   on-­‐site   heat   and   power   sales.   The   industrial   estate   might   further   offer   rental  opportunities  fur  future  community  enterprises  utilising  and  benefitting  from  heat  in  the  form  of  hot  water  from  the  proposed  anaerobic  digester.  

The  coordinates  of  the  Townfoot  Industrial  Estate  are:  

OS  X  (Eastings):     352199  

OS  Y  (Northings):   560991  

The  designation  of   the  envisaged  plant   location  not  being  a   ‘working   farm’  means   that   the  project  cannot  be  defined  as  ‘on-­‐farm  AD’,  even  if   its   input  material  would  entirely  consist  of  energy  crops  and  agricultural  manures.  Nevertheless,  with  the  absence  of  any  food  waste  the  AD  plant  would  be  classified   as   ‘agricultural’   plant.   Such   differentiation   can   be   of   relevance   for   environmental  permitting  and  planning  regulations.  

The   reasons   for   the   5km   limitation   for   supply   of   input   material   were   based   on   sustainability  considerations,   in   particular   on   the   concept   of   ‘food   miles,   which   aims   to   keep   the   amount   of  transport  distance  and  traffic  frequency  of  the  supply  chain  to  a  minimum.  In  the  context  of  an  AD  plant  any  consideration  for  traffic  movements  also  applies  to  digestate  spreading.    

The   following   map   shows   the   identified   supply   source   area   with   the   Townfoot   Industrial   Estate  marked  at  its  centre.  

   

BABE  –  Brampton  AD  Feedstock  Study  

 

Public  Version                                                                                                                                            page  16  of  94  

 

Map  1:  AD  Supply  Source  Area  with  Brampton’s  Townfoot  Industrial  Estate  at  its  centre  ©  Crown  copyright  and  database  rights  2013  Ordnance  Survey  0100031673  

4.1.2. Land  Classification  and  Designations  

As  an  overall  description,  the  area  in  consideration  consists  mainly  of  hillside  farming  on  grass   land  with  a  mix  of  small  holdings  and  medium-­‐sized   livestock  farms  reflecting  the  economic   ‘in-­‐need-­‐of-­‐investment’  status  of  Brampton  as  the  local  hub.    

The   Land   Classification   for   Agriculture   (LCA)   categorises   the   agricultural   land   capability;   the   LCA  within  the  supply  source  area  can  mainly  be  attributed  to:    

• Grade  3,  Sub-­‐grade  3a  –  good  quality  agricultural  land  

• Grade  3,  Sub-­‐grade  3b  –  moderate  quality  agricultural  land  

and  smaller  areas  of:    

• Grade  2  –  very  good  quality  agricultural  land  –  alongside  the  River  Irthing  

• Grade  4  –  poor  quality  agricultural  land  –  and  significant  areas  North  and  West  and    

• Grade  5  –  very  poor  quality  agricultural  land  –  pockets  of  land  to  the  North  West  

   

BABE  –  Brampton  AD  Feedstock  Study  

 

Public  Version                                                                                                                                            page  17  of  94  

 

Map  2:  Land  Classification  for  Agriculture  for  the  wider  Brampton  area;  ©  Natural  England  

 

As  shown  below,  the  predominant  use  of  agricultural  land  is  for  grassland  with  a  mixture  of  pasture  land  and  fields  for  intensive  and  extensive  crop  growing;  land  near  the  River  Irthing  is  used  for  whole  crop  silage.  

 

 

Map  3:  Dudley  Stamp  Land  Use  Inventory;  ©  Environment  Agency;  use  by  kind  permission  

   

BABE  –  Brampton  AD  Feedstock  Study  

 

Public  Version                                                                                                                                            page  18  of  94  

Environmental   and   landscape   designations   can   have   an   adverse   impact   –   from   noise,   odour,   light  pollution  etc.  –  on  any  proposed  AD  plant  location  as  well  as  on  any  farm  land  supplying  energy  crops  where  a  significant  change  in  landscape  occurs.    

The   following   snapshots   are   based   from   1:250,000  maps   by   http://magic.defra.gov.uk/   under   the  Central  Government  Public  Sector  Mapping  Agreement  (PSMA).    

Whilst   the   proposed   AD   location   is   under   no   impact   from   statutory   landscape   designations   like  National  Parks  or  Areas  of  Outstanding  Natural  Beauty  (AONB),  the  South  West  of  the  supply  source  area  is  affected  by  the  Northern  Pennines  AONB  any  visual  impact  from  land  use  for  the  AD  will  have  to  be  taken  into  consideration.    

 

 

Map  4:  Location  and  boundaries  for  AONB,  NNR  and  Moorland  line  ©  Crown  Copyright  and  database  rights  2013.  Ordnance  Survey  

 

 

Map  5:  Locations  and  boundaries  for  SSSI  and  SAC  ©  Crown  Copyright  and  database  rights  2013.  Ordnance  Survey  

   

BABE  –  Brampton  AD  Feedstock  Study  

 

Public  Version                                                                                                                                            page  19  of  94  

In  regard  to  environmental  designations,   the  most  relevant  Sites  of  Special  Scientific   Interest   (SSSI)  are   the  White  Moss,   Crosbymoor   SSSI   to   the   East   of   Brampton,   and   the  Unity   Bog   SSSI,   the  Gelts  Wood  SSSI  and  the  Cairnbridge  Sand  Pit  SSSI  to  the  South  of  Brampton.  The  Walton  Moss  National  Nature  Reserve  (NNR)  plus  the  Walton  Moss  Special  Area  of  Conservation  (SAC),  a  status  of  European  importance,   is  a  raised  bog  at  the  North  West  of  Brampton.  The  NNR  and  the  SSSIs  will  have  to  be  taken   into   account   if   there   is   any   change   of   agricultural   practice   adverse   to   the   purpose   of  designation.  

Of  more   impact   for   the  supply  source  area  will  probably  be  the  buffer  zone  of   the  Hadrian  Wall,  a  World  Heritage  Site   (WHS)  with   its  course   from  to  the  West   to   the  East   in   the  North  of  Brampton.  The   buffer   zone   is   not   arranged   by   a   fixed   distance   to   the   Hadrian   Wall,   but   takes   geographical  features  affecting  the  visibility  of  the  Wall  into  account.      

 

Map  6:  Boundaries  for  the  Hadrian  Wall  World  Heritage  Site    ©  Crown  Copyright  and  database  rights  2013.  Ordnance  Survey  

 

 

Map  7:  Locations  of  historic  statutory  sites    ©  Crown  Copyright  and  database  rights  2013.  Ordnance  Survey  

   

BABE  –  Brampton  AD  Feedstock  Study  

 

Public  Version                                                                                                                                            page  20  of  94  

Map  7  shows  the  content  of  map  6  with  the  additional  layer  of  Scheduled  Monuments.    

Archaeological   sites   and  WW2   aircraft   sites   have   not   been   included   on  maps,   as  with   no   relevant  change  in  farming  practices  –  unless  a  field  will  be  ploughed  for  the  very  first  time  –  no  impact  from  sub-­‐soil  objects  is  expected.  

In  regard  to  agro-­‐environmental  schemes,  many  farms  have  entered  into  Entry  Level  or  Countryside  Stewardship  Schemes  and  farmers  might  not  want  to  loose  financial  benefits  arising  from  them,  this  may  result  in  a  slight  reduction  of  land  available  for  silage  production  and  will  have  to  be  considered  for  crop  yield  calculations.  

Geographical  features  like  altitude,  exposure,  topography  and  steepness  of  slope  might  effect  grass  seed   selection,   cutting   frequency   and   yield.   Those   impacts  where   applicable   are   considered   in   the  overall  productivity  figures.  

While  the  area  of  the  Nitrate  Vulnerable  Zone  (NVZ),  where  the  spreading  of  nitrate  as  either  solid  or  liquid   fertiliser   from   industrial   fertiliser   products,   untreated   slurry   or   treated   digestate,   is   limited,  covers   the   Townfoot   Industrial   Estate,   the   real   relevance   to   the   project  will   be  where   a   supplier’s  farm  land  is  situated  within  the  NVZ  boundaries.    

 

 

Map  8:  NVZ  boundaries  ©  Crown  Copyright  and  database  rights  2013.  Ordnance  Survey  

A  Nitrate  Vulnerable  Zone  (NVZ)  is  designated  on  all  land  draining  to  and  contributing  to  the  nitrate  pollution  in  ‘polluted’  waters.  Polluted  waters  include:  

• Surface  or  ground  waters  that  contain  at  least  50mg  per  litre  (mg/l)  nitrate  

• Surface  or  ground  waters  that  are  likely  to  contain  at  least  50mg/l  nitrate  if  no  action  is  taken  

• Waters  which  are  eutrophic,  or  are  likely  to  become  eutrophic  if  no  action  is  taken  

A  water  is  considered  eutrophic  if  it  contains  levels  of  nitrogen  compounds  that  cause  excessive  plant  growth  resulting  in  an  undesirable  disturbance  to  the  balance  of  organisms  present  in  the  water  and  to  the  quality  of  the  water’.    

Further  information  can  be  found  on  https://www.gov.uk/nitrate-­‐vulnerable-­‐zones    

   

BABE  –  Brampton  AD  Feedstock  Study  

 

Public  Version                                                                                                                                            page  21  of  94  

4.1.3. Energy  Content  of  Biogas  Substrates  

The  overarching  aim  is  to  generate  as  much  raw  bio-­‐methane  as  possible  from  anaerobic  digestion,  the  fermentation  of  carbon-­‐based  biomass.  To  obtain  the  maximum  biogas  yield,  we  are  looking  for  material  with  the  highest  energy  content  within  its  specific  substrate  category.    

For   livestock  manure  and  slurry   the  energy  content  corresponds  mainly  with   freshness,  dry  matter  content.  From  an  AD  perspective  the  absence  of  chemical  detergents,  antibiotics  or  other  chemicals  and   elements   harmful   is   vital   for   anaerobic   bacteria.   To   raise   the   awareness   about   the   different  purposes,  qualities  and  treatment  of  grass,  the  following  table  gives  an  overview  about  the  different  grass  cultivation  treatments.  

 

Purpose  of  Grass   Grass  for  grazing   G.  silage  f.  dairy   G.  silage  f.  horse   G.  silage  for  AD  

Heading  varying  heading  dates  (to  extend  grazing  season)  

May   May   uniform  ripening,  May  

Grass  type   standard  varieties   standard  varieties   standard  varieties   high  sugar  &  high  mass  varieties  

Cutting  length   n/a   long,  ca  230-­‐290mm  

long,  ca  230-­‐290mm  

short,  ca  7mm  

1st  cut     grazing  as  required  

before  or  at  ear  emergence  

betw.  ear  emerg.  and  blooming  

before  ear  emergence  

2nd  cut     grazing  as  required  

4-­‐6  weeks  following  1st  cut  

4-­‐6  weeks  following  1st  cut  

4-­‐6  weeks  following  1st  cut  

Silage  method   n/a   round  bale  or  clamp  

round  bale   clamp  

Table  2:  Comparison  of  grass  silage  harvest  practices  

The  energy  potential  for  grass  silage,  which  could  be  described  as  a  form  of  preserved  grass,  depends  mainly  on   the  dry  matter   content   (DM)  of   the   total  or   fresh  weight   (FW)  and   its  digestibility  value  (DV).   The   latter   is   characterised   by   a   high   sugar   level.   A   DV   is   achieved   by  maintaining   anaerobic  conditions   during   the   ensilage   of   forage,   as   only   under   those   conditions   lactic   acid   bacteria   can  dominate  the  fermentation  process.  

In   the   last   few   years   grass   types  with   a   high   energy   content   are   specifically   developed   for   biogas  applications.  Higher  FW  values  are  also  achieved  by  a  harvesting  practice,  which  varies  slightly  from  harvesting   methods   for   livestock   feeds.   Numerous   agricultural   organisations   and   research  institutions  like  ADAS,  DEFRA,  NFU,  The  Grass  Institute  as  well  as  seed  and  equipment  companies  and  have  produced  literature  explaining  the  relevance  of  soil  management,  fertilising,  seed  selection,  re-­‐seeding,  cutting  time,  harvesting  and  silage  making.  

The  next   illustration  shows  how  the  grasses  energy  potential,   from  the  point  of  biogas  generation,  develops   over   its  maturity   or   growth,  which   also   demonstrates  why   the   above  mentioned  harvest  timing  is  crucial.  

 

The  illustration  shows  the  development  in  relation  to  age  from  younger  grass  to  older  grass.  

   

BABE  –  Brampton  AD  Feedstock  Study  

 

Public  Version                                                                                                                                            page  22  of  94  

 

Illustration  3:  Comparison  of  grass  silage  harvest  practices  (Source:  Murphy)  

4.1.4. Assessment  Criteria  

Each  farm  with  an  interest  in  providing  input  material  was  assessed  against  a  number  of  criteria  for  quality   and   quantity   of   potential   feedstock,   environmental   issues,   long-­‐term   farm   plans   and   legal  issues  like  unregistered  titles,  complex  ownership  structures,  divorce  and  inheritance  issues.  

The  criteria  for  livestock  farms  were:  

• Livestock  type  

• Slurry  volume  and  manure  volume  

• Housing  system  and  bedding  material  type  

• Seasonal  variance  of  volumes  (summer  /  winter)  

• Dry  matter  content  (from  existing  lab  analysis  or  estimate)  

• Dirty  water  and  effluents  volume  

• Wash  water  and  wash  water  detergents    

• Slurry  storage  capacity  and  slurry  storage  cover  

• Ability  to  pump  slurry  directly  from  slats  (when  slurry  storage  tank  contains  dirty  water)  

The  criteria  for  silage  farms  were:  

• Size  of  agricultural  holding  and  current  land  use  

• Operator  /  staff    

• Steepness  of  slope  with  access  limitations  for  machinery  

• Altitude  and  exposure  to  extreme  weather  conditions  

• Topographical  issues:  crags’,  cliffs,  water  courses  

• Flooding  

• Environmental  and  landscape  designations,  incl.  archaeological  sites  

• Agro-­‐environmental  management  schemes  (Countryside  Stewardship  Scheme)  

• Other  restrictions,  e.g.  permission  from  the  EA  for  ploughing  of  pastures  

• Security  of  title  and  long-­‐term  intentions  for  farm  and  outlook  over  next  20  years  

4.1.5. Initial  Feedback  

The   timing   for   approaching   farmers   was   in   the   midst   of   lambing,   ploughing,   sowing   or   other  preparatory   fieldwork.   Postponing   the   fieldwork   would   not   have   made   a   difference   to   farmers,  

   

BABE  –  Brampton  AD  Feedstock  Study  

 

Public  Version                                                                                                                                            page  23  of  94  

considering   an   unpredictable  weather   and   an   ongoing   heavy  workload.   Facing   the   practicalities   of  farming   life,   the   feedstock   surveyor  had   to  work   round  such  constraints  and  consequently   farmers  were  approached  in  their  farmhouse,  on  a  tractor  en  route  to  work  or  on  the  field.    

It   turned  out   that   some  potential   suppliers  were   ‘hard-­‐to-­‐reach’.   It   took   several   failed  attempts   to  understand  that  farmers  had  abandoned  full  time  farming  and  taken  up  part  or  full  time  employment  in  Carlisle;   they  were  only  approachable  after   regular  office  hours  or  on  weekends.  Unsurprisingly,  such  farming  style,  or  rather  life  style,  is  found  on  extensive  grassland.  

The  survey  brought  another  unexpected  feedback  from  dairy  famers:  while  in  other  parts  of  Cumbria  dairy   farmers   are   faced  with   the   issue   of   disposing   slurry,   the   situation   around  Brampton   is  more  diverse:   Some   farms  are  able   to   spread  all   slurry  on   their  own  holding,   some  are   relying  partly  on  third  party  land  and  some  are  approached  for  their  slurry  as  fertiliser  for  arable  third  party  land.  

Within   the   supply   source   area   some   whole   crop   silage   and   even   some   maize   is   harvested.  Considering   the   few  AD   plants   in   the   area   and   the   lack   of   experience   in   trading   feedstock   for   AD  purposes   there  was   little   surprise   to   find   no  willingness   from   crop   farmers   to   engage  with   supply  contracts   for   the   proposed   BABER   AD   project.   As   with   other   regions   where   AD   is   successfully  introduced   and   a   feedstock   supply   chain   is   established,   we   expect   attitudes   towards   commercial  feedstock  contracting  will  change  over  years.  As  a  consequence  the  feedstock  survey  was  narrowed  down  to  grass  silage  and  livestock  slurries.    

 

Chapter  summary:  

•  The  defined  Supply  Source  Area  covers  an  area  of  medium  to  poor  quality  agricultural  land.  

•  The  main  statutory  designation  potentially  affecting  suitable  land  is  the  Hadrians  Wall,  a          World  Heritage  Site.  

•  Only  a  smaller  part  of  the  Supply  Source  Area  is  affected  by  NVZ  regulations.  

 

   

BABE  –  Brampton  AD  Feedstock  Study  

 

Public  Version                                                                                                                                            page  24  of  94  

4.2. Stage  1:  Farms  with  available  Livestock  and  Grass  Land  

Several   farms   have   been   identified   as   potential   supply   sources   following   their   owner’s   (repeated)  confirmation  of  interest  to  supply  the  proposed  AD  plant.  Their  details  are  listed  in  Appendix  B.  The  survey  has  resulted  in  registering  the  potential  for  ten  slurry  suppliers  and  four  silage  suppliers.  The  findings   for   slurry   supplies  and   silage   supplies  are  presented   in   separate   tables  as   these   two   input  streams  follow  different  procedures  and  routines.  

 Livestock  Farms  

The  following  table  lists  livestock  farms  interested  in  supplying  slurries  and  their  herd  sizes.  

Site  no.   Farm  (abbrev.)  

Livestock  Type  

ave.  herd  number  

Housing  system  

Slurry  storage  

ave.  heifers  (0-­‐1y,  1-­‐2y)  

1   Glebe   Dairy  cows   ca  1000   slats   available   20%  of  herd  

2   Middle   Dairy  cows   ca  200   slats   available   20%  of  herd  

3   Cumcatch   Dairy  cows   ca  250   slats   available   20%  of  herd  

4   Seat   Dairy  cows   ca  250   slats   available   20%  of  herd  

5   Lane   Dairy  cows   ca  150   slats   available   20%  of  herd  

6   Byegill   Dairy  cows   ca  200   slats   available   20%  of  herd  

7   Burtholme   Dairy  cows   ca  200   slats   available   20%  of  herd  

8   Cross   Dairy  cows   ca  150   slats   available   20%  of  herd  

9   Rigg   Dairy  cows   ca  250   slats   available   20%  of  herd  

10   Walton   Dairy  cows   ca  250   slats   available   20%  of  herd  

Table  3:  Farms  with  livestock  manures  

 Arable  Farms  

The  next  table  lists  farms  interested  in  supplying  silage  and  shows  their  approach  to  silage  making.  

Site  no.   Land  type   LCA  -­‐  land  category  

Acres   Farming  business  

Ploughing   Crop  rotation  

A.    Armstrong  

extensive  grass  land  

3   140   extensive  mixed  farm’  

occasionally   currently  not  applied  

B.    Routledge  

extensive  grass  land  

3   094   subsidiary  income  

no   currently  not  applied  

C.    Forster  

extensive  grass  land  

3   060   subsidiary  income  

occasionally   not  applied  

D.    Palmer  

extensive  grass  land  

3   150   extensive  mixed  farm’  

occasionally   currently  not  applied  

Table  4:  Farms  with  grass  silage      

   

BABE  –  Brampton  AD  Feedstock  Study  

 

Public  Version                                                                                                                                            page  25  of  94  

Other  Supply  Sources  

The  following  table  lists  ‘other  supply  sources’,  defined  as  being  neither  livestock  manure  and  slurry  nor  energy  crops,  identified  through  the  survey.    

Site  No.   Industry   Location   Substrate  category  

Substrate  type  

Generated  on-­‐site  

   

Z   Brewery     Brampton   food  waste     hop  mash     yes        

Z   Brewery     Brampton   food  waste   yeast  wash   yes        

Table  5:  Supply  sources  for  ‘other  substrates’    

All  above  identified  supply  source  locations  are  shown  on  the  map  below.    

 

Map  9:  Supply  source  locations  ©  Crown  copyright  and  database  rights  2013  Ordnance  Survey  0100031673  

   

BABE  –  Brampton  AD  Feedstock  Study  

 

Public  Version                                                                                                                                            page  26  of  94  

4.3. Stage  2:  Feedstock  Potential  –  Quantities  and  Qualities  

The  second  stage  of   the   feedstock  study   is   to  assess   the  quantities  and  qualities  of  any  potentially  available   input   material.   For   a   better   understanding   of   the   background   assumptions   used   the  different  input  streams  are  presented  separately.  

4.3.1. Feedstock  Potential  from  Livestock  Manures  and  Slurry  

The  assumptions  for  the  calculation  of  manure  and  slurry  volumes  as  shown  in  the  table  below  are:  

• The  dairy  herd  consists  of  milking  cows  with  an  average  milk  yield  of  6,000  -­‐  9,000  l/a.  

• Cows  in  this  category  produce  excreta  of  53  kg  or  litre  per  day  (Sources:  ADAS,  DairyCo)  

• Slurry  volumes  are  calculated  as  undiluted  from  dirty  water  and  effluents  

• Slurry  is  assumed  to  be  ‘fresh’,  meaning  available  for  the  digester  within  24  hours  

• The  density  factor  for  slurry  is  assumed  as  ‘1’.  (Source:  DairyCo)  Literature  references  for  slurry  density  are  given  between  0.9  and  1,  depending  on  its  dry  matter  content  and  its  dilution  factor.  

 

Site  No.   Excess  FYM  available  

Potential  slurry  

Housing  time  

Actual  slurry  

Slurry  for  AD  (est.)  

Slurry  for  AD  

  ton   m3  =  ton   months   m3  =  ton   %   m3  =  ton  

1.   0   19,345   12   19,345   100%   19,345  

2   0   03,869   06   01,935   30%   00,580  

3   0   04,836   06   02,418   30%   00,725  

4   0   04,836   06   02,418   30%   00,725  

5   0   02,902   06   01,451   30%   00,435  

6   0   03,869   06   01,935   30%   00,580  

7   0   03,869   06   01,935   30%   00,580  

8   0   02,902   06   01,451   30%   00,435  

9   0   04,836   06   02,418   20%   00,484  

10   0   04,836   06   02,418   20%   00,484  

Total             24,375  

Table  6:  Available  volumes  of  undiluted,  fresh  slurry  

In   the   absence   of   any   measurement   for   e.g.   daily   slurry   volume   by   the   farm,   UK-­‐wide   standard  figures   for   slurry   production   are   the   most   accurate   way   forward.   Such   average   figures   take   into  account   that   all   herds   have   over-­‐and   under   yielding   cows   due   to   age,   health,   calving   and   farm  management  practices  (housing,  nutrition).  

The  total  volume  of   fresh  dairy  slurry  available   for  AD  purposes   is  estimated  to  be  24,375  m3.  This  volume   is  more   than  sufficient   to  as  part  of  a   feedstock  mix   in  a   silage-­‐based  AD  plant.  The  entire  volume  however  is  spread  unevenly  across  the  year  due  to  different  housing  length  on  the  farms.  

The  all  year  round  availability  of  cattle  slurry,  or  rather  the  lack  of  it  during  the  grazing  period  of  the  summer   months,   has   also   been   identified   as   on   of   the   barriers   for   on-­‐farm   AD   by   the   Royal  

   

BABE  –  Brampton  AD  Feedstock  Study  

 

Public  Version                                                                                                                                            page  27  of  94  

Agricultural   Society   of   England   (RASE).   The   next   table   shows   the   seasonal   variance   of   all   available  slurry,  incorporating,  where  applicable,  a  six  months  housing  period  of  October  to  March.    

 

Month   1   2   3   4   5   6   7   8   9   10   11   12  

Slurry  (ton)  

2450   2450   2450   1612   1612   1612   1612   1612   1612   2450   2450   2450  

Table  7:  Seasonal  variance  of  slurry  volumes  

With  many   silage   AD   system   providers   typically   requiring   10   –   30%   of   slurry   as   part   of   the   entire  feedstock  mix,  provided  that  the  rest  is  silage,  the  available  minimum  of  1,612  tons  /  m3  per  month  seems  more  than  adequate.    

The  main   concerns   among  AD  operators   using   slurries   are   the   issues   of   dilution  with   rainwater   or  dirty   water   and   the   inclusion   of   chemical   substances   attacking   the   anaerobic   bacteria.   The   issue  regarding  rainwater   is  primarily  an  economical  one.  Water  being  processed  through  the  AD  system  provides  no  biogas,  but  creates  infrastructure  cost  for  e.g.  enlarged  tank  size  and  additional  digestate  storage.  Water  is  sometimes  used  as  input  material  to  reduce  the  overall  dry  matter  content  of  the  digester  tank  where  there  is  no  slurry  available  or  the  planning  permit  prohibits  the  use  of  livestock  slurries  –  unlikely  scenarios  for  the  BABE  AD  plant.  

The  sources  for  potential  and  volumes  for  dilution  and  contamination  of  slurries  are:  

• The   volume   for   applicable   ‘dirty   water’,   which   is   ‘run-­‐off’   from   contaminated   or  concreted  areas  and   includes   rainwater,  also   referred   to  as  storm  water  or   roof  water,  depends   on   the   affected   roof   and   yard   area,   the   on-­‐site   drainage   system   and   local  rainwater  volume.   Its  volume  has  not  been  calculated  or  estimated;   it   is  relevant  when  joining  the  slurry  stream.    

• The  volume   for  parlour  wash  water  depends  on   the   type  of  hose   in  use.   The   standard  volume  for  a  high  pressure  hose  is  20l/cow  in  milk/day  (or  30l  for  a  high  volume  hose).  (Source:   DairyCo)  Milking   parlour   wash   water   contains   (legally   dischargeable)   biocides  and  disinfectants;  it  is  relevant  when  joining  the  slurry  stream.  

• Water   containing   pharmaceuticals   are   depending   on   disease   prevention   schemes   and  out-­‐brakes   of   livestock  diseases   and   are   therefore   varied   and   seasonal.   Its   volume  has  not  been  calculated  or  estimated;  it  is  relevant  when  joining  the  slurry  stream.  

• The   volume   for   effluents   from   housing,   storing   or   transporting   slurry   and   farmyard  manure  has  not  been  estimated  as  it  depends  on  the  farm  management,  farm  layout  and  on-­‐site  drainage  system  arrangements.  

• The   combined   volume   of   dirty   water,   wash   water   and   effluents   has   to   be   calculated  together  with  measured  or  estimated  or  values  for  its  N,  P  and  K  content,  which  have  to  be  taken  into  account  if  discharged  within  an  NZV.  

Dirty  water,  wash  water  and  effluents  can  mix  with  the  livestock  slurry  at  various  points.  In  principle  they  can  be  located  at  the:  

• Slats  

• Man  holes/drains  

• Slurry  store  (tank,  lagoon  or  other  structure)  

It  will   be   vital   for   future   slurry   supply   agreements   to   understand   the   livestock   husbandry   of   each  supply   farm  and   to  define   the  preferred  slurry  collection  points   for  undiluted  and  uncontaminated  material.  

   

BABE  –  Brampton  AD  Feedstock  Study  

 

Public  Version                                                                                                                                            page  28  of  94  

The  next  table  shows,  where  reasonably  possible,  the  likely  volumes  for  dilution  and  contamination  and   the   impact   on   slurry   volumes.   Although   some   figures   can   only   be   determined   by   a   detailed  assessment  of  roof  surfaces,   local   rain   fall   figures,  husbandry  practices  and  housing  conditions,  but  are  listed  for  the  sake  of  completeness.  ‘Mixing  point’  refers  to  the  place  where  dirty  water  etc  and  slurry  finally  mix.  

 Table  8:  Possible  volumes  of  dilution  and  contamination  

The  sheer  volume  of  non-­‐slurry  liquids  –  almost  60%  of  raw  slurries,  storm/roof  water  and  effluents  not  even   included  –  highlights   the   issue  of  processing   contaminated   ‘water’   through   the  AD  plant:  hardly  any  benefit,  but  cost  implications  for  the  extra  tank  volume  and  infrastructure  requirement.  

However,   the  survey  highlighted  that  any  dirty  water,  milking  parlour  wash  water  and  effluents  do  not  mix  with   the   raw  slurry  at   the   slats,  but  at   the   slurry   storage   tank.  Therefore,  as   long  as   fresh  slurry   can   be   pumped   directly   from   the   slats   into   the   digester,   there   would   be   no   need   for   any  additional  drainage,  pipe  work  or  other  infrastructure  change.  

The   future   operator   will   need   assurances   that   (pump)   access   to   the   slats   can   be   provided   when  required  and  that  any  slurry  provided  for  the  AD  facility  will  be  free  from  detergents,  antibiotics  and  other   livestock   pharmaceuticals.   In   case   of   farm   infrastructure   repair   or   failure   the   technology  provider  and  the  operator  will  have  to  decide  whether  the  robustness  of  the  AD  system  would  cope  with  some  or  all  of  these  contaminants.  

