BOOK 02 [ES]

download BOOK 02 [ES]

of 33

Transcript of BOOK 02 [ES]

  • 7/31/2019 BOOK 02 [ES]

    1/33

    I Gusti N. DirgantaraIr. Dwi Priyanta,

    MSE.01 10/ 3/ 12 Document Format

    -

    DOCUMENT NO. DOC. NO. 02 - 42 09 050 - ES

    NUMBER OF PAGES 9 6 3 -

    DESIGN-IV: MACHINERY BASIC DESIGN

    DISPLACEMENT, LWT AND DWT

    ATTACHMENT NO. 01 02 03 - -

    Ir. Hari Prastowo,

    MSc.

    REV. DATE DESCRIPTION PREPARED BY CHECKED BY APPROVED BY

    DESIGN-IV: MACHINERY BASIC DESIGN

  • 7/31/2019 BOOK 02 [ES]

    2/33

    Proj ect

    Doc. No

    Rev.No

    Type

    TABLE OF CONTENTS

    PHILOSOPHY

    1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

    1.1 Descript ion 1

    1.2 Purpose 1

    2. REFERENCES 1

    3. ABBREVIATIONS 1

    4. DESIGN PARAMETER 2

    4.1 Principal Dimensions 2

    4.2 Coeff icients and Contants 2

    4.3 Proj ect Guide Dat 2

    4.4 Another Parameters 3

    5. DESIGN REQUIREMENTS 3

    5.1 Displacement Calculat ions 3

    5.2 Lightweight Tonnage 3

    5.3 Deadweight Tonnage 7

    5.4 Payload 7

    6. SUMMARY 9

    LIST OF TABLES

    Table 5.2.1 - weight base desig 5LIST OF FIGURES

    Figure 5.2.1 - Out f it Weight Graph 6

    Figure 5.2.2 - Main Engine Weight 6

    Figure 5.2.3 - Weight Remainder 6

    ATTACHMENT NO. 01 - CALCULATION

    1. Displacement Calculat io 1

    2. Ligh Weight Tonnage 1

    3. Dead Weight Tonnage 6

    4. Payload 6

    LIST OF TABLES

    Table 1 - weight base design 2

    LIST OF FIGURES

    Figure 1 - Out f it Weight Graph 2

    Figure 2 - Main Engine Weight 4

    Figure 3 - Weight Remainder 4

    ATTACHMENT NO. 02 - CARGO HOLDS VOLUME

    ATTACHMENT NO. 03 - LIQUID CHARACTERISTIC

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    DISPLACEMENT, LWT AND DWT

    : DESIGN IV

    : 02 - 42 09 050 - ES

    : 01

    : Table of Contents

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

  • 7/31/2019 BOOK 02 [ES]

    3/33

    Project

    Doc. No

    Rev.No

    Type

    1 INTRODUCTION

    1.1 Description

    a. Displacement

    b. Light Weight Tonnage

    1) Structural Weight Approximation (WS)

    2) Outfit Weight Calculation (WO)

    3) Machinery Weight (WM)

    4) Margin Merchant Ship

    c. Dead Weight Tonnage

    1.2 Objective

    2 REFERENCESa. Practical Ship Design : Watson D. G. M.

    b. Engine Selection Guide - Two Stroke MC/MC-C Engines, 6th Edition: January 2002, MAN B&W

    3 ABBREVIATIONS

    Lpp = Length of between perpendicular

    Lwl = Length of waterline

    B = Breadth of ship

    H = Height of ship

    T = Draught of ship

    Vs = Ships velocity

    Cb = Block coefficient

    sea water = Sea water density

    K = Wet steel weight's constant

    The word displacement refers to the weight of the water that the ship displaces while

    floating. Another way of thinking about displacement is the amount of water that would spill

    out of a completely filled container were the ship to be placed into it. A floating ship always

    displaces an amount of water of the same weight as the ship. The weight of water that

    would displaced by the volume of the hull measured on the outer surface of the shell plating

    below the waterline. Displacement tonnage of a vessel can be obtained directly from

    Archimedes principle by multiplying its underwater volume by the density of water. A ship's

    displacement is its weight at any given time, generally expressed in metric tons or long tons.

    The term is often used to mean the ship's weight when it is loaded to its maximum capacity.

    A number of synonymous terms exist for this maximum weight, such as loaded displacement,

    full load displacement and designated displacement. Displacement is a measurement ofweight, and should not be confused with similarly named measurements of volume or

    capacity such as net tonnage, gross tonnage, or deadweight tonnage.

    The components of the lightweight in merchant ship practice consist of the structural

    weight, the outfit weight, the machinery weight and the margin.

    Is the weight that come from the value of weight displacement minus the light weight

    tonnages. That consist of cargo's weight, fuel oil, fresh water, ballast water, provision and

    ship's crew weight

    The objective of this document is to determine the estimation of displacement, light weight

    tonnage, and dead weight tonnage in order to find the relation between among of them.