Generally   speaking,   there   has   been   no   incentive   for   farmers   to   separate   the   various  waste  water  sources   from   slurry.   Farm  no.   1  was   considering   separating   the  dirty  waters   from   slurry  while   this  was  not  a  priority  issue  for  all  other  farms.  

Regarding  the  overall  solidity  or  dry  matter  (DM)  content  of  fresh,  undiluted  dairy  slurry  –  figures  are  typically   within   the   range   of   8.5%   DM   to   10%   DM   (Sources:   ADAS,   KTBL,   LfL,   etc).   Laboratory  analysis’s  from  working  farms  have  shown  figures  for  undiluted  slurry  of  up  to  11%  DM,  whilst  figures  for  diluted  dairy  slurry  can  be  as  low  as  6%  DM.  It  should  be  noted  that  the  type  of  cattle  feed  also  has  an  impact  on  the  slurry  DM.    

Site  No.   Dirty  water  /roof  water  

Parlour  washing  

Pharma’  water  

Effluents   Accumul.  dilution  vol.  

Mixing  point  

  m3  =  ton   m3  =  ton   m3  =  ton   m3  =  ton   m3  =  ton    

1.   t.b.c.   07,300   t.b.c.   t.b.c.   07,300   slurry  store  

2   t.b.c.   01,730   t.b.c.   t.b.c.   01,730   slurry  store  

3   t.b.c.   01,913   t.b.c.   t.b.c.   01,913   slurry  store  

4   t.b.c.   01,913   t.b.c.   t.b.c.   01,913   slurry  store  

5   t.b.c.   01,548   t.b.c.   t.b.c.   01,548   slurry  store  

6   t.b.c.   01,730   t.b.c.   t.b.c.   01,730   slurry  store  

7   t.b.c.   10,730   t.b.c.   t.b.c.   01,730   slurry  store  

8   t.b.c.   10,548   t.b.c.   t.b.c.   10,548   slurry  store  

9   t.b.c.   10,913   t.b.c.   t.b.c.   01,913   slurry  store  

10   t.b.c.   10,913   t.b.c.   t.b.c.   01,913   slurry  store  

Total     14,238       14,238    

   

BABE  –  Brampton  AD  Feedstock  Study  

 

Public  Version                                                                                                                                            page  29  of  94  

As  a  matter  of  caution  we  have  chosen  the   lowest  figure  of  8.5%  from  the  above  quoted  range  for  our  further  calculations.  

4.3.2. Feedstock  Potential  from  Grass  Silage  

The  following  table  list  the  land  available  for  feedstock  supply  and  deducts  a  reasonable  percentage  for   potential   land   taken   aside   for   environmental   stewardship   schemes.   The   figure   will   eventually  depend  on   the  overall   field   layout  and  on  any   impact   from  archaeological   findings   to  be  discussed  with  the  County  archaeologist.  

 

Site  No.   Target  crop  for  AD  

Designation   Environ’  Stewardship  

Land  ownership  

Land  reduction  

Land  for  production  

        acres   %   acres  

A   grass  silage   Hadrian  Wall,  etc  

yes   140   5%   133.0  

B   grass  silage   -­‐   yes   094   5%   089.3  

C   grass  silage   -­‐   yes   075   5%   071.3  

D   grass  silage   -­‐   yes   060   5%   057.0  

Total         369   5%   350.6  

Table  9:  Land  potential  for  AD  

Following   the   identification  of   available   land   the  next   step   is   to   identify   its  productivity   in   form  of  silage  yield  figures.  Yield  figures  will  vary  for  many  reasons,  e.g.  fertilising  regime,  land  management,  weather,  seed  mix  or  age  of  type  and  age  of  sward.  

An  NNFCC  study  on  farm-­‐scale  AD  in  England  confirms  a  yield  of  45  fresh  tonnes  of  grass  silage  per  hectare,   equivalent   to   18.2   t/acre.   Across   the   country   such   yield   may   be   achieved   with   different  number  of  cuts.    

In   line  with   local   harvest   figures  we   assume   the   following   typical   figures   for   ‘dry   tonne’   and   fresh  weight  yields  for  grass  silage.   (Additional  sources:  ABC,  AFBI)  Naturally,  the  yield  for   individual  cuts  may  vary.  

Grazing  grass  yield     4.25  t  DM/acre  with  three  cuts:  8.0+6.0+3.0  =  17  t/ac  FW  @  25%  DM  

Average  yield     4.50  t  DM/acre  with  three  cuts:  8.5+6.5+3.0  =  18  t/ac  FW  @  25%  DM  

Biogas  grass  yield   5.00  t  DM/acre  with  three  cuts:  9.5+7.5+3.0  =  20  t/ac  FW  @  25%  DM  

The  Study  aims  to  be  on  the   ‘safe  side’  with  only  two  cuts  per  season,  totalling   in  tons/acre  of  FW  from  ‘biogas  grass’.  Any  grass  silage  from  a  third  cut  would  be  seen  as  input  material   in  reserve  for  future  use.  

Local  yield  figures  are  illustrated  in  a  lab  analysis  for  grass  silage  from  a  farm  adjacent  to  one  of  the  identified  supply  farms  in  Appendix  D.  

For  the  benefit  of  comparison,  it  should  be  mentioned  that  farmers  in  the  North  West  of  England  and  in  other  regions  have  yielded  6  tons  of  dry  matter  per  acre  of  grass  silage  intended  for  AD  purposes.  In   those   circumstances   the   land   benefitted   from   freshly   seeded   grass,   grass   types   developed   for  biogas,   and   professional   harvesting   methods.   Considering   the   age   of   the   existing   grass   on   the  identified   pastures,   in   some   swards   over   seven   years,   a   reseeding   scheme   combined   with   an  appropriate  soil  treatment  and  fertilising  programme,  would  seem  necessary.    

   

BABE  –  Brampton  AD  Feedstock  Study  

 

Public  Version                                                                                                                                            page  30  of  94  

The  Study  assumes  that  any  energy  loss  from  fresh  cut  grass  to  silage  in  a  well-­‐managed  silage  clamp  is  minimal  and  can  be  neutralised  by  silage  additives.  Therefore  at  that  stage  no  corrective  factor  for  energy  loss  is  applied.  

The   following   table   shows   a   staged   yield   increase   from   reseeding   a   quarter   of   the   arable   land   by  utilising  two  cuts.  

 

Site  No.   Productive  acres  

Current  yield/acre  

Reseeding  expected  

Reseeding  for  yr  1  

ave.  Yr  1  yield/acre  

Yr  1  yield/farm  

  Acres   t  of  FW     %  of  acres   t  of  FW   t  of  FW  

A   133.0   13.00   uncertain   -­‐   13.00   1,729  

B   089.3   13.00   yes   25%   14.00   1,250  

C   057.0   13.00   yes   25%   14.00   0.798  

D   071.3   13.00   yes   25%   14.00   0.998  

Total   350.6           4,775  

Table  10:  Yield  improvement  for  grass  harvest  in  year  1  

Due  to  a  yield  reduction  of  grass  harvest  from  the  ageing  of  the  grass  roots  a  reseeding  is  done  every  four  years  with  a  break  crop  of  similar  biogas  yield,  e.g.  whole  crop  wheat  or  barley.    

The  next  table  shows  the  consecutive  yield  increase  over  the  second  and  third  year.  

 

Site  No.   Reseeding  for  yr  2  

ave.  Yr  2  yield/acre  

Yr  2  yield/farm  

Reseeding  for  yr  3  

ave.  Yr  3  yield/acre  

Yr  3  yield/farm  

  %  of  acres   t  of  FW   t  of  FW   %  of  acres   t  of  FW   t  of  FW  

A   -­‐   13.00   1,729   -­‐   13.00   1,729  

B   50%   15.00   1,340   75%   16.00   1,429  

C   50%   15.00   0.855   75%   16.00   0.912  

D   50%   15.00   1,069   75%   16.00   1,140  

Total       4,992       5,210  

Table  11:  Yield  improvement  for  grass  harvest  in  years  2  and  3  

The   yield   figures   at   completion   of   the   initial   reseeding   programme   in   year   four   will   be   used   as  standard  figures  for  the  entire  AD  plant  life  cycle.    

The  Digestibility  Value  (‘DV’)  is  a  grass  yield  benchmarks  indicating  the  energy  value  of  biomass;  we  assume  a  minimum  DV-­‐of  69,  but  would  target  a  minimum  DV  level  of  73  units.  

Table  12  shows  the  yield  increase  from  reseeding  in  the  fourth  year  and  gives  an  overview  over  the  aforementioned  yield  benchmarks.  

 

 

   

BABE  –  Brampton  AD  Feedstock  Study  

 

Public  Version                                                                                                                                            page  31  of  94  

Farm  No.   Reseeding  for  yr  4  

exp.  Yr  4  yield/acre  

exp.  Yr  4  yield/farm  

D-­‐Value  minimum  

D-­‐Value  expected  

n/a  

  %  of  acres   t  of  FW   t  of  FW   unit   unit    

A   -­‐   13.0   1,729   66-­‐69   73+    

B   100%   17.0   1,518   66-­‐69   73+    

C   100%   17.0   0,969   66-­‐69   73+    

D   100%   17.0   1,211   66-­‐69   73+    

Total       5,427        

Table  12:  Grass  harvest  yield  improvement  in  year  4  

The  year  following  ‘year  4’  will  trigger  a  new  reseeding  cycle,  with  a  break  crop  keeping  the  crop  yield  and  the  resulting  energy  potential  at  a  constant  level.    

Therefore  the  figures  in  ‘year  4’  will  be  applied  as  the  typical  annual  throughput  and  form  the  basis  for  calculating  the  typical  annual  plant  performance.  

4.3.3. Feedstock  Potential  from  ‘Other  Substrates’  

The  search  for  input  material,  which  is  neither  energy  crop  nor  livestock  manures  and  slurry,  referred  to   as   ‘other   substrates’,   was   not   seen   as   priority   due   to   the   increased   contractual   and   regulatory  complexity   level.   Nevertheless   some   material   was   identified   from   a   local   micro   brewery   in   close  proximity   to   the  proposed  AD   location  For   the  sake  of  understanding  of   the  associated   issues  with  food  waste  these  findings  are  included  in  the  study.  The  substrates  concerned  are  listed  in  the  table  below:  

 

Site  No.   Substrate   Volume     Volume     DM   DM   n/a  

    t/week   t/yr   %   t/yr    

Z   hop  mash     0.125     6.5   -­‐   -­‐   -­‐  

Z   yeast  wash     0.125     6.5   -­‐   -­‐   -­‐  

Table  13:  Feedstock  potential  from  ‘other  substrates’  

The  survey  showed  that   the  brewery  closes   for   two  weeks   in  autumn  for  general   refurbishment  of  the   infrastructure   and   that   there   is   an   increased   output   to   the   season   running   up   to   Christmas.  Looking   at   the   bigger   picture  with   about   5,500   tpa   of   grass   silage,   this   variance   of   brewery  waste  supply,  shown  below  on  a  monthly  basis,  is  negligible.  

 

Month   1   2   3   4   5   6   7   8   9   10   11   12  

mash   0.54   0.54   0.54   0.54   0.54   0.54   0.54   0.54   0.27   0.54   0.83   0.54  

wash   0.54   0.54   0.54   0.54   0.54   0.54   0.54   0.54   0.27   0.54   0.83   0.54  

Table  14:  Seasonal  variance  of  ‘other  substrates’,  measured  in  tonnes  

   

BABE  –  Brampton  AD  Feedstock  Study  

 

Public  Version                                                                                                                                            page  32  of  94  

4.3.4. Conclusion  

The   following   annual   feedstock   potential   could   be   identified   for   the   proposed   BABE   AD   plant,  whereby   the   figures   shown  below  do  not   take  any  actual   slurry   requirement  during   live  operation  into  consideration.  A  density  factor  is  added  to  convert  the  measure  for  weight  in  volume.  

 

Substrate  category  

Substrate  type  

Total  FW/t   All  substrate  share  of  total  

Density  factor   Total  FW/m3  

livestock  slurry   dairy  slurry   24,375   081.8%     100%   24,375  

energy  crops   grass  silage   05,427   018.2%     085%   06,384  

food  waste   mash  +  wash   00,013   000.0%   100%   00,013  

Total       29,815    100.0%     30,772  

Table  15:  Summary  of  all  identified  AD  input  material  and  their  share  of  total  material  

The  quality  of   the  crop  and  the  subsequent  silage   is  demonstrated   in   two  more  values:  dry  matter  and  organic  dry  matter:  

The  dry  matter  content  (DM)  shows  the  share  of  biomass  without  any  water  content.  For  grass  it  is  dependent  on  the  weather  situation  in  the  build-­‐up  to  and  at  the  cropping.  The  traditional  practice  of  24  hours  wilting,  weather  permitting,   before  delivery   to   the   silage   clamp  will   reduce   the  moisture  level.    

Considering  the  regionally  prevailing  wet  conditions  we  assume  a  DM  of  25%,  but  target  28%.  For  the  sake  of  comparison,  in  the  dry  harvest  season  of  2012  the  average  DM  for  grass  in  Cumbria  exceeded  30%.  (Source:  NFU,  farmers’  lab  tests)  

The   organic   dry   matter   (oDM),   also   termed   ‘volatile   solids’   (VS)   indicates   the   level   of   digestible  organic  substances  of  the  dry  matter.  

Table   16   shows   the   DM   and   oDM   values   applied   to   the   identified   input   material.   (Sources:   LfL,  Baserga,  Wittmaier,  own  database)  

 

  FW   DM     DM   oDM  (=VS)    oDM  (=VS)   FW  select.  

Unit   t   %   t   %   t   t  

Slurry  fresh,  total  

24,375   08.5%  1)   2,072   85.0%   1,761    

Slurry  fresh  30%  of  total  

(02,326)   08.5%   (0,198)   85.0%   (0,168)   2,326  

Grass  silage  total  

05,427   25.0%  (minimum)  

1,357   87.0%  2)    (average)  

1,183   5,427  

Hop  mash     0,0  006.5   18.0  %  3)   0,001,2   90.0  %  3)   0,001,1    

Yeast  wash   0,0  006.5    3.0  %   0,000.2   75.0  %   0,000.1    

Total   29,815     3,430     2,945   7,753  

Table  16:  Dry  matter  and  organic  dry  matter  values  of  all  identified  AD  input  material  

   

BABE  –  Brampton  AD  Feedstock  Study  

 

Public  Version                                                                                                                                            page  33  of  94  

1)  Even  assuming  the  Project  is  able  to  obtain  a  equal  mix  of  undiluted  slurry  with  10%  DM            and  diluted  slurry  with  7%  DM,  such  combination  will  be  in  the  area  of  8.5%  DM.  

2)  A  combination  of  figures  for  first  and  second  cut  (see  chapter  4.4.2)  

3)  The  figures  for  hop  mash  are  taken  from  dried  spent  hops.  

4.3.5. EWC  Listing  

The  following  table  provides  a  classification  of  substrate  categories  according  to  the  European  Waste  Classification  (EWC)  system,  which  is  also  used  for  planning  and  permitting  purposes  and  for  proof  of  eligibility  for  payment  by  Feed-­‐in  Tariffs.  

 

EWC  code   Category   Types  of  waste  

02   Wastes  from  agricultural,  horticultural,  hunting.  Fishing,  and  aquacultural,  primary  production,  food  preparation  and  processing  

 

02  01   Primary  food  production  waste    

02  01  06   Animal  faeces,  urine,  manure  including  spoiled  straw,  collected  separately  and  treated  off-­‐site  

Poultry  droppings  Pig  and  cattle  slurry  Manure  Old  straw  

02  07   Wastes  from  production  of  alcoholic  and  non-­‐alcoholic  beverages  (except  tea,  coffee)  

 

02  07  01   Wastes  from  washing,  cleaning  and  mechanical  reduction  of  raw  materials  

Brewing  waste,  food  processing  waste,  fermentation  waste  

02  07  04   Materials  unsuitable  for  consumption  or  processing  

Brewing  waste,  food  processing  waste,  fermentation  waste,  beer,  alcoholic  drinks,  fruit  juice  stored  for  too  long  

Table  17:  Input  material  types  according  to  the  European  Waste  Classification  

Chapter  summary:  

•  The  entire  slurry  supply  potential  is  over  24,000  tons  per  year,  far  in  excess  of  requirement.  

•  All  dairy  herd  are  housed  for  12  months,  ensuring  a  continuous  slurry  supply.  

•  While  the  slurry  on  all  farms  is  diluted  in  the  slurry  storage  tank,  it  can  be  pumped  off  before        reaching  this  tank,  providing  an  undiluted  slurry  material.  

•  After  deducting  setting-­‐aside  land  for  other  farm  activities  and  agro-­‐environmental  schemes  350        acres  (142  hectares)  of  grass  land  remain  available  for  AD  purposes.  As  a  precaution  only  ca  2/3          of  the  land  is  assumed  to  be  available  for  re-­‐seeding.  

•  17  tons/acre  of  fresh  weight,  equalling  5  tons/acre  of  dry  weight,  is  accepted  as  achievable  long-­‐        term  yield,  resulting  in  5,427  tons  of  fresh  weight  per  year  as  AD  feedstock.  

•  A  realistic  assumption  of  feedstock  yields  have  allowed  for  two  cuts  out  of  three  possible;  leaving          an  optional  third  cut  as  back-­‐up  for  either  plant  or  farm.  

   

BABE  –  Brampton  AD  Feedstock  Study  

 

Public  Version                                                                                                                                            page  34  of  94  

4.4. Stage  3:  Biogas  Yield  and  Digestate  Output  Estimates  

The  biogas  potential  and   the  digestate  volumes  of  each  source  of   feedstock  will  be  assessed  using  published   standard   figures   and   industry   experience.   Those   figures   will   be   of   importance   for   the  evaluation  of  the  AD  substrates  and  for  the  design,  finance  and  benchmarking  of  the  AD  plant.  

The   biogas   yield   is   a   factor   of   a   substrate’s   content   of   carbohydrates,   proteins   and   fats   plus   their  respective  digestibility.  

The  elements  of  interest  for  the  digestate  output  are  mainly  its  volume  reduction  in  relation  to  the  original  input  material  volume  –  which  is  of  relevance  to  specify  storage  or  separation  equipment  –  and  its  fertilising  qualities,  typically  described  by  nitrogen,  phosphate  and  potassium  (N:P:K)  values.  

4.4.1. Biogas  Yields  –  Apples  and  Pears?  

There  are  several  ways  to  calculate  the  methane  potential  of  grass  silage  and  the  Study  aims  to  be  transparent  on  this  crucial   topic.  The  need  for  transparency   is  because  of  a   large  spectrum  of  yield  figures  in  circulation,  mainly  caused  by:  

• A  use  of  different  AD  systems,  retention  times  and  operating  temperatures  

• A  diversity  of  source  materials,  i.e.  grass  varieties  developed  for  different  purposes,  like  for  pasture,  forage  or  biogas  

• Variations  in  preparing  the  source  material,  i.e.  grass  samples  are  cut  at  various  maturity  stages  or  moisture  levels,  inadequate  silage  making  

• Co-­‐digestion   of   substrates,   which   (can)   provide   different   biogas   yields   to   a   substrate  fermented  on  its  own  

• The  non-­‐adherence  to  standardised  parameters,  e.g.  norm  volume  for  gases  

Additionally,  the  testing  for  the  potential  of  biogas  or  methane  in  small  batches  of  50  or  100  litres  (or  smaller)   is   sometimes   challenged   by   operators,   arguing   that   such   results   cannot   be   reliably  transferred  to  large  digester  tanks  with  volumes  of  thousands  of  cubic  metres.  

The   range   of   biogas   yield   figures   for   e.g.   grass   silage   is   highlighted   in   a  meta-­‐study   listing   biogas  yields  for  grass  from  400  –  1100  Nm3/kg  of  oDM,  a  difference  of  almost  300%.  (Source:  Comparing  Biogas  Yield  from  Grass  Silage;  )  

This  Study  aims  to  differentiate  between  primary  and  secondary  sources  of  biogas  or  methane  yield  figures.  Primary  sources  can  be:  

• Lab  testing  under  norm  conditions  (and  standardised  deductions  there  from)  

• Field  surveys  using  live  data  from  a  representative  sample  of  operational  plants,  e.g.  by  KTBL  or  the  consulting  firm  bioreact,  taking  hundreds  of  plants  into  account,  and  

Secondary  sources  for  biogas  or  methane  yield  figures  can  be:  

• Lab  testing  under  random  conditions  

• Operational  data  from  an  ‘one-­‐off’  AD  plant  (or  several  non-­‐identical  plants),  unsuitable  for  generalisation  

The   purpose   for   this   differentiation   is   to   understand   the   ‘gravity’   of   published   figures   for   biogas  potential  as  technical  and  financial  decisions  are  relied  upon..  

As   an   example,   the   values   stated   for   cubic  metres   of   biogas   illustrate   the   issue  with   compatibility  around  biogas  volume  output.  As   the  volume  of  gases   is   relative   to  e.g.   atmospheric  pressure  and  temperature,  ‘norm  gas’  has  been  introduced  to  ensure  compatible  values.  The  biogas  volume  from  standard  conditions  (‘STP’)  for  gas  at  fixed  parameters,  in  short  0°C  (as  with  DIN  1343),  0%  humidity  

   

BABE  –  Brampton  AD  Feedstock  Study  

 

Public  Version                                                                                                                                            page  35  of  94  

and  1.01325  bar  atmospheric  pressure,  must  be  adjusted  to  the  actual  conditions  of  the  biogas  when  processed  in  the  CHP.  Such  adjustment  often  goes  along  with  a  decrease  of  energy  level  as  biogas  at  0°C  has  a  higher  energy  potential  than  at  the  typical  55°C  in  an  AD  plant.  

Any  conversion  of  non-­‐standardised  into  standardised  figures  would  take  into  account  the  following  factors:  

• Measured  gas  volume  (in  m3)  

• Measured  gas  temperature  (in  ˚C)  

• Measured  air  pressure  (abs.)  (in  mbar)  

• Relative  gas  humidity  (in  %(  

A  free-­‐to-­‐use  calculation  tool  can  be  found  on  www.lfl.bayern.de/iba/energie/049691/index.php  and  www.biogas-­‐forum-­‐bayern.de/online-­‐anwendungen/volumenumrechnung.  Such  calculation  can  only  be  applied  on  an  operational  plant  and  for  that  reason  any  figures  derived  form  plants  with  the  same  or  similar  system  design  and  feedstock  mix  will  have  to  be  taken  into  more  serious  consideration.  

While  this  Study  has  to  refer  to  a  specific  yield  figure  source,  the  figures  finally  applied  for  the  design  and  finance  of  the  plant  will  have  to  be  accepted  by  the  technology  provider,  funder(s)  and  insurance  company.  All  will  have  to  agree  on  a  performance  warranty  using  specific  biogas  or  methane  output  figures.  Therefore,  most  or  all  substrates  from  a  range  of  contracted  suppliers  will  be  tested  to  their  satisfaction   before   the   plant   design   stage   to   ensure   the   plant   specifications   are   tailored   to   the  throughput  volume.  

BABE  might  witness  a  balance  act  between  an  AD  technology  supplier’s  push  for  higher  yield  figures  to   display   a   strong   performance   of   its   system   and   for   lower   yield   figures   when   guaranteeing  performance  levels.    

4.4.2. Methods  to  establish  the  Biogas  Potential  

The  biogas  and  methane  content  can  be  estimated  or  calculated  by  various  methods,  which  will  be  briefly  discussed:  

• BIogas  or  methane  in  cubic  metre  per  tonne  of  fresh  weight  

• Biogas  or  methane  in  cubic  metre  per  tonne  (or  litre  per  kg)  of  oDM  

• Calculation  of  COD  and  its  conversion  into  kWh  

Calculating   the  biogas  potential   by   fresh  weight   alone  might  work   as   a   rough   guidance   figure,   but  would  hardly  provide  a  reliable  basis  for  any  design  or  investment  decision,  as  long  as  the  dry  matter  and  the  organic  dry  matter  content  of  the  fresh  weight  remain  undefined.  Care  has  also  to  be  taken  by  using  a  substrate’s  methane  content  as  many  published  figures  are  based  on  the  assumption  of  a  methane  content  of  60%  or  65%.  Those  percentage  figures  rather  apply  for  AD  plants  based  on  food  waste  and  not  on  AD  plants  using  agricultural  feedstock.  

Alternatively   there   is   a   two-­‐step   approach   of   assessing   firstly   the   dry  matter   and   subsequently   its  organic  dry  matter  content.  This  can  be  done  by  calculation  or  tests.  One  such  method  of  establishing  the  biogas  yield   is  by  factoring   in  a  digestibility  value  (‘DV’).  The  background  for  this  method  is  the  recognition   that   the   digestion   capability   of   a   cow’s   rumen   is   not   complete,   otherwise   no   energy  would   remain   in   FYM  and   slurry.   The  DV  of   any   given   (feed)   substrate   is   available   from   feedstock  industry   tables.   However,   in   regard   to   silage   feed   the   DV   will   vary   as   it   strongly   depends   on   the  individual  harvest  material.  

Just  like  a  ruminant’s  stomach  an  anaerobic  digester  –  depending  on  pre-­‐treatment,  retention  time,  enzyme   addition   and   operating   temperature   –   will   not   ferment   or   convert   all   of   the   potentially  available  material.  Hence  there  was  the  need  to  establish  its  digestible  or  fermentable  share.  

   

BABE  –  Brampton  AD  Feedstock  Study  

 

Public  Version                                                                                                                                            page  36  of  94  

From   an   AD   point   of   view   the   components   of   any   substrate’s   DM   can   be   broken   down   into  carbohydrates,   protein   and   fats.   The   DV   percentage   of   the   mass   of   e.g.   raw   fat   provides   the  fermentable   fat.   The  digestible   carbohydrates,   protein   and   fats   amount   to   the  organic  dry  matter.  Crucially,   the  biogas  yields   for  one  kilogramme  of  digestible  carbohydrates,   fats  and  proteins   (790,  1250  and  700   litres)  and  their  relevant  methane  content  (50%,  68%  and  71%)  applies  regardless  of  the   substrate.   This   groundbreaking   method   was   established   by   Baserga,   whose   formula   can   be  viewed  in  detail  on  e.g.  www.lf.bayern.de/iba/energie/031560/.  The  terms  ‘organic  dry  matter’  and  ‘fermentable  organic  dry  matter’  are  used  synonymously.  

The  above  described  method  is  the  preferred  approach  for  the  purpose  of  this  Study.  Nevertheless,  it  is  worth  mentioning  that  this  method,  despite  robust  in  its  approach,  is  criticised  (for  various  reasons  like  overlooking  minor  oDM  elements)   for   its   too   low  yield   figures   in  comparison  to  numerous  test  results.  

Whilst   the  biogas  or  methane   yield  based  on   the  oDM  of   a  particular   feedstock   can   vary  with   the  subtlety  of   the   calculation  or   test  method,   there   is   a   direct   correlation  between  methane  and   the  chemical  oxygen  demand   (COD).  This  correlation   is   referred   to  as   stochiometric  methane  potential  (SMP).  On  that  basis  exactly  0.35  litres  of  methane  is  produced  from  1kg  of  COD  dissolved.  (Source:  Aqua   Enviro)   This   approached   is   favoured   to   bypass   the   more   lengthy   28   days   long   biochemical  methane  potential  (BMP)  test.  

Despite   some  advantages  of   the  COD  approach   the  Study   sees  more  benefits   in  using   terminology  local  farmers  are  familiar  with  and  are  able  to  translate  into  their  farm  management  and  feedstock  supply  agreements.  

Some  companies  only  apply  a  generic  AD  feedstock  conversion  rate  of  e.g.  90%  when  calculating  the  biogas  output.  By   shortcutting   the   retention   time   (e.g.  65  days   instead  of  100+  days)   some  capital  cost   savings  will  be  achieved   from  reduced  tank  sizes.  This   is  an   individual   finance  decision  not   for  this  Study  to  make.  

Table   18   below   gives   an   overview   of   some   published   biogas   and   methane   potential   values;   the  survey  cannot  claim  to  cover  the  entire  material  in  the  public  domain.  

For  a  sharper  differentiation  of  grass  varieties,  standard  grass  varieties  (prior  to  the  development  of  biogas  specific  varieties)  and  biogas  specific  grass  varieties  (below  as  ‘Rye  grass  silage’)  are  shown  in  separate  columns.  Some  of  the  research  listed  below  has  been  conducted  with  e.g.  Timothy-­‐based  or  similar  grass  types,  which  yield  inferior  to  modern  grass  varieties  purposely  developed  for  use  in  AD.  

 

Data  source   Unit   Dairy  slurry   Grass  silage   Rye  grass  sil.   Comment  

KTBL  1)   Biogas  Nl/kg  oDM  

315  @  55%  CH4  

455  @  52%  CH4  

  survey  of  live  data  

LfL  Bavaria  2)   Biogas  Nl/kg  oDM  

280  @  55%  CH4    

various   602.3  @  54.6%  CH4  

calculated  2nd  cut  only.  

LfL  Bavaria   Biogas  Nl/kg  oDM  

  various   574  @  55%  CH4  

as  above,  2nd  cut  only  

Technology  provider  3)  

Biogas  Nl/kg  oDM  

    600    @  52%  CH4  

own  live  data,  3  cuts  comb.    

Technology  provider  4)  

Biogas  Nl/kg  oDM  

300  @  28%  DM  

  560  @  53%  CH4  

own  live  data,  3  cuts  comb.    

   

BABE  –  Brampton  AD  Feedstock  Study  

 

Public  Version                                                                                                                                            page  37  of  94  

Table  18:  Biogas  and  methane  yield  figures  from  a  variety  of  sources  

1)  www.ktbl.de/index.php?id=1054  or  http://daten.ktbl.de/dslkr/start  -­‐  an  English  database            is  at:  http://daten.ktbl.de/euagrobiogasbasis/startSeite.do?selectedAction=start  

Arge  Kompost  Biogas  5)  

Biogas  Nl/kg  oDM  

280  @  56%  CH4  

350  @  55%  CH4  

  2008  

Biogas  Handbook  6)  

Biogas  Nl/kg  oDM  

200-­‐300   560     T.  Al  Seadi,  2001  

           

NNFCC  7)   Biogas  m3/ton  FW-­‐  

25   170  @  40%  DM  

185   Info  folder,  Nov.  2011  

Andersons  (2008,  2010)  8)  

Biogas  m3/ton  FW-­‐  

15  –  25  @  10%  DM  

160  –  200  @  28%  DM  

  third  party  data  

Aqua  Enviro9)   Biogas  m3/ton  FW-­‐  

25   185   185   operator  data  

 WRAP  10)   Biogas  m3/ton  FW-­‐  

25   185   185   third  party  data  

Teagasc  11)   Biogas  m3/ton  FW-­‐  

19.69  @  8%DM  

189  (if  fresh)  @  37%  DM  

   

 NFU,  REA,  ADBA  12)  

Biogas  m3/ton  FW-­‐  

  160  –  200   160  –  200    

LfL  Bavaria  2)   Biogas  Nm3/ton  FW-­‐  

20.2  @  55%  CH4    

various   132.2  @  54.6%  CH4  

1st  cut  only  

LfL  Bavaria   Biogas  Nm3/ton  FW-­‐  

  various   123.7  @  55%  CH4  

2nd  cut  only  

           

IEA  Bioenergy  Task  37  13)  

CH4  m3/ton  oDM-­‐  

  298  –  467   390  –  410   Braun  2007,  publ.  2011  

NNFCC  14)   CH4  m3/ton  oDM  

  298  –  467   390  –  410   Report,  2011  

Swedish  Gas  Centre  15)  

CH4  Nl/kg  oDM  

  300  @  35%  DM  

  Nationwide  survey,  2007-­‐  

 CROPGEN  16)   CH4  m3/ton  oDM  

233   306     EU  research  project  

Greenfinch  (DECC,  2005)17  

CH4  m3/ton  oDM-­‐  

  357       own  trial  

           

Swedish  Gas  Centre  

CH4    m3/  ton  FW  

14  @  9%  DM    

95  @  35%  DM  

  2007  and  2012  

LfL  Bavaria   CH4    m3/  ton  FW  

  202  @  40%  DM  

  @  53.6%  CH4    

Swedish  Gas  Centre  

MWh  per  ton  FW  

  0.93  @  35%  DM  

  2007  

   

BABE  –  Brampton  AD  Feedstock  Study  

 

Public  Version                                                                                                                                            page  38  of  94  

2)  Bayrische  Landesanstalt  für  Landwirtschaft,  on:  www.lfl.bayern.de/iba/energie/049711/    

3)  confidential  information,  recent  data  

4)  confidential  information,  recent  data  

5)  www.kompost-­‐biogas.info  -­‐  in  German,  data  based  on  a  90%  (gas)  extraction  rate  

6)  Biogas  Handbook;  Teodorite  Al  Seadi  (Editor),  Esbjerg  2008;  (part  of  the  bIG>East  project)  

7)  Anaerobic  Digestion  Factsheet  -­‐  Renewable  Fuels  and  Energy,  NNFCC,  Nov.  2011  

8)  (NNFCC  101):  A  detailed  economic  Assessment  of  Anaerobic  Digestion  Technology  and  its            Suitability  to  UK  Farming  and  Waste  Systems  (2nd  edition);  (note:  1st  edition  f.  April  2008,            Is  essentially  a  FIT  update);  on:  www.organics-­‐recycling.org.uk  

9)  The  Feedstock;  Matthew  Smith,  Aqua  Enviro  Ltd,  2012;  from:  Yeatman,  2007    

10)  WRAP,  www.wrap.org.uk    

11)  TEAGASC  Factsheets,  Tillage  No.  11;  TEAGASC  (Ireland)  

12)  The  Case  for  Crop  Feedstocks  in  Anaerobic  Digestion;  NFU,  REA,  ADBA,  CLA;  Nov.  2011  

13)  Biogas  from  Crop  Digestion;  J  Murphy,  P  Weiland,  R  Braun,  A  Wellinger;  IEA  Bioenergy/    

       Task  37,  September  2011  

14)  Farm-­‐Scale  Anaerobic  Digestion  Plant  Efficiency;  NNFCC,  2011  

15)  Basic  Data  on  Biogas  2007,  Swedish  Gas  Centre          Basic  Data  on  Biogas  2012,  Swedish  Gas  Centre;  on:  www.sgc.se/en/?pg=1445664  and            www.energigas.se/Publikationer/Infomaterial    

16)  see:  www.cropgen.soton.ac.uk/deliverables.htm            Tests  done  with  Timothy-­‐based  grass;  UK  research  partner  was  University  of  Southampton  

17)  Greenfinch  &  DECC,  2005  

Differences  in  biogas  yields  can  be  explained  easily:  Older  tests  have  been  undertaken  with  standard  grass   varieties   including   rye   grass,   simply   because   they   were   conducted   before   the   uptake   of  commercially   developed   biogas   grass   types.   In   recent   years   the   AD   industry   sees   a   constant  competition  between  grass  and  maize  ‘breeders’  for  varieties  producing  the  highest  biogas  yields.  It  comes  as  no  surprise  then  that  AD  system  providers  with  extensive  grass  experience  assume  a  higher  biogas  potential  for  on  purpose  developed  varieties  for  use  in  an  AD  environment  than  for  ‘standard’  varieties.  Another  factor  is  that  –  unlike  most  grass  harvested  for  research  purposes  –  AD  operators,  who   invest   into   reseeding  with   ‘biogas   grass’,   rigorously   apply   best   practice   in   regard   to  digestate  fertiliser,  harvesting  time,  cut  length  and  ensilaging.  

Unfortunately,  data  from  the  extensive  research  done  by  UK  universities  in  the  1990s  do  not  seem  to  be  publicly  available.  Apart  from  newly  developed  tools  provided  by  WRAP  (partly  in  association  with  ADBA),   there   are   only   a   few   comprehensive   and   original   tools   available   to   calculate   the   biogas   or  methane  potential.  These  applications  are  often  enhanced  to  provide  a  complete  financial  feasibility.  

• NNFCC,   see:  www.nnfcc.co.uk   (select   ‘Anaerobic   Digestion   Economic   Assessment   Tool’  by  The  Anderson  Centre,  with  a  section  for  biogas  yield  calculation)    

• CROPGEN,   see:   www.cropgen.soton.ac.uk/deliverables.htm   (select   D4   -­‐   Database   of  Values)  

• KTBL,  see  either  www.ktbl.de/index.php?id=1054  or  http://daten.ktbl.de/dslkr/start  or    

http://daten.ktbl.de/euagrobiogasbasis/startSeite.do?selectedAction=start  (in  English)  

• LfL  Bavaria,  see:  www.lfl.bayern.de/iba/energie/049711/    

• ARGE  Kompost  Biogas,  see:  www.kompost-­‐biogas.info    

   

BABE  –  Brampton  AD  Feedstock  Study  

 

Public  Version                                                                                                                                            page  39  of  94  

From  the  above  list  the  Study  opts  for  data  provided  by  LfL  Bavaria  because  if  its  unparalleled  detail  on  grass  in  regard  to  grass  types,  maturity  stages,  cuttings  and  dry  matter  content.    

4.4.3. Biogas  Yield  Estimates  

As  outlined  before  the  biogas  yield  will  be  estimated  by  the  following  route:  

• Identify   the   fresh  weight   of   the   various   substrates,   the  dry  matter   of   the   fresh  weight  and  the  organic  dry  mater  content  of  the  dry  matter  (see  Table  16)  

• Establish  the  oDM’s  biogas  potential  and  calculate  the  biogas  yield  estimate  

• Establish  the  methane  component  of  biogas  and  calculate  the  methane  yield  estimate  

The  next  table  lists  the  annual  and  daily  biogas  yield  estimate  (where  known)  and  the  annual,  daily  and  hourly  methane  yield  estimate  of  all  identified  input  material.  The    

  oDM   Biogas  potential  

Biogas/a   CH4  content   CH4/a   CH4/d    

  t   Nm3/t  oDM   Nm3   %  of  biogas,  Nm3/t  oDM  

Nm3   Nm3  

Slurry  fresh,  total  

1,761   280   0,493,099   55%   271,205   0,743  

Grass  sil.,  1st,  

2nd  cut  1,711  1,472  

602  574  

0,428,064  0,270,630  

54.6%  55.0%  

233,723  148,847  

0,640  0,408  

Hop  mash     0,001   t.b.c.   t.b.c.   500   000,527   0,002  

Yeast  wash   00,000.1   t.b.c.   t.b.c.   600   000,088   0,000  

Grand  Total   2,945       1,191,794  1)   ca  55%   654,389  2)   1,793  

Table  19:  Biogas  and  methane  yield  estimates  from  all  identified  input  material  

1) Sum  is  calculated  with  ‘t.b.c.’  =  0  

2) Sum  as  displayed  in  Excel  

As  the  use  of  over  24,500  tons  of  slurry  is  an  unrealistic  perspective  the  next  table  shows  the  biogas  and  methane  yields  for  a  feedstock  mix  with  a  more  realistic  contribution  of  slurry  at  30%  of  the  total  annual  throughput  and  without  any  brewery  waste  input  material.  

  oDM   Biogas  potential  

Biogas/a   CH4  content   CH4/a   CH4/d    

  t   Nm3/t  oDM   Nm3   %   Nm3   Nm3  

Slurry  fresh,  30%  of  total  

0,168   280   047,055   55%   025,880   71  

Grass  sil.,  1st,  

2nd  cut  1,711  1,472  

602  574  

428,064  270,630  

54.6%  55.0%  

233,723  148,847  

0,640  0,408  

Plant  Total   1,351     745,750   ca  55%   408,450   1,119  

Table  20:  Biogas  and  methane  yield  estimates  from  selected  input  material  

   

BABE  –  Brampton  AD  Feedstock  Study  

 

Public  Version                                                                                                                                            page  40  of  94  

The  methane  volume  of  all  identified  feedstock  sources  within  the  defined  supply  search  area  would  yield   about   1,192,000   m3   biogas   and   650,000   m3   methane   per   year;   a   more   likely   scenario   of  feedstock  usage  –  only  30%  of   slurry   in   relation   to   the   total   throughput  and  omitting  any  brewery  waste  –  would  provide  745,750  m3  biogas  and  408,450  m3  methane  annually.  

4.4.4. Digestate  Yield  Estimates  

The  anaerobic   fermentation  causes  a  break-­‐up  of  molecules  and  creates  a   liquid  sludge,  which  has  less  volume  than  the  original   input  material.  With  a   feedstock  mix  of  e.g  70%  grass  silage  and  30%  slurry   the   volume   reduction   for   each   substrate   differs,  with   grass   silage   having   the   obvious   larger  shrinkage.    

Overall  a  volume  reduction  rate  for  the  entire  throughput  of  20%  is  applied  to  calculate  the  digestate  volume.  The  annual  plant  throughput  as  in  Table  16  (‘FW  select.’)  and  Table  20  above  –  with  30%  of  total  volume  being  slurry  and  no  brewery  waste  –  is  reduced  from  7,753  tons  or  8,711  m3  to  6,969  m3.  

The  original  untreated  digestate  can  be  further  processed  for  on-­‐site  recycling  or  because  of  demand  by  regulations.  If  treated  then  digestate  is  usually  termed  ‘raw  digestate’  or  ‘whole  digestate’.  It  can  e.g.  be  separated  into  a  solid  and  a  liquid  faction.  Such  separation  would  allow  a  more  refined  use  as  fertiliser   tailoring   the  digestate’s  N:P:K  components   to   soil   requirements  or   for   recycling   the   solids  part  on-­‐site  and  the  liquid  parts  in  an  AD  plant  as  ‘re-­‐circulate’.  Any  excess  liquid  faction  of  digestate  could  also  be  evaporated  in  a  digestate  dryer.  

The  background  assumptions  for  this  calculation  the  digestate  volume  and  its  factions  are:  

• Density  factor  of  1.0  for  slurry  and  0.85  for  grass  silage–  see  Table  15  

• A  20%  volume  reduction  from  anaerobic  fermentation  

• An  appropriate  retention  time  suitable  for  processing  of  grass  silage  

• The  raw/whole  digestate  to  consist  of  a  8%  solid  fraction  and  a  92%  liquid  fraction  

Plants  with   lower  and  higher  solids   factions  are  known,  as   the  8:92  ratio  seems  the  average  value,  the  Study  assumes  for  raw  digestate  to  consist  of  an  8%  solid  fraction  and  a  92%  liquid  fraction.  

The  following  table  illustrates  the  calculated  digestate  volume.    

 

  Input  FW  

Throughput  volume  

Volume  reduction  

Raw  digestate    

Digestate  solids  part  

Digestate  liquid  part  

  t   m3   %   m3   m3   m3  

Slurry  fresh,  30%  

2,326   2,326   -­‐   -­‐   -­‐   -­‐  

Grass  silage  total  

5,427   6,384   -­‐   -­‐   -­‐   -­‐  

Plant  Total   7,753    8,711   -­‐20%   6,969   557   6,411  

Table  21:  Digestate  volumes  of  raw  digestate  and  separated  factions  

The   annual   throughput   volume   will   be   of   consideration   for   the   plant   design   whilst   the   digestate  volume  will  be  the  basis  for  any  storage  management,  which  might  include  a  secondary  digester.  

   

   

BABE  –  Brampton  AD  Feedstock  Study  

 

Public  Version                                                                                                                                            page  41  of  94  

Chapter  summary:  

•  The  energy  potential  of  all  input  materials,  which  is  used  to  calculate  the  biogas  yield  estimate,  is          based  on  figures  provided  by  LfL  Bavaria.  

•  The  methane  content  of  the  biogas  is  55%,  typical  for  an  AD  plant  with  agricultural  input  material.  

•  A  ‘grand  total’  yield  (for  all  identified  input  material)  is  calculated  to  be  1,192,000  m3  biogas          and  650,000  m3  methane  per  year.  

•  A  more  realistic  ‘plant  total’  yield  (for  a  manageable  selection  of  input  material)  is  calculated          at  745,750  m3  biogas  and  408,450  m3  methane.  

•  An  input  material  volume  reduction  of  20%  would  create  a  digestate  volume  of  6,969  m3.  

   

BABE  –  Brampton  AD  Feedstock  Study  

 

Public  Version                                                                                                                                            page  42  of  94  

4.5. Stage  4:  Electrical  and  Thermal  Output  

This  chapter  deals  with  the  final  energy  conversion  stage  in  an  AD  environment  (as  outlined  on  page  13),  a  stage  where  strategic  business  decisions  will  have  to  be  made.  Following  the  assessment  of  the  methane   potential   from   available   input   material   the   Study   now   aims   to   identify   the   methane’s  energy  potential  in  the  form  of  electrical  and  thermal  output.  

4.5.1. Background  Assumptions  

Following   the   brief   to   focus   on   bankable,   (in   relation   to   the   plant   size)   commercially   feasible   and  locally  deployable  technology  some  technology  routes  are  outside  the  Study’s  considerations:    

• The  purification  of  biogas  to  bio-­‐methane  for  the  export  to  the  gas  grid  

• The  purification  of  biogas  to  compressed  natural  gas  (CNG)  for  the  use  as  vehicle  fuel  

• The  purification  of  biogas  to  a  combination  of  bio-­‐methane  and  bio-­‐hydrogen  

• The   addition   of   oxygen   into   biogas   in   combination   with   unique   bacteria,   which  might  shift  the  ratio  of  CH4  to  CO2  in  biogas  from  55:45  to  possibly  90:10  

• The   combination   of   algae   units   with   AD,   where   otherwise   unused   CO2   and   cleansed  digestate  serves  as  algae  feedstock  to  create  an  energy  loop  with  in  return  algae  waste  works  as  AD  feedstock  

• An  Organic  Ranke  Cycle  (ORC)  engine  to  utilise  spare  heat  and  convert  it  to  electricity  

• A  fuel  cell  storage  to  tailor  electricity  export  according  to  more  profitable  hours  within  a  24-­‐hour  cycle  

• A  tri-­‐generation  system,  consisting  of  an  absorption  unit,  which  in  addition  to  electricity  and  heat  of  the  CHP  unit  converts  (surplus)  heat  into  cooling  

Assuming   that   electricity   export   to   the   distribution   network   is   feasible,   an   internal   combustion  engine   with   a   generator   and   a   waste   heat   boiler   recovering   heat   from   exhaust   would   run   at   a  constant  load  and  provide  the  own  ‘parasitic’  electricity  and  low  grade  heat  demand  for  the  AD  plant.  

The  co-­‐generation  of  heat  and  power  is  arranged  by  a  CHP  (‘combined  heat  &  power’)  engine,  while  larger  units  beyond  the  feedstock  potential  identified  above  would  be  called  CHP  turbines.  In  simple  terms,  whilst  a  CHP  engine  provides  low  grade  heat  in  the  form  of  hot  water  for  space  heating  or  for  the  heat  load  of  an  AD  plant  or  similar  equipment,  a  CHP  turbine  provides  high(er)  grade  heat  in  the  form  of  steam.  

Considering   the  current  200kWth  boiler  capacity   limit   for  RHI  eligibility  we  exercise  a   restriction  at  199kWth  installed  capacity  and  disregard  any  excess  capacity  in  order  to  keep  all  commercial  option  open.  

The  heat  from  a  CHP  unit  derives  from  the  engine  and  the  exhaust.  A  lack  of  heat  usage  or  financially  unfeasible  heat   scenarios  might  want   the  owner/operator  not   to   capture  any   radiation  or   exhaust  heat.  This  would  reduce  the  available  heat  by  about  one  third  of   its  original  potential  (ignoring  any  199kW   cap),   but   also   reduce   capital   cost   for   installation   and   heat   dissipation   equipment.   Such   a  scenario  is  ignored  for  the  heat  calculations  below.  

The  delivery  options  for  a  CHP  unit  –  containerised,  housed  in  a  purpose-­‐built  engine  room  or  in  an  existing  structure  –  are  ignored,  as  there  is  no  impact  on  the  performance.  

The   table   below   lists   some   of   the   available   standard   CHP   engines   optimised   for   biogas  within   the  range  of  150kW  –  250kW  together  with  their  electrical  and  thermal  efficiency  factors.  CHP  engines  optimised  for  landfill  gas  or  natural  gas  are  not  considered  for  this  purpose.    

   

BABE  –  Brampton  AD  Feedstock  Study  

 

Public  Version                                                                                                                                            page  43  of  94  

Electrical  Output  

Thermal  Output  

CHP  Unit  Type  

OEM   Electrical  efficiency  

Thermal  efficiency  

Combined  efficiency  

150  kW   179  kW   2G  filius  206   2G/MAN   38.2%   45.6%   83.8%  

165  kW   205  kW   Cento  T160  CON  

TEDOM  /MAN  

37.8%   46.9%   84.7%  

180  kW   209  kW   Cento  T180  CON  

TEDOM  /MAN  

39.1%   45.3%   84.4%  

190  kW   218  kW   2G  190  BG   2G/MAN   38.7%   44.4%   83.1%  

200  kW   230  kW   Cento  T200  CON  

TEDOM  /MAN  

39.2%   45.2%   84.4%  

220  kW   232  kW   2G  agenitor  206    

2G/Deutz   40.6%   42.8%   83.4%  

250  kW    265  kW   2G  agenitor  306  

2G/MAN   41.0%   43.5%   84.5%  

Table  22:  Selection  of  biogas  CHP  modules,  available  in  the  UK,  and  their  efficiency  values  

Other   European   CHP   manufacturers   and   providers   for   units   within   this   capacity   range   could   be  found,   but   they   have   either   no   (known)   representation   in   the   UK   or   are   focused   on   biogas   from  sewage   and   landfill   gas,   sectors   which   follow   different   specifications   and   regulations.   Additional  information   can   also   be   found   on   e.g.   www.deutz-­‐engine.com,   www.guascor.com   or  www.cumminspower.com.  

4.5.2. Calorific  Energy  

In  order  to  convert  the  methane  volume  from  norm(al)  cubic  meter  to  energy  one  needs  to  apply  the  calorific  value   for  methane.  The  calorific  value  defines   the  energy,  which   is   released  when  burning  one  norm(al)   cubic  meter  of   the   gas   and   can  be  given  as   a  unit   of   joule   (J)   or  watt  hours   (Wh)  or  respectively  their  equivalents  of  mega  joule  (MJ)  and  kilo  watt  hours  (kWh).  

The   calorific   value   can   also   be   stated   as   upper   calorific   value   or   lower   calorific   value.   The   upper  calorific   value   refers   to   the  energy   content  when   the   steam   in   the   fumes   is   condensed.  The  Study  refers  to  the  lower  calorific  value,  also  more  widely  used,  which  corresponds  to  the  energy  content  when  any  steam  in  the  fumes  is  not  condensed.  

The  typical  norm(al)  cubic  metre  of  biogas  has  a  calorific  value  of  9.97kWh,  which  is  all  contributed  to  the  methane  component  assumed  that   it   is  the  only  combustible  component,  while  carbon  dioxide  has  none.  The  energy  content  of  biogas  is  therefore  directly  related  to  the  methane  content.    

While  the  biogas  of  a  food  waste  AD  plant  might  have  a  methane  content  of  60%,  65%  or  more,  the  methane  content  of  a  silage-­‐based  AD  plant  will  have  (up  to)  55%.  In  this  case  the  energy  potential  of  such  methane  is  around  5.48  kWh  per  cubic  metre.  

The  following  table  illustrates  the  calorific  values  for  biogas  at  different  methane  content  levels  and  electricity   and   heat   generation   for   various   CHP   engines.   The   electricity   and   heat   generation  calculation  is  tailored  for  the  appropriate  methane  content  level  of  55%  for  the  BABE  Project,  which  coincides   with   the   majority   of   agricultural   AD   plants.   The   energy   value   for   1Nm3   biogas   at   55%  methane   content   is   then   applied   to   the   energy   conversion   efficiencies   of   a   selected   range   of   CHP  engines  listed  in  Table  23.  

   

BABE  –  Brampton  AD  Feedstock  Study  

 

Public  Version                                                                                                                                            page  44  of  94  

  Background   Energy  value   Energy  potential  

  1kWh  =  3.6MJ      

1Nm3  biogas  @  100%  CH4    (=  1Nm3  CH4)  

1Nm3  CH4  =  9.97kWh  

9.97  *  3.6  =    35.892  MJ  

 

1Nm3  biogas  @  50%  CH4     35.892  *  50%  =  

17.964  MJ    

1Nm3  biogas  @  55%  CH4     35.892  *  55%  =  

19.7406  MJ    

1Nm3  biogas  @  60%  CH4     35.892  *  60%  =  

21.5352  MJ    

1Nm3  biogas  @  65%  CH4     35.892  *  65%  =  

23.3298  MJ    

energy  value  of  1Nm3  biogas  @  55%  CH4  

  19.7406  /  3.6  =  5.4835  kWh  

 

electricity  generation  (190kW  CHP)   38.7%  efficiency  of  conversion  

  5.4835  *38.7%  =  2.1221  kWh/m3  

electricity  generation  (200kW  CHP)   39.2%  efficiency  of  conversion  

  5.4835  *39.2%  =  2.1495  kWh/m3  

electricity  generation  (220kW  CHP)   40.6%  efficiency  of  conversion  

  5.4835  *40.6%  =  2.2153  kWh/m3  

heat  generation  (in  CHP)   ca.  45%  efficiency  of  conversion  

  5.4835  *45%  =  2.4676  kWh/m3  

losses  (in  CHP)   ca.  15  –  20%      

Table  23:  Calorific  values  for  biogas  at  different  methane  levels  and  CHP  output  values  

Applying  the  highlighted  figures  above,  745,750  Nm3  of  biogas  at  55%  methane  would  be  equivalent  to  1,602,990  kWh  electric  utilising  a  200kW  CHP  unit  or  1,652,060  kWh  el  with  a  220kW  CHP  unit.  The  difference  between  the  two  CHP  engines  and  the  calculated  electricity  output  lies  in  their  varying  energy   conversion   efficiency   rates.   Nevertheless,   other   factors   within   the   process   of   energy  generation  need  to  be  taken  into  consideration,  therefore  a  more  detailed  route  for  establishing  the  electrical  and  thermal  output  is  presented.  

4.5.3. Output  Calculations  

The  detailed  energy  output  calculation  for  the  AD  plant  is  done  in  several  steps:  Firstly  is  to  establish  the  energy  content  of  the  annually  available  408,450m3  methane  (see  Table  20),  assuming:  

• A  consistent  quantity  and  (good)  quality  of  methane  

• A  calorific  value  of  1  Nm3  methane  is  9.96kWh  

Secondly  is  to  establish  the  ‘potential  capacity’  by  dividing  the  annual  energy  potential  by  the  8,760  hours  per  year.  This  figure  will   illustrate  the  theoretical  capacity  the  generating  system  can  deliver,  before  any  conversion  losses  are  taken  off.  

   

BABE  –  Brampton  AD  Feedstock  Study  

 

Public  Version                                                                                                                                            page  45  of  94  

• Note:  There  are  two  separate  principles  at  work:  methane  is  generated  in  the  anaerobic  digester   on   a   regular   and   non-­‐stop   basis   over   8,760   hours   per   year,   whilst   the   actual  combustion  of  biogas  does  not  work  on  a  8,760  hours  basis.  The  burning  of  biogas  can  be  arranged  on  demand;   it  will   be   stopped  during  maintenance  work  or  other  down   time  and  the  biogas  in  excess  to  the  gas  holding  capacity  will  be  flared  off.    

• Note:  kWh  /  h  =  kW  

Thirdly   is  to  establish  the  ‘calculated  capacity’  by  applying  the  CHP  efficiency  factors  –  of  an  engine  type  likely  to  be  employed  –  to  the  potential  capacity.  

Finally   is   to  adjust  the   ‘calculated  capacity’   to  electrical  and  thermal  efficiency  factors  of  a  suitable  CHP  engine  available  on  the  market.  This  will  provide  the  ‘installed  capacity’.  If  another  CHP  type  will  be   chosen   at   a   later   stage,   then   the   efficiency   factors   and   other   data   will   have   to   be   amended  accordingly.  

• Note:  kW  potential  /  (electrical)  efficiency  factor  =  calculated  capacity  in  kW  

The  next  table  shows  the  figures  for  the  calculations  as  described:  

  Total  energy  p.a.  

Total  h/a   Potential  capacity  

Efficiency  factor  

Calculated  capacity  

Installed  capacity    

Unit  –>   kWh   hours   kW   %   kW   kW  

electrical         39.20   182   200  

thermal           45.20   210   199  

Total   4,072,248   8760   465   84.40      

Table  24:  Calculation  of  installed  capacity  

The   installed   thermal   capacity   is   limited   to   199kW   th   in   order   to   remain   eligible   for   the   highest  Renewable   Heat   Incentive   (RHI)   bandwidth,   which   currently   lists   199kW   th   as   upper   eligibility  threshold.  All  CHP  types  listed  in  Table  22  from  165kWe  upwards  would  need  to  be  restricted  in  its  thermal  capacity  for  that  purpose.  The  installed  thermal  capacity  of  the  200kWe  CHP  unit  is  stated  as  230kW  th.  

In  addition  to  the  above  steps  one  needs  to  consider  any  output  risks  from  potential  losses,  of  which  three  will  need  to  be  investigated  further:  

• Methane   specifications:   The   CHP  manufacturer   will   have   to   confirm  whether   the   CHP  output   figures   based   on   the   specific  methane   content   stated   on   the   datasheet   can   be  upheld   or   need   to   be   amended   in   accordance   with   the   methane   content   of   the   AD  plant’s  biogas  of  ca.  55%.  

• Altitude:  The  efficiency  factor  of  the  to-­‐be-­‐selected  CHP  engine  is  valid  at  0m  altitude,  a  higher  altitude  will  reduce  the  efficiency  values.  Townfoot  Industrial  Estate  is  situated  at  an   altitude   of   117m   ASL,   hence   a   minimal   performance   reduction   is   possible.   On   the  other  hand,  efficiency  factors  of  CHP  engines  are  slightly  increasing  almost  every  year;  by  the  time  the  Brampton  AD  goes  live  a  higher  electrical  efficiency  will   likely  be  available.  Therefore  the  Study  upholds  the  manufacturer’s  current  efficiency  factor.  Nevertheless,  the  manufacturer’s  representative  will  needs  to  be  consulted  at  a  later  stage.  

• On-­‐site   losses:   Engine   and   transformer   losses   occurring   up   to   the   export   meter.   Such  losses   depend   on   local   circumstances   and   between   0.5%   and   1.0%  of   total   generation  

   

BABE  –  Brampton  AD  Feedstock  Study  

 

Public  Version                                                                                                                                            page  46  of  94  

have  been  deducted   at   other   projects.  As   there   are   several   grid   connection  options   at  and  close-­‐by  the  Townfoot  Industrial  Estate,  losses  seem  to  be  negligible  and  this  Study  will  rather  rely  on  a  detailed  grid  assessment  before  coming  to  a  conclusion.  

It  seems  prudent  to  take  some  element  of  the  above  risks   into  consideration  and  the  Study,   in  the  absence  of  further  information,  allocates  a  risk  buffer  of  1%  of  electricity  generation.  (see:  Table  25)  

The  calculation  of  the  CHP  unit’s  installed  capacity  follows  the  estimate  for  the  energy  generation.  

Taking   away   the  maintenance   requirement   for   the   CHP,   the   operational   ‘uptime’   of   a   CHP   engine  might  be  e.g.  8,550  hours  per  year.  During  its  uptime  the  engine  will  not  always  run  on  full  load,  i.e.  the   entire   installed   capacity,   due   to   grid   issues   or   operational   fluctuations   of   the   digester   or   the  engine.  Therefore  the  Study  differentiates  between  ‘general  uptime’  and  ‘runtime  at  full  load’.    

Financial   forecasting   for   AD   plants   with   state-­‐of-­‐art   CHP   engines   will   frequently   aim   for   a  performance   benchmark   of   a   full   load   runtime   in   the   region   of   7,500   to   8,200   hours   per   year.  Furthermore,  performance  warranties  are  frequently  given  for  either  90%  of  8,760  hours,   i.e.  7,884  hours,   or   for   8,000   hours,   i.e.   91.3%   of   8,760   hours.   7.900   hours   p.a.   are   in   between   those   two  figures.  

The  next  table  shows  the  expected  electricity  generation  figures  for  a  200kWe  CHP  and  a  comparison  of  its  expected  performance  in  relation  to  the  calculated  energy  potential.  

Installed  capacity    

Full  load  runtime  

Generation  per  year  

 Generation  per  day  

 Generation  per  hour  

Available  generation  

Generation  risk  buffer  

kW   hours/a   kWh/a   kWh/d   kWh/h     kWh    %  

200  kWe   7,9oo   1,580,000  kWh  el  

4,329  kWh  el  

 180  kWh  el  

1,596,321  kWh  el  

1.03%  of  kWh  el  

199  kWth   7,900   1,552,200  kWh  th  

4,253  kWh  th  

 17  kWh  th  

-­‐   -­‐  

Table  25:  Electrical  and  thermal  output  

The   feedstock   resources   identified   earlier   allow   for   7,900   hours   per   year   runtime   at   full   load,   an  achievement   of   90.18%   output   over   the   full   annual   cycle,   whilst   maintaining   a   small   buffer   for  various  risks.  The  proposed  AD  plant  should  conservatively  generate  1,580,000kWh  (or  1,588MWh)  of  electricity  and  1,552,200kWh  (or  1,552MWh)  of  heat.    

Based  on  those  annual  output  figures  the  daily  electricity  output  is  4,329kWh  (or  4.3MWh)  and  the  daily  thermal  output  is  4,253kWh  (or  4.3MWh).  

Realistically,   half   of   the   spare   generation   potential,   about   10kW   or   87,600kWh  will   be   utilised   by  over-­‐production  of   silage  whenever   suitable  weather   conditions  during  harvest   seasons  occur.   The  other   half   of   the   spare   generation   potential   is   set   aside   for   CHP   maintenance   and   equipment  replacement.   The   operator/funder   will   need   to   consider   whether   the   spare   capacity   offered   by   a  200kWe  CHP  is  sufficient  for  a  future  plant  expansion  scheme  or  an  upfront  installation  of  a  220kW  or  250kW  CHP  is  a  feasible  option.  

A   cross-­‐check   between   the   figure   for   electricity   generation   stated   in   connection   with   Table   23,  1,602,990  kWh,  and  the  declared  available  generation  of  1,596,321  kWh  stands  up  for  scrutiny.  The  difference  is  simply  from  the  fact  that  the  former  figure,  for  the  ease  of  calculation,  is  entirely  based  on   55%   methane   content   for   all   input   materials,   while   the   latter   acknowledges   54.6%   methane  content  for  the  first  cut  of  grass  silage.  

   

BABE  –  Brampton  AD  Feedstock  Study  

 

Public  Version                                                                                                                                            page  47  of  94  

4.5.4. Parasitic  Energy  Demand  and  Exportable  Energy  

This  sub-­‐chapter  follows  the  simple  equation  of:  

Generated  energy/electricity  

 –        Parasitic  energy/electricity  

Exportable  energy/electricity  

The  exportable  electricity  and  heat  is  of  relevance  for  payments  from  the  Export  FiT  Tariff  (or  Export  PPA)   and   the   RHI   scheme.   However,   without   electrical   specifications   and   machinery   workload  schedules  the  parasitic  energy  demand  can  only  be  estimated  vaguely.  The  plant-­‐internal  electricity  consumption  depends  on  multiple  factors,  for  example:  

• Overall  AD  plant  design  (pump  design;  pumping,  stirring  and  feeding  frequency,  etc.)  

• Accumulated  load  of  the  electrical  equipment  

For  further  calculations  we  assume  a  parasitic  electrical  demand  of  8%  and  would  expect  any  plant  with  a  higher  demand  to  investigate  any  possible  power  savings.  

The  plant-­‐internal  heat  consumption  depends  for  example  on:  

• Overall  AD  plant  design  (heating  design,  etc.)  

• Operating  temperature  (mesophilic  or  thermophilic),  and  the    

• Amount  of  the  CHP  heat  recovery  

The   heat   use   of   a  modern   silage-­‐based   AD   plants   ranges   from   30%   (or   lower)   to   35%,  with   some  systems   in   demand   of   up   to   50%   of   CHP-­‐generated   heat.   For   further   calculations   we   assume   a  parasitic  heat  demand  of  (up  to)  35%,  unless  operating  within  the  thermophilic  temperature  range.  

In   the   absence   of   a   heat   strategy   (which   would   follow   after   a   feedstock   assessment)   and   an   AD  system  design  concept  the  Study  assumes:  

• Heat  is  utilised/collected  up  to  the  threshold  of  199kW  th,  but  not  beyond  

• Heat  demand  is  constant  throughout  any  24-­‐hour  cycle  (day  and  night  temperatures),  

• Heat  demand  is  constant  throughout  the  seasons  (summer  and  winter  temperatures)  

and  ignores  the  two  peak  scenarios  of  a:  

• Winter  24-­‐hour  day  (maximum  heat  demand  and  minimum  heat  dissipation),  

• Summer  24-­‐hour  day  (minimum  heat  demand  and  maximum  heat  dissipation).  

The  next   table  shows  the  generated  heat  resource,   the  parasitic  heat  demand  and  the  available  or  exportable  heat  estimate.  

  Generated  energy  p.a.  

Parasitic  demand  

Parasitic  demand  

Exportable  energy  

 -­‐    -­‐  

Unit  –>   kWh   %   kWh   kWh          

electrical   1,580,000   08   126,400   1,453,600            

thermal   1,552,200   35   543,270   1,008,930          

Table  26:  Calculation  of  parasitic  and  available  heat  for  export  

   

BABE  –  Brampton  AD  Feedstock  Study  

 

Public  Version                                                                                                                                            page  48  of  94  

As  mentioned  above,  a  heat  strategy  aiming  not  to  utilise  the  thermal  energy  from  the  CHP  engine  exhaust  would  result  in  ca  1/3  less  generated  heat  and  some  minor  equipment  cost  savings.  

For   further   commercial   considerations   it   should   be   mentioned   that   the   regular   generation   of  electrical  and  thermal  energy   like   in  an  AD  plant  could  match  an  overall  annual  energy  demand  on  paper,  but  may  not   cope  with   irregular   sharp  peaks   in  energy  demand.   If   an  energy  user  has   such  ‘demand   spikes’,   then   any   financial   calculations   will   have   to   consider   some   temporary   electricity  import  from  the  grid.  

 

Chapter  summary:  

•  The  generated  biogas  would  allow  a  theoretical  capacity  of  182kWe  at  100%  (i.e.  8,760  hours  p.a.)          annual  availability,  but  considering  downtime  and  output  fluctuations  the  electricity  generation  is          best  arranged  with  a  CHP  of  200kWe  installed  capacity.    

•  The  total  electricity  generation  potential  is  1,596,321kWh,  which  includes  a  1%  buffer          for  uncertainties  in  regard  to  AD  processes,  CHP  and  grid.  

•  With  the  CHP  performing  at  full  load  of  7900  hours,  i.e.  90.2%  of  annual  availability,  the  generated          electricity  is  estimated  at  1,560,000kWh/a,  4,329kWh/d  and  180kWh/h.  

•  The  installed  thermal  capacity  of  the  same  CHP  engine  would  be  230kW  th,  however  is        downgraded  to  199kW  th  to  remain  eligible  for  the  RHI  scheme.    

•  With  the  CHP  performing  at  full  load  of  7900  hours,  i.e.  90.1%  of  the  year,  the  generated  heat  is          estimated  at  1,552,200kWh/a,  4,253kWh/d  and  177kWh/h.  

•  The  plant-­‐internal  consumption  reduces  the  exportable  electricity  by  ca  8%  and  the  exportable        heat  by  ca  35%  of  the  relevant  generated  energy.  

•  Depending  on  a  plant  expansion  strategy  and  on  the  likelihood  of  surplus  feedstock,  the  installation        of  a  220kWe  or  250kWe  CHP  unit  is  valid  consideration.  

 

   

BABE  –  Brampton  AD  Feedstock  Study  

 

Public  Version                                                                                                                                            page  49  of  94  

5. Feedstock  Risks  &  Impacts:  

5.1. Feedstock  Compatibility  

Compatibility   risks   occur   with   feedstock   in   regard   to   the   selection   of   input   materials   and   with  appropriate  technology.  The  typical  issues  raised  at  this  point  are:  

• Are  the  various  input  materials  within  the  identified  feedstock  mix  compatible  with  each  other?  

• What  is  their  optimum  mix?  

• Are  there  a  suitable  AD  technologies  available  for  the  identified  feedstock  mix  

• Does   the   identified   feedstock   mix   allow   for   future   flexibility   in   regard   to   other   input  materials?  

Energy  crops  or  ‘purpose  grown  crops’,  for  our  purposes  this  includes  grass  silage,  can  be  fermented  either  on  their  own  or  in  combination  with  other  materials  in  either  a  ‘wet  AD’  or  a  ‘dry  AD’  set-­‐up.  ‘Wet  AD’  refers  to  a  digester  DM  content  of  <15%  and  ‘dry  AD’  to  >15%  digester  DM  content.  Slurries  typically  have  a  high  nutrient  component,  but  low  solids  content,  usually  within  the  range  of  5  –  10%,  depending  on  animal  type,  feeding  routine  and  dilution  form  rain  and  wash  water.  Wet  AD  systems  are   mostly   designed   as   continuous   feed   systems,   typically   in   ‘continuously   stirred   tank   reactors’  (CSTR),   in  preference  over  batch  systems.  Such  system  types  are  available   from  several   technology  providers  giving  BABE  sufficient  choice  for  its  systems  selection  process.  

As  many  wet  AD  systems   find  a  grass   silage-­‐only  environment   too  challenging,  a  combination  with  livestock  manures   is  a  more  ‘stirrer-­‐friendly’,  tried  and  tested  approach.  Such  co-­‐digestion  of  silage  with  slurry  and/or  FYM  provides  a  crucial  process  buffering  capacity.  This  balancing  effect  on  the  AD  biology   can   be   seen   on   several   process   parameters   including   a   balance   of   the   carbon   to   nitrogen  (C:N)  ratio  and  a  reduction  of  the  risk  to  ammonia  inhibition.    

Additionally,  the  combination  of  silage  and  slurry  has  another  positive  impact:  Experienced  operators  have  noticed  a  (slight)  increase  of  methane  yields  from  co-­‐digestion,  compared  to  methane  yields  of  silage  and  slurries  digested  on  their  own.  The  following  quote  illustrates  this:  

“The   combination  of   crop   feedstock   for  AD  with   animal  manures,   particularly   fresh  dairy   slurry,   produces   gas   yields   better   than   expected   from   the   individual  components.”  St.   Temple,   Copy   Green   Fm,   from:   The   Case   for   Crop   Feedstocks   in   Anaerobic  Digestion;  ADBA,  CLA,  NFU  and  REA;  2011  

This  experience  by  operators  over   the   last  20  years  has  been  confirmed  by  scientific   research.  The  following  quote  refers  to  a  co-­‐digestion  of  slurry  with  a  combination  of  beet  root  tops,  grass  silage  based  on  Timothy  grass  varieties  and  oat  straw.  

“The   higher   specific   methane   yields   in   co-­‐digestion   compared   with   digestion   of  manure  alone  may  also  be  due  to  synergy  effects  owing  to  a  more  balanced  nutrient  composition  and  C/N  ratio  in  the  feedstock.”  CROPGEN:   Renewable   energy   from   crops   and   agrowastes.   D17:   Database   on   the  methane  production  potential  from  mixed  digestion;  2007  

Another  report  sums  up  the  benefits  of  the  by  sometimes  financial-­‐only  perspective  derided  slurry:    

“Slurry  acts  as  an  excellent  ‘balancer’,  reducing  risks  of  foaming  etc.  and  has  an  ideal  blend   of   microbes   to   act   as   a   base   feedstock,   keeping   the   balance   of   microbes  healthy.”  

   

BABE  –  Brampton  AD  Feedstock  Study  

 

Public  Version                                                                                                                                            page  50  of  94  

The   Andersons   Centre:   A   detailed   economic   Assessment   of   Anaerobic   Digestion  Technology  and  its  Suitability  to  UK  Farming  and  Waste  Systems,  2nd  Edition;  2010  

Modern  AD  plants  using   the   same  or   very   similar   feedstock  mix   are   in  operation   covering   a   range  from  150kW  to  2MW.  About  10%  of  Germany’s  8,000  (as  of  end  2012)  agricultural  AD  plants,  mostly  located  in  peripheral  areas,  similar  to  Brampton,  are  based  on  grass  silages.  

The  appropriate  proportion  between  silages  and   slurries   is   to  be  decided  by   the   system  provider’s  and  the  operator’s  preference  to  use  additional  enzymes  for  process  stabilisation.  Industry  figures  on  the   ratio   of   grass   silage   to   (fresh)   dairy   slurry   vary   vastly   from   40:60   to   90:10.   Experienced  technology   providers   will   cope   with   a   feedstock   mix   in   the   region   of   60:40   to   90:10.   Our   above  calculation  was  therefore  based  on  a  70:30  ratio  to  allow  for  a  wider  spectrum  of  AD  technologies.  

A  list  of  appropriate  technology  system  providers  is  provided  in  Appendix  C.  

Over   a   20-­‐year   period   the   input   mix   might   evolve   because   of   technological   advancements   or  commercial  and  weather-­‐related  changes.  The  proposed  mix  shows  sufficient   flexibility  or   ‘forward  compatibility’  by  the  ability  to  substitute  grass  silage  with  whole  crop  silage,  either  as  break  crop  or  permanently.  The  addition  of  grass  mixed  with  red  clover  and/or   locally  sourced  farmyard  manure,  preferably   with   straw   as   bedding   material,   would   also   provide   a   welcome   enrichment   to   the  feedstock  mix.  Furthermore,  with  operating  experience  gained  over   the  years,   some  slurry  may  be  replaced  with  a  substrate  of  higher  energy  value  without  jeopardising  the  plant  biology.  

Chapter  summary:  

•  The  identified  feedstock  mix  is  a  proven  set-­‐up  within  the  AD  industry  with  a  range  of  AD  systems  available.  

•  A  co-­‐digestion  of  grass  silage  and  dairy  slurry  provides  reliable  process  stability  and  has  no  adverse  impact  on  gas  yields.  

•   The   exact   ratio   between   grass   silage   and   dairy   slurry   has   to   be   arranged   with   the   technology  provider.  

 •  The  feedstock  mix  offers  flexibility  to  accommodate  other  locally  sourced  input  material  in  future.    

 

   

BABE  –  Brampton  AD  Feedstock  Study  

 

Public  Version                                                                                                                                            page  51  of  94  

5.2. Feedstock  and  Consents  

This   chapter  will   briefly   investigate   the   impact   and   possible  mitigation  measures   of   the   preferred  feedstock  selection  on  the  relevant  consents  required:    

• Planning  permit  

• Environmental  permit  

• Digestate  certification  

The  typical  feedstock-­‐related  issues  associated  with  the  permitting  regime  are:  

• Would  the  feedstock  mix  trigger  any  planning  conditions?  

• Would  the  feedstock  mix  have  any  influence  on  the  type  of  environmental  permit?  

• Would   there  be  any  environmental   impacts,   either   from  planning  or  permitting,  which  are  costly  to  mitigate,  especially  in  regard  to  odour  and  air  emissions,  noise  and  traffic?  

• What  is  the  impact  of  the  input  material  on  the  AD  operation,  with  e.g.  pasteurisation?  

• What  is  the  impact  of  the  input  material  on  the  legal  status  of  digestate?  

In  general,   the  planning  system  focuses  on  whether   the  development   itself   is  an  acceptable  use  of  the  land  and  the  effects  of  those  uses,  whilst  the  permitting  regime  seeks  to  safeguard  and  control  the  processes  or  any  emissions  to  the  environment  themselves.  The  planning  procedure  scrutinises  whether  the  development’s  considerations  of  the  quality  of  land,  air  or  water,  possibly  leading  to  an  effect  on  health,  are  capable  of  being  a  ‘material  consideration’  leading  to  its  constraint  or  rejection.  In   other   words,   the   planning   permit   is   a   grant   to   build   a   specific   undertaking,   whilst   the  environmental  permit  is  a  licence  to  operate  a  specific  undertaking  at  a  site.  

5.2.1. The  Planning  Permit  

National  planning  policy  has  been  and  still  is  subject  to  significant  changes  with  the  publishing  of  the  National  Planning  Policy  Framework  (NPPF)  in  March  2012,  replacing  the  previous  national  planning  policy  and  –  gradually  –  regional  planning  policy.  

So   is   Section   10   of   the   NPPF,   relating   to   ‘Meeting   the   challenge   of   climate   change,   flooding   and  coastal  change’,  superseding  for  example  the:  

• Planning  Policy  Statement  1:  Planning  and  Climate  Change  Energy  –  Supplement  to  PPS1  

• Planning  Policy  Statement  22:  Renewable  Energy  (PPS22)    

Section  11  of  the  NPPF,  relating  to  ‘Conserving  and  enhancing  the  natural  environment’,  supersedes  for  example  the:    

• Planning  Policy  Statement  23:  Planning  and  Pollution  Control  (PPS23)  

• Planning  Policy  Guidance  24:  Planning  and  Noise  (PPG24)  

Of  relevance  for  the  proposed  AD  plant  is  a  presumption  in  favour  of  sustainable  development.  It  is  recommended  that  Local  Plans  and  planning  decisions  taken  should  reflect  this  presumption  and  the  integrated  social,  environmental  and  economic  orientation  the  NPPF  envisages.  Paragraph  15  of  the  NPPF   states   to   “proactively   drive   and   support   sustainable   economic   development   to   deliver   the  homes   businesses   and   industrial   units,   infrastructure   and   thriving   local   places   that   the   country  needs.”    

Section  10  highlights  that  the  delivery  of  renewable  and  low  carbon  energy  is  key  to  the  economic,  environmental   and   social   dimensions   of   sustainable   development.   Paragraph   97   of   the   NPPF  epitomises  this  approach  by  stating:  

   

BABE  –  Brampton  AD  Feedstock  Study  

 

Public  Version                                                                                                                                            page  52  of  94  

“To   help   increase   the   increase   the   use   and   supply   of   renewable   and   low   carbon  energy,   local   planning   authorities   should   recognise   the   responsibility   on   all  communities   to   contribute   to   energy   generation   from   renewable   or   low   carbon  sources.  They  should:    

●   have   a   positive   strategy   to   promote   energy   from   renewable   and   low   carbon  sources;  

●  design   their   policies   to  maximise   renewable   and   low   carbon   energy   development  while   ensuring   that   adverse   impacts   are   addressed   satisfactorily,   including  cumulative  landscape  and  visual  impacts;    

●  …    

●  support  community-­‐led   initiatives   for   renewable  and   low  carbon  energy,   including  developments   outside   such   areas   being   taken   forward   through   neighbourhood  planning;  and    

●   identify   opportunities   where   development   can   draw   its   energy   supply   from  decentralised,   renewable   or   low   carbon   energy   supply   systems   and   for   co-­‐locating  potential  heat  customers  and  suppliers.”  

Apart   from   the  National   Planning   Policy   Framework,   the   Cumbria  Minerals  &  Waste  Development  Framework  and  the  Local  (Transport)  Plan  will  to  be  taken  into  consideration.  

5.2.2. Planning  Route  

Assuming  upfront  that  the  project  will  not  qualify  for  planning  permit  under  any  Permitted  Planning  regulations,  the  first  actions  will  be  to  identify  the  determining  planning  authority  and  the  scope  of  the  planning  exercise.    

Contact   has   been   established   with   Development   Control   at   Cumbria   County   Council’s   planning  department,  where  it  has  been  confirmed  that  County  Council  is  the  appropriate  planning  authority  to  seek  planning  permission.  Where  an  AD  development  uses  either  input  material  from  outside  its  premises   or   landholding   or   agricultural   by-­‐products   and   is   therefore   categorised   as   a   ‘waste  application’,  the  application  will  be  dealt  with  on  county  and  not  on  district  (or  equivalent)  level.    

In  line  with  the  Town  and  Country  Planning  (Environmental  Impact  Assessment)  (England  and  Wales)  Regulations  1999  (as  amended),  a  ‘screening  opinion’  will  be  requested  from  the  determining  Local  Planning  Authority.  This   represents  a  written  statement  of  opinion  as  to  whether  the  proposed  AD  development   would   constitute   an   EIA   (Environmental   Impact   Assessment)   development,   likely   to  have  significant  effects  on  the  environment  by  virtue  of  its  nature,  size  and  location.    

A   possible   outcome,   based   on   planning   decisions   with   a   feedstock   mix   –   livestock   manures   and  energy  crops  without  any  food  waste  –  and  supply  sourced  from  several  farm  holdings  (all  subject  to  no   significant   unmitigatable   environmental   impacts),   could   classify   the   proposed   scheme   as   a  ‘Schedule   2’   development   as   described   in   11   (b)   of   the   above   regulations,  meeting   the   criteria   of  column  2  of  this  schedule  (i.e.  being  over  0.5ha  and  within  100m  of  controlled  waters)  and  not  being  an  EIA  development.    

The  inclusion  of  brewery  waste  as  food  waste  would  add  additional   layers  of  planning  preparations  (HACCP),  plant  design  and  infrastructure  requirements  like  ‘clean’  and  ‘dirty’  access,  egress  and  yard  areas,  waste  reception  infrastructure,  bunding  and  the  public  perception  of  a  ‘food  waste  plant’.    

5.2.3. Key  Environmental  Impacts  

A  range  of  potential  environmental  impacts  will  be  investigated  in  more  detail,   limited  to  feedstock  issues.  

   

BABE  –  Brampton  AD  Feedstock  Study  

 

Public  Version                                                                                                                                            page  53  of  94  

5.2.4. Noise  

Regarding   legislation   and   national   policy,   noise   nuisance   in   the   UK   is   principally   governed   by  Statutory  Nuisance  legislation  under  the  Environmental  Protection  Act  (1990  –  as  amended).  No  legal  standards  regarding  noise  levels  are  applied;  however,  noise  assessments  are  accepted  on  guidelines  provided   through   British   Standards   (BS)   and   by   the   World   Health   Organisation   (WHO).   Noise  nuisance  is  generally  policed  by  Local  Authority  Environmental  Health  Departments.  

The  ‘Planning  Policy  Guidance  Note  (PPG)  24:  Planning  and  Noise’  guides  local  authorities  in  England  on   the   use   of   their   planning   powers   to   minimise   the   adverse   impact   of   noise.   It   outlines   the  considerations  to  be  taken  into  account  in  determining  planning  applications  both  for  noise-­‐sensitive  developments  and  for  activities,  which  generate  noise.  

As  a  matter  of  good  practice,  initially  a  baseline,  background  sampling  of  nose  will  be  undertaken  in  accordance  with  the  British  Standard  BS4142-­‐1997  ‘Method  of  rating  industrial  noise  affecting  mixed  residential  and  industrial  areas’  to  assess  the  impact  of  the  site  and  then  the  overall  suitability  of  the  site   for   the  proposed  AD  development.   In  other  words,   its  aim   is   to  establish   the  sound   landscape  and  to  provide  systems  to  manage  noise  emissions  at  the  nearest  receptor  to  standards  expressed  in  any  planning  condition.  

Noise   originating   from   feedstock   related   activity,   the   concern   of   this   Study,   is   restricted   to   traffic  noise.   It   originates   from   vehicle   movements   during   supply   delivery   and   digestate   take-­‐away.   The  vehicle  movements   are   restricted   to   tractor   and   trailers,   no   HGVs   are   envisaged   to   be   used.   The  impact  of  vehicle  movements  can  be  reduced  by  a  carefully  planned  site  layout  with  short  distances  between  entrance  and  silage  clamp  and  digester  tank  as  well  as  a  traffic  plan  only  allowing  a  one-­‐way  traffic  flow.  These  measures  will  reduce  the  potential  for  nuisance  noise  greatly.  

A  noise  modelling  scheme  will  have  to  assume  vehicle  movements  to  be  restricted  at  daytime  hours  and  tractors  to  have  a  sound  power  level  of  83dBA,  according  to  BS5228:2009.  Such  scheme  will  take  into  account  a  total  of  1,829  vehicle  movements  (‘trips’)  per  year,  the  spreading  of  traffic  movements  over  the  year  depending  on  the  silage  supply  system.  (See:  the  ‘Transport’  paragraph)  

 

 

Map  10:  Indicative  location  of  the  nearest  domestic  receptors  for  noise  (and  odour)  ©  Crown  copyright  and  database  rights  2013  Ordnance  Survey  0100031673  

   

BABE  –  Brampton  AD  Feedstock  Study  

 

Public  Version                                                                                                                                            page  54  of  94  

The  above  illustration  highlights  the  nearest  domestic  receptors  to  the  East  of  the  Industrial  Estate  in  the  distance  of  approximately  780  metres.  The  Study  has  not  gained  certainty  whether  the  caravan  park  to  the  North  East  of  the  industrial  estate  has  a  permanent  dwelling  located  on  its  premises;  if  so  it  would  be  closer  to  the  proposed  AD  plant  with  a  distance  of  approximately  610  metres.  

Construction  noise   is  not  part  of  the  above  considerations;  operational  noise  from  the  weighbridge  and  bleeps  from  a  tractor  or  telescope  reversing  at  the  silage  clamp  is  optional  and  will  need  to  be  considered  at  a  later  stage.  

Any   noise   causing   nuisance   to   the   adjacent   commercial/light   industrial   tenants   on   the   industrial  estate  would  have  to  be  duly  mitigated.  

Traffic  –  Routes  and  Frequencies  

Any  traffic  impact  would  be  restricted  to  an  area  within  a  radius  of  five  kilometres  of  the  Townfoot  Industrial  Estate.  Impact  areas  can  be  established  by  identifying  traffic  routes  and  traffic  frequencies.  

The  expected  traffic  routes  are  presented  for  silage  suppliers  only,  as  no  discussion  has  taken  place  yet  as   to  what  amount  of   slurry  will  be   required  by   the   technology  provider.  The  proposed  supply  routes   aim   to   avoid   any   built-­‐up   area   where   possible,   and   are   as   such   bypassing   Irthington   and  Brampton   completely.   All   transport   is   concentrated   on   the   A69   and   the   connecting   road   to   the  Townfoot  Industrial  Estate  at  the  South  West  of  Brampton.  

Any  digestate  distributed  back  to  the  silage  supply  farms  would  follow  the  same  routes.  

The   indicative  –  no  discussion  has   taken  place  with   the  planning  authority  on   that   subject  –   traffic  routes   for   silage   suppliers   are   shown   below.   It   should   be   noted   that   five   of   the   ten   slurry   supply  locations  are  directly  en  route  of  the  silage  supply  routes.    

 

 

Map  11:  Indicative  traffic  routes  for  silage  suppliers  (copyright  same  as  Map  10)  

   

BABE  –  Brampton  AD  Feedstock  Study  

 

Public  Version                                                                                                                                            page  55  of  94  

In  cooperation  with  slurry  suppliers   (or  sub-­‐contractors)  a  scheme  would  established  to  reduce  the  traffic  frequency  of  tractor  movements.  During  the  seven  months  of  the  NVZ  open  period  digestate  would   be   taken   back   on   the   return   journey   of   a   slurry   delivery.   The   Study   assumes   that   such   a  scheme  would  not  be   applied  during   the   five  month   closed  period   for   dairy   slurry.   The   Study   also  opts   for   the   15-­‐ton   slurry   tractor-­‐attached   trailers   local   contractors   use   and  not   for   a   20-­‐ton  HGV  slurry  tanker,  when  calculating  slurry  and  digestate  transports.    

Consideration   has   also   been   given   for   break   crop,   harvested   after   the   second   cut   for   grass   (and  before  a  potential  third  grass  cut),  which  provides  more  accurate  traffic  frequency  figures.  

The  overall  scheme  would  result  in  a  total  of  1,072  journeys  or,  as  a  single  journey  equals  two  ‘trips’,  2,144  vehicle  movements  per  year.  This  equates  to  in  average  6.2  trips  per  workday,  if  the  delivery  of  forage  could  in  theory  be  spread  evenly  over  the  year.    

The  next  table  gives  a  detailed  overview  of  the  traffic  frequency  calculations.    

 

Table  27:  Step-­‐by-­‐step  calculation  of  traffic  frequency  and  newly  generated  traffic    movements,  where  the  number  of  ‘slurry  farms’  is  indicative,  not  affecting  the  overall    outcome  

If  the  evenly  spread  of  forage  supply  cannot  be  achieved  with  the  use  of  already  existing  clamps  at  the  supply  farms  for  temporary  storage,  so-­‐called  ‘satellite’  clamps,  then  peak  traffic  levels  will  occur  during  harvest  activities.  The  Study  assumes   In   that  scenario  a  cutting  period  stretching  over   three  weeks  due  to  unreliable  weather  conditions,  six  workdays  per  week  and  12  working  hours  as  in  any  agricultural  business  in  the  same  situation.  The  harvest  period  for  the  second  grass  cut  is  based  on  a  two-­‐week  window  and  the  harvest  for  the  break  crop   is  assumed  to  stretch  over  1.5  weeks.  Actual  harvest   periods   could   be   shorter,   however   also   longer   harvest   periods   have   been  witnessed.   The  next  table  shows  the  calculation  for  ‘peak  traffic’  in  more  detail.  

   

BABE  –  Brampton  AD  Feedstock  Study  

 

Public  Version                                                                                                                                            page  56  of  94  

 

Table  28:  Calculation  of  peak  traffic  figures  

The  traffic  frequency  during  all  three  harvests  is  around  four  trips  per  hour  per  workday,  making  all  three   periods   ‘peak’   time.   Despite   little   time   for   digestate   spreading   during   cutting,   nutrient   feed  within   24   or   48   hours   of   cutting   is   vital   for   continuous   plant   growth,   therefore   the   calculation   is  based  on  ongoing  slurry  and  digestate  traffic.  

Odour  

The  UK  has  no  statutory  standards  for  assessing  odour  nuisance  and  it  is  part  of  the  duty  of  care  for  the  operator   to  ensure   that  odour  emissions  are  prevented  and  minimized   in  accordance  with   the  recommendations   from   e.g.   “A   Code   of   Good   Agricultural   Practice   for   farmers,   growers   and   land  managers’  (DEFRA,  2009)  and  its  predecessor  The  Air  Code  (1998,  MAFF  now  DEFRA).    

From  a  planning  perspective  the  proposed  plant  background  levels  of  odour  will  be  consistent  with  the   rural   and   agricultural   surroundings   in  which   ongoing   agricultural   practices   of   spreading   slurry,  poultry   litter   and   FYM   generate   clearly   detectable   odorants.   Anaerobic   digestion   is   regarded   as   a  technology   to   reduce   odour   emissions   from   slurry,   already   recognised   in   The   Air   Code,   where   it  states   that   “in   a   properly   designed   and   run   system,   the   odour   emitted   …   (from)   anaerobically  digested  slurry  will  be  reduced  by  up  to  80%.”  

Additionally,   the  only  external,   that   is  not  enclosed   in  sealed  units,  process   is   the  process  of   silage  formation   from   forage.   Whilst   silage   is   closed   in   highly   airtight   clamps,   aerobic   and   anaerobic  fermentation   takes  place,   giving   rise   to  potential   odour.   Such  odour  would  be   released  only  when  feedstock  was  taken  from  the  ‘face’  of  the  silage  probably  twice  a  day.  Where  odour  could  arise,  the  distance  to  sensitive  areas  seems  such  that  any  impacts  on  domestic  receptors  (as  shown  in  Map  10  above)  would  be  extremely  unlikely.  

Landscape  and  Visual  Impact  

The  landscape  and  visual  impact  of  the  proposed  AD  plant  is  for  the  purpose  of  the  Study  limited  to  the  structure  of  the  silage  clamp.  Any  clamp  design  as  part  of  the  overall  plant  layout  and  design  will  have   to   ensure   no   adverse   affect   on   the   natural   and   historic   landscape.   This   can   be   achieved   by  integrating   already   existing   features   of   the   surrounding   industrial   estate   into   the   design   of   plant  structures  and  screening  the  visibility  of  the  clamp  with  suitable  plantation.  

Section  7  of  the  NPPF  relating  to  ‘Requiring  Good  Design’  emphasises  the  importance  of  good  design  for  the  character  and  amenity  of  places  and  areas  in  which  a  development  is  situated.    

The  nearest   residential   dwelling   located  within   a   caravan  park   is   sited  about  600m  away   from   the  proposed   development,   a   distance   sufficient   to   prevent   any   undue   loss   of   amenity   arising   to  

   

BABE  –  Brampton  AD  Feedstock  Study  

 

Public  Version                                                                                                                                            page  57  of  94  

properties  by  way  of  either  overbearing  or  overshadowing,  especially  considering  other  units  of  the  Townfoot  Industrial  Estate  placed  in  between.    

In  summary,   the   ‘feedstock  element’  of   the  AD  plant  should  be  compliant  with  any  planning  policy  requirements.  

5.2.5. The  Environmental  Permit    

Permitting  Regime  

The   proposed   AD   plant   is   expected   to   require   a   permit   to   operate   under   the   provisions   of   the  Environmental   Permitting   (England   and   Wales)   Regulations   2010   (SI2010   No.65).   The   permitting  regulation   sets   out   how   the   Environment   Agency   will   apply   waste   regulatory   controls   to   the  anaerobic   digestion   of   agricultural   manure   and   slurry   and   the   use   of   the   resulting   digestate   as   a  fertiliser  on  agricultural  land  in  England  and  Wales.  

National  planning  policy  has  been  and  still  is  subject  to  significant  changes  with  the  publishing  of  the  National  Planning  Policy  Framework  (NPPF)  in  March  2012,  replacing  the  previous  national  planning  policy  and  –  gradually  –  regional  planning  policy.  

The   Environmental   Permitting   Regulations   2010   (EPR)   are   also   subject   to   change:   A   public  consultation  has  been  made  public  in  2013,  but  to  date  the  outcome  is  not  yet  published.  Expected  amendments   are   due   to   a   deeper   understanding   of   the   AD   industry.   Further   expected   is   a   closer  integration   with   planning   procedures   and   a   lifting   of   the   compulsory   publishing   of   environmental  permits  by  local  authorities.    

The  EPR  requires  the  operator  of  a  facility,  which  undertakes  environmental  activity  falling  within  the  scope  of  the  regime  to  obtain  an  Environmental  Permit  from  the  Environment  Agency,  or  register  an  exemption  from  doing  so,  if  applicable,  before  it  can  operate  lawfully.  

The   aim   of   the   regime   is   to   ensure   the   proper   regulation   of   activities   which   pose   a   risk   to   the  environment  or  to  human  health,  and  which  have  the  potential  to  cause  damage  to  the  surrounding  area.  The  regulations  also  seeks  to  ensure  that  the  operator  follows  ‘best  practice’  when  managing  the  facility,  whilst  monitoring  operator  competence  through  regulatory  supervision.  

The   agency   responsible   for   Environmental   Permit   matters   is   the   Environment   Agency.   As   the  proposed   AD   plant   is   situated   in   Brampton   the   Environment   Agency’s   branch   in   charge   is   the  Northern  Area  Office  for  the  North  West  based  in  Penrith,  Cumbria.    

Reference  Documents  

The   Environmental   Permitting   Regulations   (EPR)   are   laid   out   and   explained   in   a   wide   range   of  documents,  some  of  the  most  relevant  are:  

• DECC  and  DEFRA,  Anaerobic  Digestion  Strategy  and  Action  Plan  (v.  2011-­‐12  and  updates)  

• Environment  Agency,  Position  Statement  029:  Anaerobic  digestion  of  agricultural  manure  and  slurry.  Oct.  2010  

• Environment  Agency,  How  to  comply  with  your  Environmental  Permit;  vers.  6,  June  2013  

• The  Environment  Agency’s  ‘regulatory’  guidance  papers  

• The  Environment  Agency’s  sector  cross-­‐cutting  or  ‘horizontal’  guidance  papers,  e.g.:  

o H1  –  Environmental  risk  assessments    o H2  –  Energy  efficiency    o H3  –  Noise    o H4  –  Odour  o H5  –  Site  condition  report  guidance  

   

BABE  –  Brampton  AD  Feedstock  Study  

 

Public  Version                                                                                                                                            page  58  of  94  

Permitting  Route  

The   permitting   regulation   reflects   the   Environment   Agency’s   risk   based   approach   to   benefits   and  risks  to  the  environment.  The  authorisations  can  be:    

• Exemptions,  which  are  free  of  charge  and  reserved  for  lower  risk  activities  

• Permits,  which  are  chargeable  and  for  medium  and  higher  risk  activities  

To  ease  the  complexity  of  the  permitting  regulations  the  description  moves  from  the  simplest  levels  of  compliance  to  most  complex:  

The  two  specific  waste  exemptions  for  anaerobic  digestion,  named  T24  and  T25,  are  targeted  at  very  low  risk  small  scale  AD  operations.  The  exemption  type  T24  covers  treatment  of  manures  and  slurries  at   premises   used   for   agriculture.   It   is   limited  by   a   quantity   of   1,250   cubic  metres   of  waste   (which  includes   any   digestate)   at   one   time   and   demands   a  minimum   retention   time   of   28   days.   The   T25  regulates  anaerobic  digestion  at  premises  not  used   for  agriculture,  widens   the   list  of  eligible   input  materials,  but  limits  the  quantity  to  50  cubic  metres  per  day.  

Energy  crops,  which  are  per  definition  purpose  grown  and  include  grass  silage,  are  neither  regarded  as   waste   nor   as   non-­‐waste   and   are   therefore   automatically   eligible   for   any   type   of   exemption   or  permit  under  the  Environmental  Permitting  Regulations.  

There  are  two  main  types  of  permit  under  the  EPR:  

• Standard  Rules  permits,  which  impose  a  set  of  generic  rules  applicable  to  all  activities  of  a  certain  type  

• Bespoke  permits  with  conditions  specific  to  the  site  or  a  mobile  plant  activity  

Standard  rules  permits   impose  a  set  of  rules  and  risk  assessments  which  apply  to  sites  carrying  out  activities  of  a  certain  type  such  as  composting,  or  waste  storage,  as  long  as  they  meet  the  screening  criteria.  For  example,  they  may  need  to  be  a  certain  distance  from  housing  or  protected  sites,  species  and   habitats.   A   standard   permit   has   one   condition   that   says  which   standard   rules   set   or   sets   the  operator  must  comply  with.    

Part   of   a   standard   rules   permit   is   the   requirement   for   a   site-­‐specific   management   system.   For  example,   there   is   a   standard   rules   set   for  waste   storage  and  anaerobic   treatment  of   up   to  75,000  tonnes   per   year   and   up   to   this   level   the   same   set   of   standard   rules   will   apply.   The  management  system  must   identify  and  control  how  much  of  each   specific  waste   type   the   site   can   safely  handle  whilst  minimising  the  risk  of  pollution.  

If  an  operator  cannot  meet  the  standard  rules  criteria  one  must  apply  for  a  bespoke  permit.  Bespoke  permit   applications   have   a   detailed   site-­‐specific   determination   process.   The   permit   will   usually  contain   conditions   specific   to   the   operation   and   site.   The   first   condition   states   the   need   for   a  management   system.   A   bespoke   permit   for   a   number   of   activities   can   also   include   standard   rules  sets.  

The  following  table  compares  the  most  relevant  licence  types  and  lists  their  main  criteria.  

 

Type  of  Licence   Key  Criteria    

T24  Exemption  

Anaerobic  digestion  and  burning  of  resultant  biogas  at  premises  used  for  agriculture    

Operator  can  store  or  treat  up  to  1,250  cubic  metres  of  waste  at  any  one  time  

Waste  types  only  include  manures,  slurries  and  plant  tissue  (‘energy  crops’)  

Waste  must  remain  in  the  digester  for  min  28  days  

-­‐  

   

BABE  –  Brampton  AD  Feedstock  Study  

 

Public  Version                                                                                                                                            page  59  of  94  

The  combustion  appliance  must  have  a  net  rated  thermal  input  of  less  than  0.4  MW  

Any  gas  produced  by  the  digester  must  be  collected  and  then  burnt  in  an  appliance  

T25  Exemption  

Anaerobic  digestion  and  burning  of  resultant  biogas  at  premises  not  used  for  agriculture    

Operator  can  store  or  treat  up  to  50  cubic  metres  of  waste  at  any  one  time  

Waste  types  only  include  manures,  slurries  and  plant  tissue/vegetation  and  catering  wastes  

Waste  must  remain  in  the  digester  for  a  minimum  of  28  days  

The  combustion  appliance  must  have  a  net  rated  thermal  input  of  less  than  0.4  MW  

Any  gas  produced  by  the  digester  must  be  collected  and  then  burnt  in  an  appliance  

-­‐  

       

Standard  Rules  SR2012  No  10  

Waste  recovery  operation  –  on  farm  

Anaerobic  digestion  and  use  of  resultant  biogas  at  premises  used  for  agriculture  

Treatment  capacity  of  waste  must  be  less  than  100  tonnes  on  any  one  day  

Waste  types  only  from  on-­‐farm  activities  (EWC  02  01  01,  02  01  03,  02  01  06,  02  05  01  and  02  05  02)  

Maximum  throughput  of  animal  waste  must  be  less  than  10  tonnes  per  day  

The  combustion  appliance  must  have  a  net  rated  thermal  input  of  less  than  5  MW  

 

Standard  Rules  SR2012  No  12  

Waste  recovery  operation  –  off  farm  

Anaerobic  digestion  and  use  of  resultant  biogas  at  premises  not  used  for  agriculture  

Treatment  capacity  of  waste  must  be  less  than  100  tonnes  on  any  one  day  

Waste  types  only  from  on-­‐farm  activities  

Maximum  throughput  of  animal  waste  must  be  less  than  10  tonnes  per  day  

The  combustion  appliance  must  have  a  net  rated  thermal  input  of  less  than  5  MW  

 

     

Bespoke  Permit  –  Tier  3  

Waste  recovery  operation  

Anaerobic  digestion  and  burning  of  resultant  biogas  at  premises  not  used  for  agriculture  

A  Tier  3  Bespoke  Permit  specially  concerned  about  ‘operational  conditions’  and  applies  if  the  accepted  waste  is  e.g.  either:  

• not  of  a  type  and  quantity  as  listed  (in  tables  2.1  and  2.3)  in  the  Stand.  Rules  SR2012  No12  

• not  conforming  to  the  description  in  the  documentation  supplied  by  the  producer  and  holder  

• not  biodegradable  

• from  animal  by-­‐products  or  contain  animal  by-­‐products  and  are  not  handled  and  processed  in  accordance  with  any  requirements  and  restrictions  imposed  by  the  animal  by-­‐  products  legislation  

 

Table  29:  A  selection  of  relevant  environmental  permit  authorisations  

   

BABE  –  Brampton  AD  Feedstock  Study  

 

Public  Version                                                                                                                                            page  60  of  94  

The   feedstock   eligible   for   a   permit   under   SR2012   No10   (‘on   farm’)   are   listed   below   in   order   to  demonstrate  the  regulators  understanding  of  ‘on-­‐farm’  and  to  show  the  type  of  possible  permit  if  the  proposed  AD  site  would  have  been  an  operating  farm.  

In   theory   a   Tier   2   Bespoke   Permit   is   concerned   about   ‘location   conditions’   and   applies   if   the  permitted  activities  are  not  be  carried  out  within:  

• 10  metres  of  any  watercourse  

• a  groundwater  source  protection  zone  1,  or  if  a  source  protection  zone  has  not  been  defined  then  within  50  metres  of  any  well,  spring  or  borehole  used  for  the  supply  of  water  for  human  consumption.  This  must  include  private  water  supplies.  

• 200  metres  from  the  nearest  sensitive  receptor  

Furthermore,  the  gas  engine  stack  must  be  a  minimum  of  3  metres  in  height  and  must  not  be  located  within  200  metres  of  a  European  Site  or  a  Site  of  Special  Scientific  Interest  (excluding  any  site  designated  solely  for  geological  features).  

In  practice  however,  any  Bespoke  Permit  for  an  AD  facility  will  automatically  be  a  Tier  3  Bespoke  Permit.    

Feedstock  and  Permit  Types  

Some  help  can  be  obtained  from  the  EA  publication  ‘How  to  comply  with  your  Environmental  Permit  (Version  6.0,  June  2013)’  

Each  permit  allows  for  a  specific  set  of  input  material  to  be  processed  in  an  AD  facility  as  tabled  below.  

 

European  Waste  Code  (EWC)  

Description  

02   Wastes  from  Agriculture,  Horticulture,  Aquaculture,  Forestry,  and    Hunting,  Fishing,  Food  Preparation  and  Processing  

02  01   Wastes  from  agriculture,  horticulture,  aquaculture,  forestry,  hunting  and  fishing  

02  01  01   Sludge  from  washing  and  cleaning  –  vegetables,  fruit  and  other  crops  

02  01  03   Plant  tissue  waste  -­‐  husks,  cereal  dust,  waste  animal  feeds,  off-­‐cuts  from  vegetable  and  fruit  and  other  vegetation  waste  

02  01  06   Animal  faeces,  urine,  manure  including  spoiled  straw  

02  05   Wastes  from  the  dairy  products  industry  

02  05  01   Biodegradable  materials  unsuitable  for  consumption  or  processing  (other  than  those  containing  dangerous  substances)  −  solid  and  liquid  dairy  products,  milk,  food  processing  wastes,  yoghurt,  whey  from  dairies  

02  05  02   Sludge  from  dairies  effluent  treatment  

Table  30:  Input  material  eligible  under  Standard  Rule  R2012  No10  

Table   30   illustrates   that   all   identified   feedstock   types,  with   the   exemption   of   brewery  waste,   hop  mash  and  yeast  wash,  are  compliant  with  the  Standard  Rule  R2012  No10  permit.    

   

BABE  –  Brampton  AD  Feedstock  Study  

 

Public  Version                                                                                                                                            page  61  of  94  

The  input  material  eligible  under  permit  under  SR2012  No12  (‘off  farm’)  cast  a  much  wider  net  and  allow  for  waste  from  a  variety  of  sectors.  The  most  relevant  are  listed  below,  the  full  list  can  be  found  on  the  Environment  Agency  website.  

 

European  Waste  Code  (EWC)  

Description  

02   Wastes  from  Agriculture,  Horticulture,  Aquaculture,  Forestry,  and    

Hunting,  Fishing,  Food  Preparation  and  Processing  

02  01   Wastes  from  agriculture,  horticulture,  aquaculture,  forestry,  hunting  and  fishing  

  02  01  01  –  03,  02  01  06  –  07,  02  01  99  

02  02   Wastes   from   the   preparation   and   processing   of  meat,   fish   and   other   foods   of  animal  origin  

  02  02  01  –  04,  02  01  99  

02  03   Wastes  from  fruit,  vegetables,  cereals,  edible  oils,  cocoa,  coffee,  tea  and  tobacco  preparation   and   processing;   conserve   production;   yeast   and   yeast   extract  production,  molasses  preparation  and  fermentation  

  02  03  01,  02  03  04  –  05,  02  03  99  

02  04   Wastes  from  sugar  processing  

  02  04  03,  02  04  99  

02  05   Wastes  from  the  dairy  products  industry  

  02  05  01  –  02  

02  06   Wastes  from  the  baking  and  confectionery  industry  

  02  06  01,  02  06  03  

02  07   Wastes   from   the   production   of   alcoholic   and   non-­‐alcoholic   beverages   (except  coffee,  tea  and  cocoa)  

  02  07  01  –  02,  02  07  03  –  04,  02  07  99  

Table  31:  Selection  of  input  material  eligible  under  Standard  Rule  R2012  No12  

Additional  eligible   input  material   is  e.g.  paper  and  cardboard  –  production  waste  or  waste  package  (without   non-­‐biodegradable   coating   or   preserving   substance),   de-­‐inked   paper   pulp,   paper   fibre,  glycerol,  digestate  from  other  anaerobic  digestion  treatments,  kitchen  and  canteen  waste  as  well  as  edible  oil   and   fat.  A   complete   list   can  be   found  on  www.nwcpo.ie/forms/EWC_code_book.pdf �  and  explanations  on  www.biffa.co.uk/assets/files/Content%20PDF/EWC_Paper-­‐v1.09.pdf �.  

Brewery   waste,   hop   mash   and   yeast   wash,   would   be   eligible   under   this   type   of   environmental  permit.  

Permit  Charges  

In  regard  to  the  charges  for  applying  and  maintaining  an  environmental  permit  (or  exemption),  the  application  of  an  exemption  is  free  of  charge,  followed  by  the  Standard  Permit  for  on-­‐farm  and  then  

   

BABE  –  Brampton  AD  Feedstock  Study  

 

Public  Version                                                                                                                                            page  62  of  94  

off-­‐farm.  An  application  for  the  Bespoke  Permit  is  the  most  complex  and  costliest  of  the  three  licence  types.  

The  Standard  Rules  permit  charges  for  the  SR2012  No10  (‘on  farm’)  are:  

• Application  fee:  £1,590  

• Subsistence  fee:  £1,540  (per  year)  

The  Standard  Rules  permit  charges  for  the  SR2012  No12  (‘not  on-­‐farm’)  are:  

• Application  fee:  £1,590  

• Subsistence  fee:  £2,420  (per  year)  

An  AD-­‐related  Bespoke  Permit  will  be  calculated  by  use  of  an  operational  risk  appraisal  (OPRA)  score:  

• Derived  from  OPRA  weighing  factors  and  

• Multiplied  by  a  relevant  OPRA  multiplier  

Additional  charges  arise  for  any  transfer  of  e.g.  permit  holder  and  surrender  of  the  permit.  

All   input  material   identified   for   the  proposed  BABE  AD  plant   is   in   accordance  with   Standard  Rules  SR2012  No10  and  therefore  with  SR2012  No12.  However,  there  is  a  question  of  the  nearest  receptor,  possibly   a   business   unit   at   the   Townfoot   Industrial   Estate   and   less   than   100   metres   from   the  proposed  site  boundary,  which  is  indicated  with  a  magenta-­‐coloured  circle  in  Map  10.    

The  ‘nearest  sensitive  receptor’  refers  to  the  nearest  place  to  the  permitted  activities  where  people  are  likely  to  be  for  prolonged  periods.  This  term  would  therefore  apply  to  dwellings  and  associated  gardens,  including  farmhouses  and  to  many  types  of  workplaces.  The  Environment  Agency  would  not  normally  regard  a  place  where  people  are  likely  to  be  present  for  less  than  six  hours  at  one  time  as  being  a  sensitive  receptor.    

The  term  does  not  apply  to  the  operators  of  the  permitted  facility,  their  staff  when  they  are  at  work  or  to  visitors  to  the  facility,  as  their  health   is  covered  by  Health  and  Safety  at  Work  legislation.  The  applicant  needs  to  demonstrate  to  the  EA  that  people  would  be  in  the  receptor’s  place  for  less  than  six  hours   at   any  one   time,  otherwise   the  proposed  AD  plant   is   likely   to  be   licensed  under  a  Tier  2  Bespoke  Permit  rather  than  a  permit  under  SR2012  No12.  

Summary  

For  the  sake  of  understanding,  the  possible  environmental  permit  route  is  presented  in  a  cascading  order:  

• A  Standard  Permit  under  SR2012  No  10  (‘on-­‐farm’)  is  applicable  if:    

o The  input  material  is  restricted  to  slurry  and  silage  without  any  brewery  waste  and    o The  AD  plant  would  be  on  a  farm  and    o The  distance  of  the  AD  plant  to  the  nearest  receptor  would  be  over  200m    

• A  Standard  Permit  under  SR2012  No  12  (‘not  on-­‐farm’)  is  applicable  if:  

o The  input  material  is  slurry  and  silage  and  includes  brewery  waste  and    o The  AD  plant  is  not  on  a  farm  and    o The  distance  of  the  AD  plant  to  the  nearest  receptor  would  be  over  200m    

• A  Bespoke  Permit  is  applicable:    

o Regardless  of  the  input  material  and    o Regardless  of  the  site  location  and    o If  the  distance  to  the  nearest  receptor  would  be  under  200m  

   

BABE  –  Brampton  AD  Feedstock  Study  

 

Public  Version                                                                                                                                            page  63  of  94  

5.2.6. Management  Plans  

The   application   for   the   EP  will   have   to   contain  management   plans   for   any   possible   environmental  impacts,  which  will  be  identified  through  the  form    ‘H1  Environmental  Risk  Assessments’.    

As   the   Environment   Agency   states,   emissions   or   any   other   form   of   impact   from   the   operator’s  activities  shall  be  free  from  noise,  vibration,  odour,  etc.  at  levels  likely  to  cause  pollution  outside  the  defined  site,  as  perceived  by  an  authorised  officer  of   the  Environment  Agency,  unless  the  operator  has   used   appropriate   measures,   including,   but   not   limited   to,   those   specified   in   any   approved  management   plan   to   prevent   or   where   that   is   not   practicable,   to  minimise,   the   specific   pollutant  source.  

A  management  plan  requires  the  operator  to  take  appropriate  measures  to  prevent  or  minimise  any  identified   pollutant.   The   measures   required   need   to   be   what   are   reasonable,   good   practice   and  balances  the  costs  and  benefits  to  prevent  or  minimise  noise.   If  there   is  a  pollution  problem  at  the  site,   and   the   operator   has   already   implemented   some   measures,   there   may   be   a   case   to   justify  further  measures   or   restriction   of   the   activity,   depending   on   the   severity   of   the   problem   and   the  cost.  Even  if  the  operator  is  following  normal  standards  and  guidance  but  the  impact  is  unreasonable,  then  one  will   have  put   in   place   further  measures   and   the   EA  will   judge  with   the  operator  what   is  reasonable  and  to  what  extent  further  measures  are  possible,  required  or  justified.  

If   the  operator   is   likely  to  cause  any  significant  noise  beyond  the  site  boundary,  one  should  have  a  written   management   plan.   This   plan   should   first   of   all   show   what   the   sources   and   the   risks   to  receptors  are,  the  measures  one  will  employ  and  how  one  will  respond  to  prevent  or  minimise  the  pollutant.    

It  should  also  contain  some  ‘reflective’  information  about:  

• A   demonstration   that   the   indicative   ‘best   available   technique’   (BAT)   requirements   are  applied  

• An  identification  of  any  circumstances  or  conditions,  which  might  compromise  the  ability  to  prevent  or  minimise  the  specific  annoyance,  and  a  description  of  the  actions  that  will  be  taken  to  minimise  the  impact.  

The  most  likely  pollution  types  from  AD  feedstock  are  discussed  in  the  following  paragraphs.  

Noise  and  Vibration  

Where  noise  issues  are  likely  to  be  relevant,  the  operator  will  be  required  to  provide  information  on  the  following:    

• The  main  sources  of  noise  and  vibration   that  will   fall  within   the  AD   facility  and  also  on  Infrequent  sources  of  noise  and  vibration  

• The  nearest  noise-­‐sensitive  sites  

• Conditions  or  limits  imposed  under  other  regimes  

• The  local  noise  environment  

• Any  environmental  noise  measurement  surveys  or  modelling  

• Any  specific  local  issues  and  proposals  for  improvements  

The   guidance   on   noise   pollution,   the   ‘H3   Noise   Assessment   and   Control’   will   suggest   some  attenuation  provided  by  trees  and  hedges  and  a  limit  to  certain  processing  operations  like  the  filling  of  the  hopper  with  grass  silage  to  normal  working  hours.  

Appropriate  measures  to  reduce  or  control  noise  may  include:  

• Timing,  e.g.  avoiding  noisy  work  during  evenings  and  at  certain  hours  during  weekends  

   

BABE  –  Brampton  AD  Feedstock  Study  

 

Public  Version                                                                                                                                            page  64  of  94  

• Siting  away  of  weighing  station,  delivery  or  vehicle  routes  from  sensitive  receptors  

• Maintaining  vehicles  and  equipment  specifically  to  reduce  noise  levels  

• Switching  off  vehicles  when  not  in  use  

(Fugitive)  Emissions  to  Air  

The  majority  of  fugitive  emissions,  which   include  particulates,  odour  and  bio-­‐aerosols,  occur  during  the  acceptance  of   input  material,   storage  areas,  mechanical  pre-­‐treatment  of  wastes   (which   is  not  applicable  to  any  scenario  in  this  Study),  from  the  transfer  of  input  material  to  the  digester  and  when  removing   digestate   from   the   digester.   Suitable   operational   procedures   should   minimise   fugitive  emissions  during  these  operations.  The  Study  authors  are  of  the  opinion  that  such  procedures  should  be  appropriate  and  not  excessive  to  an  e.g.  surrounding  agricultural  environment.  

Examples  of  sources  of  fugitive  emissions  are:  

• Delivery  of  silage  in  uncovered  trailers  (which  is  standard  procedure  in  agriculture)  

• Sampling  activities  

• Spillages    

• Unloading  and  loading  of  trailers,  tanks  and  containers  

• Open  or  uncovered  storage  areas,  e.g.  clamps,  stock  piles,  tanks,  vessels,  lagoons  

• Displaced  vapour  from  receiving  tanks  

• Transferring  of  bulk  material  from  the  silage  clamp  to  the  digester  

A  management  plan  dealing  with  (fugitive)  emissions  to  air  would  be  practically  identical  with  odour  emissions,  which  are  described  in  more  detail  in  the  following  paragraphs.  

Odour  

An  AD   site  may  produce  odour  as   a   result  of  normal  operations  of   its   feedstock  management  and  may   cause   offence   beyond   the   site   boundary.   In   that   case   the   operator   should   have   an   odour  management  plan  containing  information  about  odour  sources  and  substances,  locations  or  release  points,  impacts,  sensitive  receptors  as  well  as  complaints,  remedies  and  monitoring  procedures.  The  guidance  ‘H4  Odour  Management’  is  an  essential  tool  for  understanding  odour  management  plans.  

The  measures  in  relation  to  contain  and  mitigate  odour  arising  from  feedstock  are  likely  to  be:

• Slurry  is  delivered  in  sealed  slurry  tanks  

• Slurry  is  pumped  straight  into  a  sealed  and  below  ground  reception  pit  or  holding  tank  

• The   slurry   reception   area   is   concrete   and   sloped   to   collect   any   spillages   and   redirect  them  back  to  the  slurry  reception  pit  

• If   the   reception   pit   is   not   entirely   below   ground,   then   the   reception   area   would   be  bunded  to  contain  spillages  within  a  restricted  area  

• All  tanks  on  site  are  enclosed  to  ensure  an  anaerobic  environment  and  contain  odour.  

• Forage  material  is  cut  uniformly  to  a  short  chopping  length  of  about  7mm  to  minimise  air  ingress  

• Forage  material  will  be  stored  in  storage  bays  of  the  silage  clamp  with  typically  3-­‐4m  high  walls  

• The  silage  clamp  should  be  sited  away  form  the  nearest  neighbours,  to  create  a  distance  for  odour  dispersal  

• Forage  material  will  be  covered  airtight  with  plastic  sheets  and  weighed  down  with  old  tyres,  a  practice  common  with  agricultural   silage  clamps,   to  minimise  air   ingress  or  gas  

   

BABE  –  Brampton  AD  Feedstock  Study  

 

Public  Version                                                                                                                                            page  65  of  94  

and  odour  egress  

• Silage  effluents  will  be  collected  and  drained  (below  ground)  to  the  slurry  reception  pit  

• The  use  of  silage  cutters  or  ‘silage  grab’  when  taking  away  silage  for  the  digester  will  cut  an  even  surface  so  reduce  the  exposed  surface  area  to  air.  This   limits  air   ingress  to  the  silage  and  with  it  ‘secondary  fermentation’  and  ‘secondary  odour’.  

• After  taking  off  silage  from  the  silage  clamp  the  exposed  side  will  be  covered  again  with  sheeting.  

It   should   be   noted   that   the   term   secondary   fermentation   is   only   used   out   of   convenience,   as  fermentation  is  an  anaerobic  process.  Once  the  silage  clamp  is  opened  and  the  silage  is  beginning  to  be  removed,  on  the  surface  the  anaerobic  environment  changes  to  aerobic  conditions.  The  starting  aerobic  processes  are  actually  termed  as  ‘deterioration’.  

Emissions  to  Groundwater,  Surface  Water  and  Drainage    

A   sustainable   drainage   system   (SUDS)   should   prevent   releases   of   harmful   substances   from   silage  effluents  and  slurry  spillage  to  the  aquatic  environment.  Any  discharge  to  surface  water  drainage  or  any   groundwater   activity   requires   either   an   environmental   permit   or   must   be   an   exempt  groundwater  activity.    

It   is   standard  procedure   for   an  AD   facility   to   collect  effluents  and  dirty  water   separately;   effluents  would  then  be  piped  to  the  digester  and  dirty  water  either  to  the  digester  or,  where  permitted,  to  the  digester  storage  facility.  

Other  Pollution  Types  

These  can  be,  among  others:  

• Dust,  possibly  from  vehicle  traffic  

• (Point  source)  Emissions  to  air,  of  no  relevance  to  feedstock  as  typically  connected  with  combustion  exhaust  emissions  from  CHP  engines  and  stand-­‐by  flares  

• Light,  possibly  from  light  sources  at  the  feedstock  reception  area  

• Vermin,  which  is  unlikely  in  the  absence  of  food  waste  

5.2.7. Quality  Control  for  Digestate  Use  

Not  Waste  –  Non-­‐Waste  –  Waste  

Agricultural  manure  and  slurry  is  not  considered  waste  when  it  is  used  directly  as  a  fertiliser  on  land.  However,  when  agricultural  manure  or  slurry  is  destined  for  a  treatment  process  like  composting  or  AD,  it  is  waste  and  will  be  subject  to  regulatory  control.  Thus,  when  the  feedstock  to  an  AD  plant  is  waste  then  the  resulting  digestate  and  biogas  are  also  waste  until  put  to  their  final  use.    

The  Environment  Agency  however  has  finally  taken  a  different  approach  for  agricultural  manure  and  slurry,   recognizing   that   the   digestate   produced   from   manure   and   slurry   has   superior   fertilising  properties  and  will  have  less  of  an  environmental  impact  than  undigested  manure  and  slurry.  

Hence  the  AD  digestate  output  is  not  considered  to  be  waste  if:  

• The  only  waste  feedstock  to  an  AD  plant  is  agricultural  manure  and  slurry  and  it  is  spread  as  a  fertiliser  on  agricultural  land  

• Agricultural   manure   and   slurry   is   mixed   with   a   non-­‐waste   feedstock   e.g.   crops   grown  specifically  for  AD  and  it  is  spread  as  a  fertiliser  on  agricultural  land.  

   

BABE  –  Brampton  AD  Feedstock  Study  

 

Public  Version                                                                                                                                            page  66  of  94  

If  the  manure  and  slurry  feedstock  is  mixed  with  other  waste  feedstock,  then  the  resultant  digestate  will  be  waste  and  subject  to  environmental  permitting  regulations.  

Any  crop  however,  which  is  grown  specifically  for  use  as  a  fuel  for  heat,  power  or  combined  heat  and  power  (CHP)  generation,  is  not  a  waste.  Anaerobic  digestion  in  an  AD  plant  to  produce  energy  meets  this  requirement.   If  the  main  purpose  of  the  plant   is  to  recover  energy  from  biogas,  the  biogas  will  also   always   be   a   non-­‐waste.   In   order   to   be   considered   as   non-­‐waste,   other   output  material  must  meet  three  criteria;  they  must  be:  

• Certain  to  be  used  

• Without  any  prior  processing,  and  

• Part  of  a  continuing  process  of  production  (i.e.  this  does  not  apply  to  wastes  produced  as  an  incidental  part  of  the  operation,  for  example  clean  down  wastes)  

In  these  circumstances  a  permit  or  exemption  is  not  required  for  the  AD  process.    

For  the  avoidance  of  doubt,  crops  grown  for  food  and  other  purposes  which  are  diverted  to  an  AD  facility,   for   example   because   there   is   a   crop   surplus,   they   become   spoiled   or   there   is   a   failure   to  move  them  off-­‐farm  in  time,  are  considered  waste  and  therefore  must  go  to  a  permitted  site.  

5.2.8. Accreditation  for  Quality  Digestate  

Whilst   the   Environmental   Permit   (or   Exemption)   deals   with   the   treatment   of   waste   by   anaerobic  digestion  the  Biofertiliser  Certification  Scheme  (BSC)  provides  an  industrial  standard  accreditation  for  anaerobic  digestate  as  a  safe  fertiliser  product.  

The   Biofertiliser   Certification   Scheme   (BCS)   is   in   place   to   certify   AD   plants   in   England,  Wales   and  Northern  Ireland  against  the  PAS110:2010  and  the  Anaerobic  Digestion  Quality  Protocol  (AD  QP)  for  the   production   and   use   of   quality   outputs   from   the   anaerobic   digestion   of   source-­‐separated  biodegradable  waste.  In  comparison,  AD  plants  in  Scotland  will  be  certified  against  the  PAS110,  not  the  QP,  with  further  conditions  specified  by  Scottish  Environment  Protection  Agency  (SEPA).  

The   PAS110   can   be   found   at:   www.biofertiliser.org.uk/certification/england-­‐wales/pas110   and   is  managed  by  the  Environment  Agency.    

The  AD  Quality  Protocol  is  on:  www.wrap.org.uk/content/quality-­‐protocol-­‐anaerobic-­‐digestate  

The  Quality  Protocol  sets  out  criteria  for  the  production  of  quality  outputs  from  anaerobic  digestion  of  material  that  is  biodegradable  waste.  Quality  outputs  from  anaerobic  digestion  include  the  whole  digestate,  the  separated  fibre  and  the  separated  liquor.  If  these  criteria  are  met,  quality  outputs  from  anaerobic  digestion  will  normally  be  regarded  as  having  been  fully  recovered  and  to  have  ceased  to  be  waste  when  it  has  been  dispatched  to  the  customer.  

The  adherence  to  PAS110:2010  and  the  AD  Quality  Protocol  means  that   the  digestate,  classified  as  waste,   reaches   end-­‐of-­‐waste   status   and   becomes   a   product.   Among   other   measures,   the   PAS110  requires   all   digestate,   regardless   of   the   input   material   type,   to   be   pasteurised,   a   process   which  benefits   are   questioned   if   all   input   material   is   energy   crops   and   agricultural   slurry   and   manure.  Therefore   the   EA   has   arranged   for   any   digestate   created   in   an   AD   facility   under   a   T24   or   T25  exemption  can  be   spread  under  a   ‘spreading  exemption’   termed  U10.  The  U10  however   limits   the  volume  of  digestate   in   line  with   the  T24,   the  digestate   to  be  spread  on   the   ‘same   land’  where   the  input  material  originated  and  the  area  of  spreading  to  agricultural  land.  

If  all  suppliers  are  part  of  the  social  enterprise  owning  the  land  and  the  enterprise  can  demonstrate  that   the   farmers   have   an   appropriate   say   in   the   steering   of   the   AD   plant   despite   a   minimal  investment,   as   oppose   to   a   symbolic   ownership,   then   their   farms,   technically   the   combined   land  encompassing  their  agricultural  holding  numbers,  is  referred  to  as  ‘own  land’  or  the  ‘same  land’.    

   

BABE  –  Brampton  AD  Feedstock  Study  

 

Public  Version                                                                                                                                            page  67  of  94  

It  is  worth  mentioning,  that  the  amount  of  spreading  digestate  on  the  individual  parcels  of  the  ‘own  land’   is   not   related   to   the   share   of   input   material   each   supplier   provided.   This   allows   digestate  spreading  according  to  the  nutrient  requirements  of  each  farmland.    

An   operator   is   not   obliged   to   comply  with   the  Quality   Protocol   and   its   demand   to   pasteurise   the  entire  digestate.   In   the  case  of  non-­‐compliance,   the  quality  outputs   from  anaerobic  digestion   (also  referred  to  as  ‘quality  digestate’)  will  be  considered  to  be  waste  and  waste  management  controls  will  apply  to  their  handling,  transport  and  application.    

The   intention   of   the   regulation   is   to   ensure   a   standardised   product   quality   from   input   material  consisting  of  food  waste  to  provide  a  confidence  on  the  market  place  for  the  use  of  whole  digestate  or  its  liquid  and  dried  components.  On  a  local  level  however,  it  is  not  expected  that  all  suppliers  from  the  same  farming  community  would  distrust  each  other’s  feedstock  quality  and  be  reluctant  to  use  the  combined  feedstock  mix,  having  undergone  anaerobic  treatment,  as  fertiliser.    

The   PAS110   and   the   AD   QP   have   both   been   published   in   2010,   their   uptake   has   not   been  phenomenal,   13   plants   are   listed   as   BSC  members,   and   despite   their   right   intentions   to   create   a  market  place  for  digestate  there  has  been  criticism  from  the  agricultural  AD  sector  for  the  perceived  inflexibility   towards   agricultural   practices.   Following   the   end   of   the   public   consultation   for   the  PAS110:2010,   the  Environment  Agency   is   expected   to   issue   a  new  position   statement   in   regard   to  digestate,   which   is   expected   to   have   an   effect   on   the   classification   and   usage   of   digestate   in   an  agricultural  and  non-­‐agricultural  context.    

Detailed  guidance  on  waste  management  controls  can  be  obtained  from  the  EA’s  National  Customer  Contact  Centre  on  08708  506506  or  from  www.environment-­‐agency.gov.uk/subjects/waste  

 

Chapter  summary:  

•  The  exclusion  of  brewery  waste  will  simplify  planning  and  plant  design.  

•  Environmental  considerations  for  planning  and  permitting  are  similar:  noise,  odour,  visual  impact,        traffic,  which  will  require  careful  preparation.  

•  The  feedstock  mix  would  have  no  impact  on  the  permit  type,  as  the  decisive  factor  is  proximity          of  the  nearest  sensitive  receptor;  however  management  plans  without  food  waste  would  simplify.    

•  The  exclusion  of  brewery  waste  avoids  digestate  pasteurisation  when  not  adhering  to  PAS110;        digestate  regulations  are  expected  to  evolve  by  the  time  the  proposed  plant  is  operational.    

   

BABE  –  Brampton  AD  Feedstock  Study  

 

Public  Version                                                                                                                                            page  68  of  94  

5.3. Feedstock-­‐related  Infrastructure    

This   selection   of   feedstock   will   have   an   impact   on   the   site   infrastructure   and   on   the   technology  components.  The  issues  usually  connected  with  this  topic  are:  

• What  to  consider  for  slurry,  silage  and  digestate?  

• how  to  calculate  the  storage  for  slurry,  silage  and  digestate?  

5.3.1. Systems  Recommendations  

This   Study   does   neither   recommend   any   plant   or   pre-­‐treatment   system   nor   recommend   any  specialist  professional  in  design  or  construction;  BABE  is  in  the  fortunate  position  that  Cumbria  hosts  plenty   of   experienced   professionals   and   there   seems   little   need   to   import   expertise   from   further  away.  

Whether  a  silage  clamp  is  part  of  the  turnkey  package  or  the  operator’s  sole  responsibility   is  up  to  the   negotiation   between   the   operator   and   funder.   A   similar   approach   works   for   the   slurry   and  digestate  storage.  Part  of  the  decision  making  process  could  be  the  availability  of  on-­‐site  or  second  hand  infrastructure,  the  use  of  satellite  clamps  or  a  further  processing  of  digestate.  

Apart   from   planning   and   permitting   considerations,   any   slurry   storage,   silage   clamp   and   digestate  storage   has   to   comply   with   the   ‘SSAFO   Regulations,   short   for   The   Water   Resources   (Control   of  Pollution)  (Silage,  Slurry  and  Agricultural  Fuel  Oil)  (England),  DEFRA  2010.  

5.3.2. Slurry  Storage  Volume  Calculation    

The  storage  net  volume  required  for  the  slurry  or  ‘liquid  reception  pit’  is  based  on  a:  

• Expected  slurry  volume  per  annum  of  2,326  m3  and  

• Storage  requirement  of  10  days  (typically  between  one  and  two  weeks)    

and  can  be  calculated  in  accordance  with  the  formula:    

liquid  throughput  per  year  /  storage  requirement  in  days  

The  formula  applied  for  2,326  m3  /  365  d  *  10  d  results   in  a  pit  net  volume  of  64  m3.   ‘Net  volume’  refers  to  the  space  for  slurry  only;  the  final  dimensions  will  incorporate  some  additional  space  for  the  access  of  a  slurry  stirrer,  space  for  movements  of  the  stirred  substrate  and  gas  emissions.  

Additional  space  may  be  considered  for  effluents  and/or  not  dischargeable  dirty  water  collected  from  the  site.  

5.3.3. Silage  Clamp  Volume  Calculation    

The  calculation  for  the  net  volume  required  for  a  walled  silage  storage  clamp  is  based  on:  

• Annual  silage  volume  of  5,427  tonnes  or  6,384  m3  

• Average  throughput  per  month  of  452  tonnes  or  532  m3    

• A  density  factor  for  silage  of  85%,  i.e.  850kg  to  1  m3    

• A  ‘typical  harvest  year’  split  into  a  first  and  second  cut  for  grass  silage  and  25%  of  forage  is  made  of  break  crop  (with  similar  volume  properties),  harvested  in  August  

and  can  be  calculated  as  in  the  next  table.  The  calculation  does  not  apply  for  an  open  clamp,  which  is  usually   larger  dimensioned  and  contained  by  a  half  or  one  metre  wall  on  two  or  three  sides.  There  are   also   other   clamp   models   in   use,   e.g.   two-­‐walled   clamps   or   earth   clamps,   where   the   volume  calculation  needs  to  be  adapted.  

   

BABE  –  Brampton  AD  Feedstock  Study  

 

Public  Version                                                                                                                                            page  69  of  94  

 

Table  32:  Silage  clamp  volume  calculation  for  a  ‘typical  year’  

Whilst   the  calculation   identifies  a  peak  storage  demand  of  4.258  m3   for  August,   the  actual   storage  volume  will  need  to  be  higher  due  to  an  uneven,  ‘mound’  shaped  compaction  practice.  Assuming  the  4,258  m3  to  make  90%  of  the  net  volume,  then  the  actual  net  volume  would  be  4,731  m3.  

The   silage   clamp   should   further   allow   for   a  month  of   surplus   feedstock.   The  above   table  does  not  take   this   into   consideration.  A   feedstock  buffer   is   especially   relevant  during   the  month  of   the   first  cut,   typically   May,   as   bad   weather   might   delay   the   harvest   and   about   six   weeks   of   silage  fermentation  need  to  be  bridged  as  well.  

A  second  consideration  is  the  ‘better  than  typical  year’  of  harvest  and  following  chapter  ‘Worst/Best  Case  Scenario’  explores  this  in  more  detail.  Whichever  of  the  various  discussed  scenarios  may  occur  –more  land  for  reseeding,  three  cuts  or  a  combination  of  various  factors  –  as  a  rule  of  thumb  a  clamp  volume  of  125%  compared  to  a  standard  or  typical  harvest  year  is  recommended.  To  assume  a  125%  volume,  equalling  5,322  m3,  only  applies  if  the  operator  would  not  raise  the  monthly  throughput  –  a  decision  the  Study  cannot  anticipate.  

It  should  be  noted  that  literature  frequently  states  a  density  factor  for  grass  silage  of  about  65%,  but  this  refers  to  long  cut  grass,  which  is  not  usable  in  an  AD  system.  Short  chopped  grass  at  6-­‐7mm  has  a  density  factor  of  about  80-­‐92%;  the  Study  uses  85%.  

An   online   application   (in  German   language)   calculating   the   clamp   space   capacity   can   be   found   on  www.lfl-­‐design3.bayern.de/ilb/technik/42471/    

5.3.4. Digestate  Storage  Volume  Calculation  

The  most  recent  guidance  by  the  Environment  Agency,  currently  in  public  consultation,  titled  ‘How  to  comply  with   your   environmental   permit.   Additional   guidance   for:   Anaerobic   Digestion’   states   that  where   digestate   is   stored   on   agricultural   land   within   a   Nitrate   Vulnerable   Zone   (NVZ),   sufficient  storage  capacity  must  be  available   to  span  the  winter   ‘no  spread’  periods.   In  accordance  with  NVZ  regulations  storage  requires  at  least:  

• Five  months  (1  October  to  1  March  inclusive)  storage  capacity  for  cattle  slurry  (and  digestate  resulting  from  it,  including  from  energy  crops)  

• Six  months   (1   October   to   1   April   inclusive)   storage   capacity   for   livestock  manures   like   pig  slurry,  poultry  manure  (and  digestate  resulting  from  it,  including  from  food  waste)  

For   various   reasons,   losses   of  methane   and   nutrients   during   storing   and   handling   of   digestate   are  possible.   In   order   to   prevent   gaseous   emissions,   storage   infrastructure   should   be   covered   with   a  gastight   cover.   Roof   structures,   or   roof   membranes   can   be   fitted   to   concrete   or   steel   structure  stores,   and   flexible   covers   can  be   fitted   to   lagoons.  All   such   storage  areas   (including   those   for   the  storage   of   solid   fractions)   should   be   provided   with   appropriate   emissions   control   and   abatement  systems.  

The  storage  net  volume  required  for  a  digestate  tank  is  based  on  a:  

   

BABE  –  Brampton  AD  Feedstock  Study  

 

Public  Version                                                                                                                                            page  70  of  94  

• Total  throughput  of  per  annum  of  8,711  m3    

• Estimated  volume  reduction  of  80%  during  the  AD  process  

• Five  months  storage  requirement  

and  can  be  calculated  in  accordance  with  the  formula:    

throughput  per  year  in  m3  *  volume  reduction  factor  /  storage  requirement  

The   formula   applied   for   8,711  m3   *   80%   /   5  months   results   in   a   pit   net   volume  of   2,904  m3.   ‘Net  volume’   refers   to   the   actual   space   for   digestate,   the   final   dimensions   will   incorporate   some  additional   space   for   the  access  of  a  digestate  stirrer,   space   for  movements  of   the  stirred  substrate  and  gas  emissions.  

Existing   slurry   tanks,   unused   with   the   introduction   of   an   AD   plant   –   a   scenario   more   likely   for   a  working  farm  than  an  industrial  estate  –  or  the  inner  segment  of  a  ring-­‐in-­‐ring  digester  designated  as  storage   tank  while  acting  as   secondary  digester,   can   count   towards   the   required  digestate   storage  volume.  

Additional  space  may  be  considered  for  not  dischargeable  dirty  water  collected  from  the  site.  

 

Chapter  summary:  

•  The  inclusion  of  silage,  slurry  and  digestate  storage  in  an  AD  turnkey  package  needs  to  be  clarified  between  the  operator,  funder  and  technology  provider.    

•  The  calculations  for  the  storage  volume  of  a  slurry  reception  pit,  a  silage  clamp  and  a  digestate  tank  are  provided  in  the  chapter.    

•   The   calculated  net   volume  of   storage   space   is   only  part   of   the   total   volume   requirement,  which  differ  for  clamp  for  each  storage  facility.    

   

BABE  –  Brampton  AD  Feedstock  Study  

 

Public  Version                                                                                                                                            page  71  of  94  

5.4. Feedstock  Yields:  Worst  /  Best  Case  Scenario  

The   following   chapter   investigates   the   risks   and   impacts   from   feedstock   yield   variations   by   under-­‐  and  over-­‐supply.  Such  variations  need  to  be  considered  for  developing  contingency  plans  in  regard  to  capacity,  technology  and  costs.  

5.4.1. The  ‘Worst  Case’  Scenario  

Building  on  a  typical  cropping  year  applying  all  assumptions  as  mentioned  in  chapter  3.2  and  3.3,  we  have  identified  some  risks  which  might  yield  a  lower  than  expected  feedstock  energy  potential.  

The  assumed  risk  of  relevance  is:  

• The  gradual  implementation  of  the  initial  seeding  programme  over  four  rears  

We  have  however  NOT  considered  the  following  risks  as  relevant:  

• Loss  of  a  slurry  supplier  –  there  are  more  slurry  suppliers  available  than  can  be  utilised  

• A  reduction  of  grass  silage  dry  matter  –  our  assumption  is  already  based  below  average  DM  values  of  28%  for  professionally  cut  forage  

• Loss  of  annually  declining  yields  from  grass  seeds  –  a  crop  and  land  rotation  plan  will  be  in  place  

• An  additional  buffer   for   less  productive   land  –   the  5%  reduction  of  productive   land   for  Environmental  Stewardship  set-­‐asides  caters  for  that  

• An  buffer  for  ‘unknown  risks’  –  the  slight,  but  constant  increase  in  methane  yield  of  grass  varieties  specifically  developed   for  anaerobic  digestion  purposes  has  not  been   factored  in  and  will  make  up  for  this  

• Losses   from   poor   silage   clamp  management   –   the   operator   will   have   a   good   practice  scheme  and  regular  checks  in  place  

The  implementation  of  an  initial  land  management  plan  involving  ploughing  and  seeding  takes  over  a  period  of   four  years,   starting   ideally   in   the  autumn  prior   to   the  commercial   start  of   the  plant.  This  land  management  programme  will   trigger  a  gradual   increase   in  volume  and  biogas  potential  of   the  silage.  The  programme  stretches  over  four  years,  with  one  quarter  of  the  available  land  affected  each  year,   for  reasons  of  sustainability  and  the  spreading  of  any  risk  associated  with  crop  selection.  The  detailed  procedure  is  shown  in  chapter  4.5.    

The  improvement  from  poor  yielding  land  to  higher  yielding  land  is  scheduled  over  four  consecutive  years.   On   completion   of   this   schedule   the   cropping   yield   is   expected   to   stay   the   same   for   the  duration  of  the  plant  life  cycle  with  land  management  practices  in  place  to  achieve  this.    

The  expected  yield  shortfall  in  year  1  is  not  expected  to  cause  any  actual  decrease  in  plant  output  as  the  first  year  of  operation  includes  the  biological  start-­‐up  period  of  typically  three  month  –  or  longer,  depending  on  the  start-­‐up  method.  The  demand  on  feedstock  during  the  first  year  is  about  90%  of  a  typical  year  of  operation.    

It  should  be  noted  that  ‘Year  1’  is  the  year  or  plant  season  prior  to  the  plant  going  live.  Such  timing  would  reduce  the   impact  of   the   initial  seeding  by  one  year.  This  would  only   leave  years  2  and  3  of  operation   exposed   to   a   shortage   of   grass   silage.   Timely   provisions   will   need   to   be   made   to  compensate   the   shortfall  with   alternative   feedstock,   e.g.   grass   cuttings   from   the   set-­‐aside   land   or  grass  silage  from  a  third  cut  

The  following  four  tables  show  the  likely  year-­‐on-­‐year  output  rise  during  the  initial  reseeding  period;  the  key  data  are  highlighted  in  yellow.    

   

BABE  –  Brampton  AD  Feedstock  Study  

 

Public  Version                                                                                                                                            page  72  of  94  

 

Table  33:  Seeding  transition  year  1  and  impact  on  overall  plant  output  

   

 

Table  34:  Seeding  transition  year  2  and  impact  on  overall  plant  output  

   

BABE  –  Brampton  AD  Feedstock  Study  

 

Public  Version                                                                                                                                            page  73  of  94  

 

Table  35:  Seeding  transition  year  3  and  impact  on  overall  plant  output  

 

 

 

Table  36:  Completion  of  initial  seeding  programme  with  typical  annual  crop  yields  

   

BABE  –  Brampton  AD  Feedstock  Study  

 

Public  Version                                                                                                                                            page  74  of  94  

The   table  below  compares  and   summarises   the  key  output   figures   from   the   tables  above  with   the  yield  expectations  from  a  ‘typical  year’.    

The  shortfall   in  year  1  will  be  of  no  concern  due  to  the  usually   reduced  demand  for   input  material  during   the   start-­‐up  period;   the  gap   in   years  2  and  3  will   need   to  be   compensated.  To  achieve   this  several  options  are  available,  like  silage  from  the  year  prior  to  start-­‐up,  from  neighbouring  farmers  or  utilisation  of  the  set-­‐aside  land  or  a  partial  third  cut.    

 

Table  37:  Output  comparison  during  initial  reseeding  years  against  a  typical  year    

5.4.2. The  ‘Best  Case’  Scenario  

After  having  taken  all  precautions  as  described  earlier,  the  Study  aims  to  demonstrate  the  potentially  generated  energy  if  neither  a  single  risk  factor  or  none  of  these  risks  apply.  

 

Table  38:  Supply  scenario  with  all  four  suppliers  participating  in  the  initial  seeding  scheme  

   

BABE  –  Brampton  AD  Feedstock  Study  

 

Public  Version                                                                                                                                            page  75  of  94  

 

Table  39:  Supply  scenario  with  a  higher,  but  still  average  dry  matter  yield  for  the  first  and  second  grass  cutting  

 

 

Table  40:  Supply  scenario  with  utilising  three  grass  cuttings  

   

BABE  –  Brampton  AD  Feedstock  Study  

 

Public  Version                                                                                                                                            page  76  of  94  

The   next   table   shows   the   –   rather   unlikely,   but   not   impossible   –   scenario   of   all   three   risk   factors  displayed  above  not  occurring.  That  is  all  four  supply  farms  opting  for  the  initial  seeding  programme,  a  average  and  achievable  dry  matter  content  and  three  instead  of  two  grass  cuts  per  season.  

 

 

Table  41:  Supply  scenario  with  the  three  previous  scenarios  combined    The  next  table  puts  all  three  ‘positive’  scenarios  plus  their  combined  occurrence  in  perspective  and  compares   them  with   the   yield   figures   the   study   has   adopted   as   typical.   This   shows   an   achievable  over-­‐production  of  feedstock  and  generated  energy  in  the  region  of  110%  -­‐  120%.    

It  also  illustrates  that  from  all  possible  scenarios  the  achievement  of  an  average  dry  matter  content  would  in  proportion  generate  the  highest  amount  of  energy  with  a  minimum  on  input  volume.    

 

Table  42:  Comparison  of  scenarios  against  the  ‘typical’  year  

   

BABE  –  Brampton  AD  Feedstock  Study  

 

Public  Version                                                                                                                                            page  77  of  94  

5.4.3. Impact  on  CHP  Selection  and  Plant  Expansion  

In   consideration  of   all   risk   factors   and   scenarios  presented,   the  earlier   selection   in   chapter  4   for   a  200kWe  CHP  unit   still   seems  the  most  appropriate  approach,  unless  a  owner/operator   is  willing   to  risk  over-­‐capacity  without  the  necessary  security  of  feedstock.  

The  combined  scenarios,  as  presented  in  the  table  below,  show  the  ‘typical’  year  for  input  material  still  leaves  a  margin  for  expansion,  but  carries  little  risk  of  under-­‐capacity.    

 

Table  43:  Comparison  of  all  risk  scenarios  against  the  ‘typical’  year  

 Deploying   a   200kWe   CHP   unit   would   in   a   typical   year   provide   approximately   an   electrical   output  efficiency  of  91%  and  7,982  full  load  hours.  The  ‘all  seeding’  and  the  ‘higher  DM’  scenarios  would  in  theory   deliver   100%   electrical   output   efficiency   with   8,760   full   load   hours,   which   however   is   in  practice  unachievable.  From  a  conservative  approach  this  would  provide  just  the  feedstock  security  to  achieve  performance  targets  of  8,000  full  load  hours  and  the  ‘extra’  for  over-­‐achieving  them.    

A  220kWe  CHP  unit  would  run  on  83%  of  electrical  output  efficiency  with  7,256  full  load  hours.  From  a   conservative   attitude   to   risk   such   approach   would   require   each   year   some   overachievement   of  forage   harvesting,   which  would   put   the   AD   plant   at   constant  mercy   of   the   local   weather   or   local  silage  prices.  

On  the  other  hand  an  approach  aiming  at  constant  expansion  with  accepting  the  risk  that  this  might  take   place   in   the   first   year,   the   220kWe   unit   seems   the   right   pathway   and   the   200kWe   seems  curtailing   this   ambition.   The   silage   production   in   a   ‘bumper   year’   should   create   sufficient   input  material   back   up   for   the   surplus   needed   for   over   a   year,   even   with   a   poorer   harvest.   The   Study  cannot   speak   for   the   risk   appetite   of   the   owner/operator   and   keeps   to   its   earlier   selection   for   a  200kWe  CHP  unit.  The  table  below  shows  the  wider  background  for  this  discussion.    

 

Table  44:  Electrical  output  efficiency  and  full  load  hours  with  a  200kWe  and  a  220kWe  CHP    against  a  variety  of  feedstock  harvest  scenarios.    (Note:  figures  for  200kW  are  slightly  above,  for  220kW  slightly  below  detailed  calculations)  

   

BABE  –  Brampton  AD  Feedstock  Study  

 

Public  Version                                                                                                                                            page  78  of  94  

5.5. Security  of  Supply  

For   everyone   with   a   financial   involvement   in   an   AD   plant   the   ‘security   of   supply”   or   ‘feedstock  security’  has  probably  become  the  biggest  risk  factor  in  the  deployment  of  AD.  This  chapter  aims  to  identify  and  discuss  some  risk  factors  associated  with  supply  and  supply  arrangements.  

Funders,  whether  cooperative,  institutional  or  private,  will  want  to  understand:  

What  are  the  cornerstones  of  supply  contracts?    

How   much   feedstock   could   be   secured   contractually   and   how   much   will   have   to   be  bought  in  on  the  open  market?  

Where  to  get  additional  feedstock  in  case  of  emergency?  

What  about  term,  price  and  penalties?  

Are  there  any  AD  specific  risks?  

5.5.1. Contract  Strategy  

Whilst   agreeing   on   slurry   seems   comparatively   straightforward,   securing   silage   can   be   done   in  several  ways.  In  principle  the  operator  may  lease  the  land  through  an  agricultural  lease  and  work  the  land  by  itself  or  hire  a  contractor,  or  alternatively  buy  the  forage  from  a  supplier  without  any  interest  in  the  land.    

Both  routes  have  advantages  and  disadvantages  and  the  following  table  gives  an  overview:  

 

  Land  Lease   Supply  of  Products  

Typical  contract  duration    (for  illustration  only)  

Agricultural  lease  typically  for  10  years  

Variable,  any  term  between    2  –  20  years  

Farming  work  done  by   Operator  (or  farmer  acting  as  contractor)  

Farmer  (or  contractor)  

Control  of  best  practice  farming   Best  practice  for  oneself  (quality  control  for  contractor)  

Needs  quality  control  (quality  control  for  contractor)  

Supply  risk     Supply  risk  is  with  oneself     Supply  risk  is  with  farmer  

Cost   Costs  only   Costs  plus  end  product  margin  

Cost  control  risk   If  operator  uses  several  contractors  

Costs  plus  end  product  margin  

Administration   Multiple  payments  possible  (land  lease,  works)  

Single  payment  (product)  

Table  45:  Risk  comparison  of  contract  strategies  

Different  operators  will  suit  different  contract  strategies,  operators  with  skills,  equipment  and  a  keen  interest   in  working  the   land  will   rather  opt   for  a   land   lease  type  contract,  operators  with  a  reliable  supply  partner  might  confidently  outsource  all  agricultural  work  to  supply  partners.  

 

5.5.2. Contracted  Volume  

   

BABE  –  Brampton  AD  Feedstock  Study  

 

Public  Version                                                                                                                                            page  79  of  94  

The  questions  of  how  much  feedstock  volume  to  contract  and  the  ratio  of  sourcing  it  from  long-­‐term  contracts  or  from  ad-­‐hoc  open  market  deals  have  to  be  agreeable  to  the  funder.    

The  question  of  the  overall  volume  required  for  the  operation  of  the  AD  plant  would  normally  be  a  straightforward  response  of  ‘100%’,  where  ‘required’  refers  to  an  annual  electricity  generation  of  e.g.  90%  of  CHP  run  time  or  8000  hours  of  full  load  hours.    

In  consideration  of  an  unreliable  weather  and  whether  assumptions  have  been  made  in  a  cautious  or  optimistic  manner,  100%  of  feedstock  volume  (at  a  given  quality)  might  not  be  sufficient  or  might  be  more   than   required.   With   that   in   mind   some   funders   demand   110%   of   feedstock   volume   under  control,  whereby  the  excess  10%  are  either  intended  as  buffer  for  a  lower  than  expected  harvest  or  as   surplus   for   the   following   year.   Some   funders   are   content   with   less   than   100%   as   they   have  developed   their   own   secure   feedstock   supply   chain,   while   some   funders,   at   the   other   end   of   the  spectrum,  actually  expect  120%  from  an  ‘investable’  AD  project.  

On  the  issue  of  ‘contract  mix’,  the  favoured  approaches  seem  to  be  either  an  arrangement  of  100%  input  material  secured  by  fixed  long-­‐term  contracts  or  a  ratio  of  80%  fixed  contracts  and  20%  open  market  short-­‐term  procurement  arrangements.  The  reason  for  the   latter   is   the  access   to   feedstock  deals,  which  can  be  outstanding  value  for  money.    

From  the  point  of  security  of  supply  in  terms  of  contracted  supply  volume,  the  answer,  as  often,  lies  with  the  risk  appetite  of  the  funder  or  operator.  

5.5.3. Back-­‐up  Feedstock  

Any   AD   operator   will   have   to   prepare   a   back-­‐up   plan   to   obtain   additional   feedstock   in   case   of  shortage.  If  a  supplier  delivers  less  than  contractually  agreed  then  the  operator  might  either  charge  the  supplier  for  compensation  or  they  work  together  to  source  additional  input  material.    

By   opting   for   the   latter   they  might   seek   to   address   the   shortfall   in   a   sequence   presented   by   the  ‘supply  source  pyramid’,  with  the  easiest  route  to  supply  on  the  top:    

 

The  Supply  Source  Pyramid  

FYM,  horse  muck  

Silage  from  last  year  

Extra  silage  from  a  third  cut  

Other  supplier:  silage  from  last  year  

Other  supplier:  extra  silage  from  a  third  cut  

Local  third  party:  available  FYM,  forage  or  silage  

Local  third  party:  any  other  seasonal  input  material  

Substitute  products  on  the  open  market  outside  the  locality  

Table  46:  Sources  of  additional  input  material  in  order  of  the  ease  of  purchasing  

Another  collaborative  way  forward  In  case  the  supplier  is  e.g.  physically  unable  to  produce  the  crop,  then  the  operator  reserves  the  right  to  hire  a  contractor  to  fulfil  the  contractual  arrangements.  

5.5.4. Contract  Risks  

   

BABE  –  Brampton  AD  Feedstock  Study  

 

Public  Version                                                                                                                                            page  80  of  94  

Default  

There  are  a  variety  of   strategies   to   cope  with  default.   The  definition  of  default   in   the  context  of  a  supply  contract  for  AD  feedstock  is  in  the  line  of:  

If   the  supplier   fails   to  complete  deliveries  as   set  out   in  a  delivery   schedule  and  within   the  delivery  period,   the   quantity   not   delivered   against   the   (minimum)   contract   quantity   shall   be   deemed   in  default.  The  buyer  may  (after  giving  prior  written  notice,)  either:  

• Purchase  against  such  default  and  the  supplier  shall  make  good  the  loss  (if  any)  of  such  purchase  

or  

• Claim  damages   to  be  agreed  mutually  or  settled  by  arbitration  and  such  damages  shall  not  to  exceed  the  difference  between  the  supply  contract  price  and  the  market  price  on  the  date  of  default.  5.1.2  

Contract  terms  could  also  refer  to  ‘penalty  payments’  or  allow  the  buyer  to  claim  for  consequential  loss.    

The  issue  at  the  core  of  the  default  term  is:  are  penalties  jeopardising  or  ensuring  security  of  supply?  

Dealing  with  a  default  situation  is  often  a  balance  act  as  much  between  the  need  for  supply  security  and  the  revenue  stream  from  compensation  claims  as  well  as  between  the  cultures  of  arable  farmers  and  finance  professionals.  A  successful  supply  contract  requires  a  degree  of  cooperation  between  the  parties,  unlike  e.g.  a  land  lease  for  a  wind  turbine  or  wind  farm.  Here  both  sides  negotiate,  or  rather  poker,  with  their  respective  legal  advisors  for  their  exclusive  benefit.  After  all,  the  only  energy  input  is  wind  and  who  would  sue  the  climate   for  a  weak  wind  year?   Industry  specialists   for  AD  advocate  strong   farm   integration   into   any   agricultural   based   AD   project   to   achieve   long-­‐term   success.   Such  integration  can  only  develop  from  collaboration  and  creating  win-­‐win  situations.    

By   enshrining   an   unreasonable   amount   for   penalty   payments   a   farmer  would   rather   contractually  oblige  to  a  smaller  than  achievable  supply  quantity  and  quality  just  in  order  to  avoid  any  possible  risk.  Consequently,   if   the  considerable  product  surplus   is  not  managed  fairly   in   the  supply  contract,  any  surplus  product  will  be  available  for  other  buyers.  

Overproduction  

The   lower   the   guaranteed  minimum   delivery   quantity   is   set,   the   higher   will   be   the   likelihood   for  overproduction.  In  such  case  of  overproduction  an  exclusivity  clause  should  apply  where  the  supplier  shall   not   approach  any  other  AD   scheme,  possibly   competing   for   feedstock.  Within   the   terms  of   a  pre-­‐agreed  pricing  mechanism,  the  supplier  will  offer  the  buyer  the  right  of  first  refusal  to  the  surplus  products.    

Any  overproduction  volume  outside  an  agreed  threshold  can  be  sold  to  the  buyer  or  any  third  party  on  a  competitive  basis.  

In  the  case  of  overproduction  of  a  member  of  a  supply  cooperative,  a  same  arrangement  could  apply  for  the  organisation,  acting  on  behalf  of  its  members.  

Supply  Cooperative  

Key   benefits   of   a   supply   cooperative   are   to   provide   a   mechanism   for   underproduction   of   an  individual  supply  member  and  know  how  sharing.  If  the  cooperative  includes  equipment  ‘sharing’  as  part  of  its  service  then  it  might  rather  be  set  up  as  a  ‘machinery  ring  cooperative’.  

The  key  benefit  for  a  funder  in  dealing  with  a  ‘supply  coop’  seems  to  be  its  risk  mitigation  capacity  in  case  of  a  member’s  underproduction:  One  member’s  insufficient  delivery  volume  can  be  balanced,  or  

   

BABE  –  Brampton  AD  Feedstock  Study  

 

Public  Version                                                                                                                                            page  81  of  94  

‘buffered,   by   deliveries   from   another   member.   Thereby   the   overall   contracted   supply   quantity   is  achieved.   In   legal   jargon,   where   deliveries   of   individual   member’s   consignments   reach   a   tonnage  within  tolerance  of  the  contractual  quantity,  the  contract  with  the  supply  cooperative’s  member  shall  be  considered  to  have  been  completed.  

The  drawback  of  a  supply  cooperative  is  an  extra  layer  of  administration;  it  will  also  need  to  ensure  a  neutral  steering  of  the  organisation  and  be  fair  and  equally  beneficial  to  all  members.  

Term  and  Price    

The  term  of  a  supply  contract  is  one  of  the  first  hurdles  to  overcome  in  achieving  security  of  supply.  The  minimal   contract   term   will   need   to   cover   the   phase   up   to   Investment   payback   plus   a   buffer  period   or   ‘tail’   of   one   or   rather   two   years.   The   contract   duration   should   however   be   for   20   or   25  years,  which  practically  stretches  over  a  half  a  working  generation.  

The  issue  with  the  price  paid  for  the  products  is  more  its  arrangement  over  the  whole  term  and  less  the  initial  price  level.  Every  funder  hopes  for  a  price  collapse  and  every  farmer  hopes  for  a  price  spike  –  both  seem  to  occur  in  regular  intervals  once  or  twice  a  decade.  The  strategy  forward  seems  to  be  either  to  acknowledge  price  drops  a  rises  and  risk  supply  cost  insecurity  or  to  ignore  them,  agree  on  a  long  term  stable  price  and  benefit  from  supply  cost  stability  with  a  focus  on  the  energy  market.  

Property  and  Risk  

The  usual  due  diligence  exercise  for  registering  a  supply  contract  in  the  title  has  to  be  undertaken.    There  is  still  a  large  number  of  farms  who  so  far  have  not  seen  the  need  to  digitally  record  all  fields  with  HM  Land  Registry.  Without  such  proof  and  without  registration  of  the  supply  contract  a  security  of  supply  cannot  be  established  in  case  of  sale,  succession  or  demise.  Any  third  party  holding  a  claim  on  the  title  will  need  to  approve  in  writing  of  the  titleholder  entering  the  supply  contract;  the  same  procedure  applies  for  a  landlord  and  an  agricultural  lessee.    

In   legal   jargon,   the   titleholder   warrants   to   the   buyer   that   it   has   good   title   to   any   product   to   be  supplied  to  the  buyer  and  that  such  product   is   free  and  clear  of  any   lien,  encumbrance  or  rights  of  any  third  party.  The  supplier  shall  indemnify  and  hold  harmless  the  buyer  from  and  against  any  loss,  cost,  expense,  claim,  injury,  damage  or  proceeding  incurred  by  the  buyer  as  a  result  of  any  breach  of  the  warranty  contained  herein.  

 

Chapter  summary:  

•  Sourcing  input  material  can  be  arranged  either  via  an  agricultural  land  lease  arrangement  or  by          supply  contract;  a  management  decision  needs  to  be  made  about  the  is  preferable  route.  

•  The  decision  about  a  secure  level  supply  volume  will  eventually  be  taken  by  the  funder(s),  however        to  achieve  100%  or  110%  of  required  feedstock  by  long-­‐term  supply  contracts  seems  good  practice.  

•  The  terms  and  conditions,  especially  about  duration,  under-­‐  and  overproduction  need  to  be        balanced  and  fair  in  order  to  achieve  a  long-­‐term  cooperation  with  suppliers.  

•  The  AD  specific  risk  lies  in  the  feedstock  supply  and  a  supply  cooperative  might  reduce  the  supply        risk  by  buffering  any  under-­‐production  from  individual  suppliers  within  its  own  resources.  

 

   

BABE  –  Brampton  AD  Feedstock  Study  

 

Public  Version                                                                                                                                            page  82  of  94  

6. Considerations  

The   topics   discussed   in   this   chapter   are   not   considered   as   ‘risks’,   but   rather   as   feedstock   related  issues  to  be  dealt  with  as  part  of  the  project  development.    

6.1. Supply  Contract  Issues  

6.1.1. Contract  Advice  

Support   with   industry   specific   background   knowledge,   negotiation   and   contract   procedure  management   can   be   provided   by   the   English   Food   and   Farming   Partnerships   (EFFP).   One   of   the  organisation’s  strength  lies  in  securing  raw  agricultural  produce.  (See  Appendix  C  for  contact  details.)  

The  supply  agreement  is  likely  to  cover  the  (not  exhaustive  list  of)  topics  set  out  below;  it  assumes  a  contract   between   the   buyer   and   an   individual   supplier.   A   sample   heads   of   terms   can   be   found   in  Appendix  E.  

The  key  terms  are  mostly  explained  in  non-­‐legal  jargon  and  cannot  be  taken  as  legal  document.  Any  party   intending   to  enter   into  a   supply   contract   is   advised   to  obtain   independent  professional   legal  advice.  

6.1.2. Relevant  Contract  Terms  

The  Parties  

The   parties   to   a   supply   contract   will   be   BABE   or   an   AD   project   SPV   and   the   farming   business.  Throughout  the  document  the  party  supplying  the  product,   i.e.  the  input  material  for  the  AD  plant,  will  be  termed  e.g.  ‘Supplier’  and  the  party  purchasing  and  receiving  the  product(s)  will  be  named  as  e.g.  ‘Buyer’.  

Term  or  Duration  

This  clause  defines  the  commencement  day,  when  the  rights  and  obligations  of  the  parties  shall  take  effect.  It  may  further  specify  a  ‘service  commencement  day’  when  the  first  delivery  of  goods  is  due.  This  can  be  of  relevance  if  the  next  forage  cut  and  the  start-­‐up  of  the  AD  plant  are  not  occurring  at  the  same  time  and  the  buyer  secures  the  right  or  exclusivity  over  the  produce  of  the  land  until  the  start-­‐up  phase.   In   the  meanwhile   the   forage  or  silage  may  be  stored  either   in   the  supplier’s  or   the  buyer’s  silage  clamp.  

It  will  also  define  the  duration  of  the  contract,  which  is  expected  to  be  ten  to  25  years  or  the  time  of  any   loan   repayment   plus   typically   one   or   two   years   added   to   buffer   any   risk   with   a   delayed  repayment.  The  term  has  to  cover  e.g.  ten  harvest  seasons,  not  just  ten  calendar  years.  

Finally,  the  clause  defines  the  expiry  date  or  termination  date.  

Extension  and  ‘Long  Stop  Date  

Optionally,  there  can  be  some  arrangement  for  both  parties  to  serve  a  written  notice  for  a  variation  (or  extension)  of  the  contract  expiry  date  for  a  number  of  years.  This  procedure  can  be  repeated  e.g.  every   five   years,   if   agreed   by   both   parties.   A   ‘long   stop   date’   can   be   introduced   as   a   final   and  compulsory  contract  termination  date,  regardless  the  circumstances.  

Provision  of  Supplies  

   

BABE  –  Brampton  AD  Feedstock  Study  

 

Public  Version                                                                                                                                            page  83  of  94  

This  clause  describes  the  obligation  of  the  supplier  to  provide  goods  and  the  obligation  of  the  buyer  to   purchase   the   goods.   It   also   covers   several   product   descriptions   or   ‘specifications’   of   the   supply  arrangement.  

Specification  

This  clause  specifies  the  type  of  goods  supplied  in  accordance  with  the  European  Waste  Category  list,  its   quality   and   quantity   (or   volume),   (such   information   further   used   for   reporting   to   OFGEM   and  planning   and   permitting   authorities).   Quality   parameters   may   include   certain   energy   related   or  feedstock   specific   indicators   like  dry  matter,  digestibility   value,  metabolic  energy  or   contamination  levels  e.g.   from  pharmaceuticals  or  heavy  metals.  Where  already   stored  grass   silage   is   supplied  an  age  limit  might  be  stated.  

It  will  list  minimum  quality  thresholds  or  cut-­‐off  limits  and  where  appropriate,  e.g.  with  dry  matter  of  grass  silage,  maximum  thresholds.    

Non-­‐conformity  and  Rejection  

This   clause   sets   out   the   condition   for   non-­‐conformity   of   supplies   if   they   not  within   agreed  quality  specifications,  the  right  and  condition  (e.g.  proof,  time  limit)  of  the  buyer  for  rejection  of  goods  and  the  financial  consequences  for  the  supplier.    

Circumstances  can  be  defined  where  inferior  material  might  also  accepted  at  a  lower  price.  

Rejection  of  goods  can  occur  during  delivery  at  the  ‘gate’,  i.e.  the  weighbridge  or  storage  facility,  or  days  later  after  the  return  of  a  lab  test.  

Tolerance  (or:  Variation)  

In   consideration   that   crop   yield   estimates   for   new   seed   types   or   biogas   yields   are   not   entirely  predictable   and   that   delays   to   the   biological   start-­‐up   of   the   plant   may   occur,   a   tolerance   to   the  agreed  quantity  for  under-­‐  and  over-­‐production  can  be  introduced.  This  variation  can  be  valid  for  a  limited  period  of  time,  e.g.  the  first  year  or  for  the  entire  term.  This  clause  will  define  the  quantity  thresholds  and  regulate  the  applicable  procedures.  

The  supplier  may  offer  a  certain  percentage  of  supplies,  e.g.  15%  above  the  agreed  volume  and  the  buyer  may  buy  this  additional  volume  to  the  same  or  another  in  advance  agreed  price  and  payment  conditions.  

In  reverse,  the  supplier  might  only  able  to  provide  e.g.  95%  of  the  agreed  supply  volume  and  not  be  subject  to  a  breach  of  contract  and  the  buyer  not  entitled  to  invoke  a  claim  for  damages.  

The  upper  and  lower  tolerance  thresholds  do  not  need  to  be  symmetrical  and  will  reflect  the  parties’  risk  approach  and  the  default  clause.  

Default  

This   clause   deals  with   the   consequences   of   the   supplier   delivers   less   than   the   agreed   quantity   or  agreed   minimum   threshold,   if   a   tolerance   volume   has   been   agreed,   when   the   supplier   is   then  deemed  to  be  in  default  and  shall  compensate  the  buyer.    

The   clause   will   define   a   chain   of   actions   and   present   options   to   instigate   a   demand   for   damages  against  the  undelivered  product.  

Transportation  

This  clause  will  define  legal  responsibilities  during  the  supply  delivery  and  stipulate  the  adherence  to  conditions  as  imposed  by  the  planning  or  permitting  authority,  which  could  include:    

   

BABE  –  Brampton  AD  Feedstock  Study  

 

Public  Version                                                                                                                                            page  84  of  94  

• Transport  routes  

• Type  of  vehicles  used  for  transportation,  e.g.  HGV  or  tractor  and  trailer  

• Emergency  routes  in  case  the  standard  transport  routes  are  unusable  

• Book  keeping  of  accidents,  emergencies,  spillages  and  re-­‐directions  

• Clean  up  operation  following  spillages  or  product  loss  

• Annual  notifications  of  traffic  frequency  and  transported  volumes  

Delivery  or  Collection  

This  clause  describes  the  point  or  points  of  delivery  at  which  the  supplier  deposits  the  supplies.  This  ‘hand  over  point’  defines  the  legal  change  of  ownership  and  the  eligibility  for  payment,  which  will  be  with  the  drop-­‐off  of  forage  (or  silage)  at  a  silage  clamp  or  with  the  pumping  of  slurry  into  a  reception  pit.  

Alternatively,  where  slurry  is  collected  from  a  farm  by  a  sub-­‐contractor  appointed  by  the  buyer,  the  hand  over  point  is  the  start  of  pumping  into  its  slurry  tanker.  

Quality  Control  and  Measurement  

The  buyer  has  the  right  to  sample  each  delivery,  or   ‘supply   load’,   to  the  premises  without  advance  notification  to  the  supplier.  The  buyer  has  the  right   to  apply  any  sampling  method  as  described  by  e.g.  PAS110  and  demanded  by  regulatory  bodies  like  WRAP  or  the  Biofertiliser  Certification  Scheme.  The  buyer  will  decide  when  a  product  sample  will  be  either  tested  on-­‐site  by  the  site  operator  or  sent  to   a   lab   for  more   detailed   analysis.   The   buyer  will   inform   the   supplier   of   any   test   results  without  reasonable  delay.    

The  delivery  will  be  weighed  at  entry  and  exit  of  the  premises  on  a  weighbridge  or  by  a  trailer  with  an  in-­‐built  measuring  system  can  be  used.  In  any  case  a  ticket  shall  be  issued  to  the  supplier  as  proof  of  delivery   quantity   and  where   possible   quality.   Such   ticket   shall   conform   to   requirements   issued   by  regulatory  bodies.  

In  case  of   local  or   satellite  clamps  used,   the  buyer  shall  have  right  of  access  during  office  hours   to  take  product   samples   for   testing.   In   case  of   the  buyer   (or  an  appointed   sub-­‐contractor)  picking  up  slurry  from  a  supplier’s  farm,  it  shall  have  right  of  access  during  office  hours  to  take  product  samples  for  testing.  

It   is  the  buyer’s  obligation  to  keep  the  weighbridge,  measuring  and  testing  equipment  calibrated  at  any   time   and   in   accordance   with   calibration   and   maintenance   schedules   issued   by   the   relevant  manufacturer.   The   buyer   is   obliged   to   display   or   show   to   the   supplier   any   updated   calibration  certificate  or  confirmation.  The  buyer   is  obliged   to  display  or   show  to   the  supplier  annual  proof  of  accreditation  of  any  testing  laboratory  where  product  samples  are  sent  for  analysing.  

Administration    

This  clause  deals  with  the  obligation  and  procedures  by  the  buyer  to  administer:  

• Weighing  tickets  

• Product  testing  

• Supply  invoicing  

• Supply  payments  

• Balancing  payments    

• Issuing  of  schedules  

• Forward  planning    

   

BABE  –  Brampton  AD  Feedstock  Study  

 

Public  Version                                                                                                                                            page  85  of  94  

• Health  &  Safety  updates  and  

• Reporting  to  the  suppliers.  

Delivery  Schedule  

In   case   of   using   satellite   clamps   both   parties  will   agree   on   detailed   delivery   volumes   for   a   rolling  twelve-­‐month  period,  such  period  starting  initially  with  either  the  start-­‐up  of  the  AD  plant  or  with  a  cut   of   forage.  Delivery   volumes   and   times  will   take   into   account   the   feedstock   demand  of   the  AD  plant,  the  capacities  of  the  on-­‐site  and  satellite  clamps,  harvest  volumes  and  surplus  input  material  from  a  previous  period.  The  exact  volumes  and  delivery  times  will  be  set  out  in  an  annexed  ‘delivery  schedule’.  

If   all   harvest   material   is   delivered   directly   from   harvest   to   the   silage   clamp   at   the   AD   plant   no  separate  delivery  schedule  to  that  extent  is  required.    

Digestate  take-­‐off  

The  supplier  is  obliged  to  take  away  digestate  of  80%  of  the  product  volume  delivered.  If  applicable,  the   timing   for  digestate   take-­‐off   shall  be  arranged  either   in   regular   intervals  or   in  accordance  with  ‘open  periods’  of  the  Nitrate  Vulnerable  Zone  (NVZ).  If  several  parties  are  taking  off  digestate  then  a  separate  take-­‐off  schedule  could  be  prepared.  

Spillage  Management  

It  will  be  the  responsibility  of  the  supplier  or  appointed  sub-­‐contractor  to  clean  and  clear  any  spillage  occurring  during   the   transport   to   the   site  or  delivery  activities   (pumping)  of   slurry   to  a   reasonable  extent,  which  is  defined  as  to  the  satisfaction  of  Environment  Agency  standards  and  expectations.  

For  the  avoidance  of  doubt,  any  activity  with  the  supplies  immediately  following  the  hand  over,  e.g.  the   evenly   distribution   in   the   silage   clamp   area,   compacting   of   forage   or   stirring   of   slurry   in   the  reception  pit  are  within  the  responsibilities  of  the  buyer.  

Any   dispersal   of   remaining,   i.e.   not   delivered,   forage   or   silage   from   the   trailer   or   any   spillage   of  remaining  slurry   from  the  slurry   tanker  during  exiting  the  site  will  however  be  the  responsibility  of  the  supplier.  

It  will  be  the  responsibility  of  the  supplier  or  appointed  sub-­‐contractor  to  clean  and  clear  any  spillage  occurring  during  off-­‐take  activities  (pumping)  of  digestate  or  its  transport  off  the  site  to  a  reasonable  extent,  which  is  defined  as  to  the  satisfaction  of  Environment  Agency  standards  and  expectations.  

Price  

This  clause  sets  out  the  price  payable  by  the  buyer  for  the  supplier  for  the  products  delivered  under  the  supply  contract.  The  price  for  grass  (silage)  could  be  arranged  on  the  basis  of  either  fresh  weight,  dry  matter,  digestibility   value,   calorific   value,  methane  volume  or  electricity   generation.   The  Study  promotes  a  language  suitable  to  farmers  and  therefore  recommends  a  combination  of  fresh  weight,  dry  matter  and  digestibility  value  in  correlation  with  local  market  value.    

A  second  price  should  be  agreed  for  an  inferior  product  and  for  a  product  within  the  supply  volume  tolerance.  

Standard  practice  should  be  an  annual  price  adjustment  by  linking  it  to  the  inflation  index  and  some  acknowledgement  of  national  price  developments  by  a  regular  e.g.  five-­‐year  or  ten-­‐year  review  with  prices  published  in  the  Farmers  Weekly  or  a  publication  of  similar  standing.  

Payment  

   

BABE  –  Brampton  AD  Feedstock  Study  

 

Public  Version                                                                                                                                            page  86  of  94  

This  clause  sets  out  the  payment  procedures  of  the  supplied  product  by  the  buyer  to  the  supplier.  For  the  sake  of  understanding,  payment  could  be  arranged  in  e.g.  the  following  sequence:  

• Payment   shall   be   in   monthly   instalments   in   each   calendar   month   during   the   contract  term   in   accordance   with   the   clause   ‘Administration’   and   shall   be   full   and   final  consideration  payable  to  the  supplier  for  the  product  supplied  under  the  contract.    

• Payment   shall   be   calculated   in   accordance   with   the   clause   ‘Price’   and   shall   not   be  amended  or   revised  except   as   a   result   of   a   change   set   out   in   the   supply   contract.   The  buyer  shall  notify  the  supplier  of  the  accumulated  monthly  supply  cost  within  an  agreed  number  of  days  following  the  end  of  each  calendar  month.  

• The  supplier  shall  submit  an  invoice  for  payment  each  month  during  the  contract  term.  

• Payment   shall   be   made   within   an   agreed   number   of   days   of   receipt   of   the   supplier’s  invoice.  

Property  

Property  in  the  product  shall  pass  to  the  buyer  upon  payment  (including  part  payment,  in  which  case  property  shall  pass  in  that  product  to  which  such  part  or  ratio  the  payment  relates)  or  upon  delivery  at  a  defined  ‘supply  delivery  area’,  whichever  shall  first  occur.  

Health  &  Safety  Compliance  

Both  parties  shall  –  and  shall  procure  that  all  sub-­‐contractors  shall  –  comply  with  the  requirements  of  any  relevant  health  &  safety  legislation.    

 

General  warranties,  ‘boilerplate’  clauses  and  project  specific  annexes  will  make  up  the  remainder  of  a  supply  contract.  Every  substrate  or  type  of  input  material  might  require  a  variation  of  the  clauses  for  e.g.  specification,  transport,  price  or  quality  control  and  measurement.  

   

BABE  –  Brampton  AD  Feedstock  Study  

 

Public  Version                                                                                                                                            page  87  of  94  

6.2. Financial  Aspects  

6.2.1. Cost  Factor  and  Value  of  Silage  

The  NNFCC   states  an  average  grass   silage  production   cost   for   the  UK  of   just  below  £25  per   ton  of  fresh  weight  at  25%  dry  matter,  which  equates  to  £1  per  unit  of  dry  matter.  This  usually   includes  a  profit  margin   for   the  producer  of  £5  per   ton  of   fresh  weight.   (Source:  NNFCC)  Adjusting   the  above  price  with  inflation  for  the  publishing  date  of  the  Study  should  give  a  cost  figure  of  £25.  

Significant   regional   difference   might   apply,   but   care   is   to   be   taken:   where   labour   cost   might   be  higher,  fuel  and  fertiliser  costs  might  be  lower.  Land  lease  prices,  which  are  usually  factored  into  the  calculation,  will   vary  not  only  with  a  North-­‐South  divide,  but  also  with   local  demand   for  grassland.  Another  cost  factor  influencing  forage  or  silage  prices  will  be  the  time  of  purchase  for  fertiliser,  which  is  often  bought  more  expensively  at  the  time  of  application  instead  during  off-­‐season.    

The   value   of   silage   can   be   calculated   according   to   kWh   of   electricity   produced   per   unit   of   fresh  weight  or  dry  matter.  

6.2.2. Cost  Factor  and  Value  of  Digestate  

The   spreading   cost   of   digestate   consist   of   machinery,   fuel   and   labour;   charges   as   stated   by   the  National  Association  of  Agricultural  Contractors  provide  a  useful  guideline.    

The  value   for  digestate   for   some  might  be  a  cost   factor   for  others.   Its  net  value  has   to  deduct   the  value   of   slurry.   The   difference   is   calculated   merely   in   the   higher   nutrient   value,   ignoring   other  advantages   of   digestate   over   slurry.   Like   any   agricultural   commodity,   fertiliser   prices   react   to  availability  and  demand  and  always  increase  when  spring,  the  time  for  its  peak  demand,  approaches.    

When   calculating   the   fertiliser   value,   assumptions   have   to   be  made  on   readily   available   nutrients.  The  nutrient  value  will  vary  depending  on  the  choice  of  input  material.  The  following  table  is  based  on  www.wrap.org.uk/content/compost-­‐calculator.  Approaches  and  market  prices  will  vary.  

 

  Nitrogen  (N)  

Phosphate  (P2O5)  

Potash  (K2O)  

Total  

Market  price  for  fertilisers  (£/kg)  as  per  FARM  BRIEF/WRAP   0.76   0.54   0.43    

Digestate  bio-­‐fertiliser:          

Readily  available  nutrient  content  as  per  FARM  BRIEF/WRAP  (kg/tonne  digestate)  

4.00   0.25   1.60    

Financial  value  of  readily  available  nutrients  (£/tonne  digestate)   3.03   0.14   0.69   £3.86  

Readily  available  nutrient  content  as  per  forage  digesters  (kg/tonne  digestate)  

4.00   0.80   3.50    

Financial  value  of  readily  available  nutrients  (£/tonne  digestate)   3.03   0.43   1.51   £4.97  

Table  47:  Value  calculation  for  digestate,  based  on  nutrient  content  only  

   

BABE  –  Brampton  AD  Feedstock  Study  

 

Public  Version                                                                                                                                            page  88  of  94  

6.3. Operational  Considerations  

This  chapter  briefly  discusses  wider  implications  in  regard  to  the  identified  feedstock  sources  without  favour  for  any  system  design  in  mind.  The  following  aspects  will  be  covered:  

• Land  management  

• Silage  clamp  management  

• Feedstock  measuring  

• Competency,  H&S  

6.3.1. Best  Practice  

In   dealing   with   the   above   raised   issues,   it   is   a   recommended   to   organise   all   work   practices   and  methods  as   ‘good  practice’   instructions.  When  formulating  such  good  practice   there   is  no  need   ‘to  reinvent  the  wheel’;  many  tasks  have  undergone  a  considerable  learning  curve  by  the  biogas  industry  and  such  recommendations  are  condensed  in  ‘best  practice’  documentations.    

A  good  practice  or  best  practice  approach  demonstrates  an  understanding  for  risk  management  and  will  pay  dividends  for  example  from:  

• A  more  streamlined  workflow  

• Reduced  exposure  to  H&S  risks  

• A  better  acceptance  by  the  Environment  Agency  and  

• Reduced  insurance  premiums.  

A  summary  of  best  practice  guidance  documents  is  presented  in  Appendix  F.  

6.3.2. Land  Management  

The  land  management  will  have  to  incorporate  the  following  aspects:  

• Soil  management  including  soil  testing  and  soil  preparation  

• Seed  selection  

• Reseeding  and  crop  rotation  

• Fertiliser  applications  

All  work  done  to  test  and  prepare  the  soil  and  arrange  the  seeding  would  need  to  be  done  in  autumn  in  order  to  get  the  first  grass  cutting  the  next  May.  Any  permit  for  ploughing  the  land  would  need  to  be  arranged  in  time.  

As  mentioned  earlier,  the  proposed  reseeding  programme  is  a  four-­‐year  crop  rotation  cycle,  covering  a  quarter  of  the  available  land  each  year.  Two  uses  of  a  two-­‐year  Italian  ryegrass  –  or  grass  type  with  similar  yield  –  would  fit  into  a  four-­‐year  crop  rotation  cycle.  

The  break  crop  could  be,  depending  on  soil  conditions  and  requirements,  whole  crop  forage  wheat  or  barley,  (red)  clover  or  triticale.  

Fertilising  will  have  to  be,  where  applicable,  in  accordance  with  NVZ  regulations.  

6.3.3. Silage  Clamp  Management  

The   silage   clamp   management   covers   the   organisational   and   operational   management   of   silage  clamp.    

From  an  organisational  point  of  view,  the  use  of  a  single,  larger  ‘centralised’  silage  clamp  adjacent  to  the  digester  needs  to  be  compared  to  the  scenario  of  using  existing  ‘satellite’  clamps  at  supply  farms  

   

BABE  –  Brampton  AD  Feedstock  Study  

 

Public  Version                                                                                                                                            page  89  of  94  

and  a   smaller   clamp  at   the  plant.  A  preferred  option  based  on  environmental   impacts   (increase  of  supply  journeys)  and  financial  impacts  (additional  costs  for  clamp  use  and  journeys  from  any  satellite  clamp  to  the  AD  plant)  will  need  to  be  assessed  in  more  detail.  

The   advantages   of   a   satellite   clamp   scenario   are   delivery-­‐on-­‐demand   or   supply-­‐as-­‐you-­‐go,   where  traffic  to  and  from  the  AD  plant  could  be  spread  evenly  throughout  the  year,  and  a  reduced  clamp  size  at  the  AD  location  in  the  industrial  estate.  In  other  words,  the  disadvantages  would  be  a  doubling  of   silage-­‐related   traffic   volume   –   firstly   the   transport   to   the   satellite   clamp   and   secondly   the  transport   from   there   to   the   AD   plant,   which   triggers   more   labour,   fuel   and   machinery   costs.  Furthermore,   it   requires  additional   supervision   that  grass   is  ensilaged   to  best  practice   instructions.  From  a  financial  perspective  initial  capital  cost  savings  would  be  balanced  against  higher  operational  costs.  

The  Study  has  currently  not  identified  a  single  supplier  with  spare  clamp  capacity,  however  this  might  change  when  feedstock  contract  will  be  negotiated  or  when  a  farm  sells  off  all  livestock  due  to  being  uneconomical.  

From  an  operational  point  of  view,  the  objective  is  to  ensure  ideal  silage  conditions  from  reception  to  feeding.  This  includes  the:  

• Clamp  design  ensuring  structural  ability  and  H&S  compliance  and  supervision  thereof  

• Collection  and  re-­‐use  of  effluents  and  supervision  thereof  

• Ticketing  and  sampling  of  supply  loads  

• Compacting  of  freshly  delivered  grass  (or  break  crop)  

• Airtight  and  storm-­‐proof  enclosure  of  silage  

• Processing  of  silage  

• Covering  up  of  the  clamp  face  and  

• Cleaning  of  area  between  clamp  and  feedstock  hopper  

6.3.4. Feedstock  Reception  and  Handling  

The   infrastructure   requirements   for   the   proposed   AD   plant   are   based   around   the   feedstock  composition  and  the  need  for  pasteurisation.  

The   liquid   substrates   like   slurry   and   yeast   wash   will   be   delivered   into   an   underground   concrete  reception  pit,   closely   attached   to   the  digester,   from  where   it   is   later  on  pumped   into   the  digester  tank.   The   co-­‐storage   of   slurry   and   yeast  wash  would   only   be   on   the   basis   of   no   adverse   reaction  triggered   by   mixing   the   two   substrates.   It   is   standard   practice   however   that   any   input   material  classified  as   food  waste   is  delivered   in  a  enclosed  structure,  an  additional   cost   factor  which  would  rule  it  out  as  input  material  straight  away.    

Slurry  will  be  delivered  by  tractors  with  modern  slurry  tanks  of  a  capacity  of  about  15  tons.  The  slurry  will  be  pumped  into  the  reception  tank,  a  task  done  by  the  supplier.  Any  accidental  slurry  run-­‐off  will  be   contained   by   the   slope   constructed   around   the   tank   and   is   redirected   into   the   reception   tank.  Once  the  slurry  is  stored  in  the  tank  it  will  be  stirred  according  to  pre-­‐arranged  settings.  

The  solid  substrates   like  grass  or  hop  mash  will  be  delivered   into  a  walled  silage  clamp,  situated  as  close  to  the  solids  hopper,  which  in  turn  is  adjacent  to  the  digester.  The  small  volumes  of  hop  mash  might  not  require  a  storage  facility  as  they  could  be  delivered  on  the  same  day  of  delivery  straight  –  in  theory  into  a  pasteurisation  unit  or  –  into  the  hopper.  

Grass  will  be  delivered  by  tractors  and  trailers  with  a  capacity  of  ten  tons.  The  grass  will  be  unloaded  in   the   silage   clamp   by   the   supplier.   The   weighing   of   any   incoming   load   can   be   done   either   by   a  weighbridge   or   a   trailer   with   an   in-­‐built   weighing   device,   especially   developed   for   agricultural  

   

BABE  –  Brampton  AD  Feedstock  Study  

 

Public  Version                                                                                                                                            page  90  of  94  

purposes.  Each  load  or  batch  of  loads  will  be  then  compacted  by  the  operator  to  ensure  an  oxygen-­‐free   environment   to   prevent   early   aerobic   decomposition.  A   range  of   best   practice  measures   is   in  place  to  retain  the  energy  content  of  the  grass.  After  a  fermentation  process  lasting  about  six  weeks  the  grass  is  ready  for  use  in  the  digester.    

The  silage  will  then  be  transported  with  a  telescopic  loader  or  tractor  into  a  solids  feeder  or  hopper,  specifically  designed  to  operate   in  connection  with  an  anaerobic  environment,   from  where   it   is   fed  into  the  digester  tank.  

Alternatively,  slurry  and  silage  can  be  pre-­‐mixed  in  a  mixing  tank  and  then  pumped  into  the  digester  tank.  

Slurries  will  be  delivered  either  from  a  supply  farmer  or  agricultural  contractor,  who  pumps  the  slurry  into  the  reception  pit.  Delivery  agreements  will  stipulate  that  any  spillage  on  site  has  to  be  dealt  with  by  the  supplier.  

Comprehensive   best   practice   guidelines   for   silage   construction   and   management   have   been  compiled  by  e.g.  ADAS  and  Böck,  listed  in  Appendix  F.  

6.3.5. Feedstock  Measurement  and  Quality  Control    

Any  supply  delivery  arriving  at  the  Premises  will  be  measured  at  entry  and  exit,  either  by  weighbridge  or  purpose-­‐designed  trailer  with  a   in-­‐built  weight-­‐measuring  device,  and  issued  with  a  ticket  to  the  Supplier  as  proof  of  supply.  Each  weighing  ticket  will  be  processed  in  a  format  compatible  with  any  requirement  by  OFGEM  and  the  Biofertiliser  Certification  Scheme,  the  PAS110  administrator,  and  will  show  the  following  information:  

Date  and  time  of  delivery  

Weigh  ticket  number  

Haulier  name  

Vehicle  registration  number  

Supplier  and  supply  coop  (if  any),  equals  to  ‘place  of  origin’  

Product  type  including  EWC  number  

Weight/Volume  

Optionally:  whether  the  load  is  rejected  

Any  sample  taken  from  a  load  will  be  taken  in  equal  measure  from  either  the  two  ends  or  from  the  two  ends  and  the  middle  of  the  trailer  and  mixed  thoroughly.  

Any   test   result   from   equipment   located   on   the   Premises   or   returned   form   a   laboratory   will   be  comprised  in  a  lab  ticket,  showing  –  where  applicable  –  the  following  results:  

Date  

Supplier  and  supply  coop  (if  any)  

Product  type  

Dry  matter  content  

Organic  dry  matter  content  

Digestibility  value  

N  P  K  values  

COD  and  BOD  values  

Metal  values  

   

BABE  –  Brampton  AD  Feedstock  Study  

 

Public  Version                                                                                                                                            page  91  of  94  

The   weighing   ticket   and   the   lab   ticket   will   form   the   basis   for   the   monthly   payment   for   supplies  delivered  at  the  previous  month.  The  weighing  ticket  will  also  be  the  basis  for  any  reports  to  OFGEM,  the  Environment  Agency  and  the  planning  authority.  

The  plant  operator  will  have  to  organise  regular  service  work  and  calibrations  for  any  weighing  and  testing   equipment   in   line   with   the   manufacturers’   schedules   and   display   any   certificates   or  confirmations  as  ongoing  proof  of  compliance  with  the  manufacturers  quality  standards.  

6.3.6. H&S,  OPRA  and  the  competent  Person  

The  main  factors  affecting  the  work  conditions  of  the  operator’s  and  third  parties’  staff  on  site  is  the  Health   &   Safety   Act   including   updates   and   the   operator   competency   requirements   of   the  Environmental   Permitting   Regulations   in   accordance   with   the   operator   competence   scheme  developed   and   managed   by   the   Chartered   Institutions   of   Wastes   Management   (CIWM)   and  WAMITAB.   Different   types   of   facilities   and   the   waste   they   accept   present   different   levels   of  environmental   risk.   The   CIWM/WAMITAB   scheme   categorises   them   into   three   ‘risk   tiers’   –   High,  Medium  and  Low.  AD  facilities  fall  into  the  medium  risk  tier.  

The  AD   facility  will   need   to   have   register   a   ‘competent   person’   in   charge   of   operating   the   facility,  with  the  competent  person  and  the  operation  linked  together  in  a  management  plan.  The  competent  person   has   to   acquire   a   CIWM/WAMITAB   operator   competence   certificate,   a   statutory   award   in  order  to  undertake  certain  roles  in  the  waste  industry.  

The   operator,   i.e.   the   operating   company,   must   have   enough   trained   and   competent   staff   or   an  appropriate  maintenance   contract,   to  manage   and   operate   the   site   to   ensure   compliance  with   its  environmental  permit.  Any  contractors  working  on  the  site  must  also  have  the  skills  and  knowledge  they  need.  This  must  be  written  into  the  management  plan.  All  staff  working  on  permitted  activities  must   be   trained   on   what   the   management   plan   means.   It   must   be   easily   available   to   staff   and  contractors.  

Sufficient   competent   persons  will   have   to   demonstrate   in   written   records   their   defined   roles   and  responsibilities,  skill  sets  and  work  instructions.  

6.3.7. Machinery  

A   frequently   overlooked   element   of   operating   an   AD   plant   is   the   farm  machinery   on   site   used   to  transfer   the   clamped   silage   from   the   storage   area   to   the   digester.   It   is   stating   the   obvious   that   a  telescopic   loader  or  a   tractor  with   implements  used   for   that  purpose   requires  an  adequate  service  plan  and   insurance   cover,  but  when   sharing  machinery  with  a   farm  or  agricultural   contractor   such  actions  can  get  overlooked.  It  is  good  practice  to  keep  records  of  ownership,  maintenance  schedules  and  insurance  cover  periods.    

By   demonstrating   ‘good   practice’   to   the   insurer   it   is   common   that   insurance   premiums,   like   for  business   interruption   and  associated   loss  of   income,  will   be   reduced.  A   similar   approach  ought  be  used  for  storage  infrastructure  and  silage.  

6.3.8. Future  Proof  

On  the  question  of  expansion,  the  AD  industry  has  encountered  a  phenomena  that  once  an  AD  plant  is   up   and   running   then   its   operators   are   offered   additional   previously   not   accessible   feedstock.   A  later  modest  expansion  of  an  installed  capacity  of  up  to  250kW  –  either  by  engine  replacement  or  a  second   smaller   engine   –   would   not   alter   the   FiT   band   or   level.   A   higher   biogas   output   can   be  achieved   by   reducing   the   slurry   volume   and   replacing   it  with   additional   silage   intake,  whereby   no  plant   infrastructure   changes  need   to  be  made.   Such   consideration  needs   to  be  discussed  with   the  technology  provider  upfront.  

   

BABE  –  Brampton  AD  Feedstock  Study  

 

Public  Version                                                                                                                                            page  92  of  94  

6.4. Community  

This  chapter  is  mainly  concerned  with  the  societal  element  of  sustainability.  Ownership,  participation  and   integration   into   society  are  expressions  of   sustainability   and  an  AD  plant   can  be  measured  on  those  criteria  like  any  other  undertaking.  

The  general  understanding  of  a  community  (group)  and  a  community  project  differentiates  between  a  community  based  on  geography,  e.g.  the  people  of  Brampton,  and  a  community  based  on  a  shared  interest,   e.g.   anyone   with   an   interest   in   renewable   energy,   energy   saving   or   farming.   Those   two  approaches  can  of  course  overlap.    

However,  it  is  not  the  only  the  orientation  of  a  community,  which  makes  a  community  (group)  ‘stand  out  of  the  crowd’,  it  is  also  its  organisation.  There  are  several  current  legal  structures  to  choose  from  and   the   following   definition   comes   from   one   of   the   older   traditions,   the   community   organised   as  cooperative.  

“A  co-­‐operative  is  an  autonomous  association  of  persons  united  voluntarily  to  meet  their  common  economic,  social,  and  cultural  needs  and  aspirations  through  a  jointly-­‐owned  and  democratically-­‐controlled  enterprise.    Co-­‐operatives   are   based   on   the   values   of   self-­‐help,   self-­‐responsibility,   democracy,  equality,   equity   and   solidarity.   In   the   tradition   of   their   founders,   co-­‐operative  members  believe  in  the  ethical  values  of  honesty,  openness,  social  responsibility  and  caring  for  others.”  Source:  International  Co-­‐operative  Alliance  Statement  on  the  Co-­‐operative  Identity  

On  the  other  hand,  OFGEM’s  definition  of  a  community  interest  group  is  naturally  more  in  relation  to  eligibility  for  the  Feed-­‐in  Tariff;  it  states  that  an  energy  project  has  to  be  undertaken  by  a:  

• Community  interest  group  (CIC)  

• Cooperative  society  

• Community  benefit  society  

In  addition,  a  further  restriction  has  recently  been  introduced  in  regard  to  FiTs:  

“To   be   defined   as   a   community   energy   project   within   the   FITs   scheme,   eligible  entities  must  have  no  more  than  50  employees.”    Source:  www.fitariffs.co.uk/FAQs/item/663/)  

It   is   worth   noting   that   BABE   fits   into   OFGEM’s   description   being   an   IPS   and   having   less   than   50  employees.  

Other  potential  interest  groups  around  the  AD  plant  could  be  a  cooperative  of  feedstock  suppliers  or  of  AD  heat  users.    

A  supply  contract  could  also  be  arranged  between  the  AD  plant  owner/operator  and  a  cooperative  of  several  suppliers.  This  would  require  a  separate  membership  agreement  for  the  individual  suppliers  and   so   create  an  extra   layer  of   administration.  However,   the  benefit   to  both  parties  of   the   supply  contract   is   that  any   individual  under-­‐supply  could  be  counter-­‐balanced  by  other  suppliers   from  the  supply  cooperative.  This  approach  would  spread  the  risk  of  under-­‐supply  from  a  single  supplier  to  the  whole   organisation.   Furthermore,   it   could   be   arranged   that   any   over-­‐supply   could   be   traded   to  favourable  terms  and  conditions  among  the  supply  group.    

Such  supply  cooperative  would  probably  require  an  independent  moderator,  beyond  any  conflict  of  interests,  to  negotiate  the  interests  of  the  individual  members.  

A   ‘heat  user  cooperative’  would  be  focused  around  the  surplus  heat  from  the  CHP,  which  could  be  utilised  in  greenhouses.  It  could  enable  a  community  supported  agriculture  (CSA)  initiative  and  raise  

   

BABE  –  Brampton  AD  Feedstock  Study  

 

Public  Version                                                                                                                                            page  93  of  94  

awareness   for   sustainable   agriculture   by   linking   and   blurring   the   line   between   producers   and  consumers  by  creating  ‘prosumers’.    

6.5. Sustainability  

Sustainability   is   usually   assessed   from   an   integrated   perspective   combining   the   economic,  environmental   and   social   aspects.   Caution   has   to   be   applied   when   announcing   sustainability  indicators  for  an  AD  plant  out  of  context  of  its  wider  environment,  ignoring  the  socio-­‐economic  and  cultural  dimensions  of  sustainability.    

A  renewable  energy  installation  can  only  be  sustainable  if  the  energy  value  of  the  output  produced  is  greater  than  the  energy  required  to  produce  it.  Generic  studies  and  specific  case  studies  examining  the   energy   balances   and   ecological   footprint   of   AD   installations,   and   sometimes   even   their   entire  supply   chain,   have   been   undertaken   in   the   UK   and   other   European   countries,   but   the   choice   of  feedstock   and   technology   make   a   direct   comparison   with   the   BABE   AD   project   at   this   pre-­‐commissioning   state   very   imprecise.   (Source:   D30b:   Assessment   of   the   potential   for   crop-­‐derived  biogas   as   an   energy   source   in   the   EU,   taking   into   account   technical   and   environmental   issues   and  socio-­‐economic  impact.  CROPGEN,  2007)  

Nevertheless,   the   sustainability   benefits   of   the   BABE   AD   project   will   be   have   an   effect   locally  through:  

• The  generation  of  a  long-­‐term  income  for  the  local  agricultural  community,  e.g.  farmers,  agricultural  contractors  and  haulage,  landscaping  

• Short  and  long-­‐term  employment  in  the  area  in  the  supply  chain,  including:    

o Surveying,  architecture  and  civil  engineering  o Accounting  and  legal  o Metal  fabrication,  welding,  construction  works,  equipment  hire,  concrete  supply,  

construction  management  and  construction  material  supply  o Mechanical  &  electrical  installation  and  maintenance  

• The  transformation  and  disposal  of  farm  slurry  alongside  the  reduction  of  fertiliser  cost  through  quality  controlled  digestate  product.  All  of   the  micro-­‐  and  macronutrients   that  were  present   in   the  original   feedstock  are  still  present  after   the  AD  process  and   in   the  digestate.  During  the  AD  process  chemical  changes  take  place  that  can  alter  the  chemical  structures  (e.g.  nitrates  –  nitrites)   in  which  the  nutrients  enhance  their  availability.  This  enhanced  availability  results  in  greater  crop  uptake,  therefore  increased  yield.  There  is  a  reduced   risk   of   nutrient   run   off   intro   waterways   and   nitrogen   volatisation   into   the  atmosphere  due  to  the  more  liquid  properties  of  the  digestate  compared  to  cattle  slurry.  Pathogens   are   greatly   reduced   and   weed   seed   annihilated,   the   higher   the   operating  temperature,  the  better  will  be  the  result.  

• The   generation   of   renewable   energy,   which   has   a   CO2   saving   of   0,53kg   per   kWh   el  (DEFRA  etc),  where  the  projected  1,560,000kWh  of  the  Brampton  AD  would  constitute  a  carbon  saving  of  about  827  tons  per  year  or  16,536  tons  over  a  20  year  plant  lifetime.  

The   projected   electricity   generation   from   the   Brampton  AD  plant  would   power   472   households,   a  calculation  based  on  3,300kWh,  OFGEM’s  most  recent  ‘typical  domestic  annual  consumption’  figure.  (Source:  OFGEM,  Factsheet  96)    

   

BABE  –  Brampton  AD  Feedstock  Study  

 

Public  Version                                                                                                                                            page  94  of  94