    : DESIGN IV

    : 02 - 42 09 050 - ES

    : 01

    : Philosophy

    DISPLACEMENT, LWT AND DWT

    Page1of10

  • 7/31/2019 BOOK 02 [ES]

    4/33

    Project

    Doc. No

    Rev.No

    Type

    SFOC = Specific Fuel Oil Consumption

    W res = Reserve weight

    = Displacement volume = Ships displacement

    Wst = Wet steel weight

    E = Steel weights parameter

    l1 = Length of forecastle deck

    l2 = Length of poop deck

    h1 = Height of forecastle deck

    h2 = Height of poop deck

    Woa = Weight of outfit and accomdation

    Wm = Machineriy weight

    = Main engines weight

    = Maximum continous rating (kW)

    = Engine RPM

    Wr = Auxiliary engines weight

    Wres = Reserve weight

    4 DESIGN PARAMETER

    4.1 Principal Dimension

    1. Lpp = 123 m

    2. B = m

    3. T = 8.8 m

    4. H = m

    5. LWL = m

    6. Vs = knot = km/hours

    7. Distance = Nm = km

    8. Time of Voyage = 4 days = 96 hours

    4.2 Coefficient and Constants

    1. Cb disp =

    2. Cb wl =3. Cp disp =

    4. Cp wl =

    5. Am =

    6. Cm =

    4.3 Project Guide's Data

    1. BHP = kW

    2. SFOC = gr/kWh

    3. HFO = ton/m3

    4. MCR = kW

    5. RPM = r/min

    6. SLOC = g/BHPh0.95

    125.46

    RPM

    Wd

    MCR

    DISPLACEMENT, LWT AND DWT

    : DESIGN IV

    : 02 - 42 09 050 - ES

    : 01

    : Philosophy

    6258.88

    127

    20.2

    14.5

    173

    0.991

    0.694380.717

    0.70321

    174.916

    0.984

    6320

    127.92

    11.5

    1200

    26.8308

    2222.4

    Page2of10

  • 7/31/2019 BOOK 02 [ES]

    5/33

    Project

    Doc. No

    Rev.No

    Type

    4.4 Another Parameters

    l1 = length of full width erectio = m

    h1 = height of full width erectio = ml2 = length of houses = m

    h2 = height of houses = m

    5 DESIGN REQUIREMENTS

    5.1 Displacement Calculation

    a. Displacement Volume

    = Lwl x B x T x Cb (1)

    where : = Displacement volume

    Lwl = Ships length on the water lineB = Ship width in the middle of ship

    T = Draft on fully cargo

    Cb = Block coefficients

    b. Weight Displacement

    = x sea water (2)

    where : = ships displacement

    = ships displacement volume

    sea water = the density of sea water

    5.2 Light Weight Tonnage

    2.1 Structural Weight Approximations

    a.

    For those not familiar with the old E number, the formula for this is as follows:

    E = L ( B +T ) + 0.85 L ( D -T ) + 0.85 ( l 1 h1 ) + 0.75 ( l2 h2 ) . . . . . . (3)

    Where :

    L = legth between perpendicular

    B = breadth

    T = draftD = depth

    l1 = length of full width erectio = m

    h1 = height of full width erectio = m

    l2 = length of houses = m

    h2 = height of houses = m

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    2.5

    as the result that we found, we can know that value is suitable with our ship or not by the

    table 1 below:

    31.2

    2.5

    10.6

    The formula to calculate the structural weight of our ship reffer to Practical Ship Design -

    Chapter 4 - 4.2 Structural Weight Approximations, 4.2.1 Lloyd's Equipment number method.

    10.6

    2.5

    31.2

    2.5

    : 02 - 42 09 050 - ES

    : 01

    : Philosophy

    DISPLACEMENT, LWT AND DWT

    : DESIGN IV

    Page3of10

  • 7/31/2019 BOOK 02 [ES]

    6/33

    Project

    Doc. No

    Rev.No

    Type

    t able 5.2.1 - weight base design

    b. The effect of t he block coefficient on steel-weight

    The standard block was set at Cb' = 0.70 measured at 0.8D

    WS = WSI (1 + 0.05 ( CB' - 0.7 ) (4)

    Where :

    WS = Steel weight for actual CB at 0.8

    WSI = Steel weight for actual CB = 0.70 as plotted/lifted from graph

    WSI = K E

    . 6

    (5)Where :

    K = take from the table 1 - weight base design

    The relationship Between CB at moulded and CB at Dept h

    CB' = CB + (1 - CB) (0.8D - T) / 3T (6)

    2.2 Outfit Weight Calculation

    (Pract ical Ship Design - Chapter 4, 4.4 Out f it Weight Calculat ions, page 99)

    . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . .

    DISPLACEMENT, LWT AND DWT

    : DESIGN IV

    The traditional method of estimating the outfit weight for a new merchant ship was by

    proportioning the outfit weight of a similar ship on the basis of the relative square

    numbers, i.e., L x B, and then making corrections for any known differences in the

    specifications of the basis and new ships.

    : 02 - 42 09 050 - ES

    : 01

    : Philosophy

    0.032

    By the same token all steel-weights read from the graph must be corrected from the

    standard to the desired block coefficient.

    Corrections to the steel-weight for variations in Cb from the standard 0.70 value can be

    made using the following approximate relationship :

    Page4of10

  • 7/31/2019 BOOK 02 [ES]

    7/33

    Project

    Doc. No

    Rev.No

    Type

    Figure 5.2.1 - Outfit Weight Graph

    Figure 1, show the value of Wo/(LxB) is approximately 0.3

    2.3 Machinery Weight

    Divided into two components: propulsion machinery and remainder.

    a. Propulsion Machinery Weight

    Wd = 12 (MCR/RPM)

    0.84

    (7)

    (Pract ical Ship Design, 4.5.4 Propul sion machinery weight, pages 108)

    by ploting to the graph in figure 2 :

    DISPLACEMENT, LWT AND DWT

    : DESIGN IV

    : 02 - 42 09 050 - ES

    : 01

    : Philosophy

    . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    Figure 1, this shows that even for a particular type of ship the ratio outfit weight/square

    number is not always constant, although near constant values do seem to apply to general

    cargo ships and container ships.

    To find the outfit weight value, as figure 1 above, I have drawn my estimation according

    to my ships length 123 meters, and then I expand a line throug the tanker line. Cross line

    between both of them show us the value of Wo/(LxB).

    Approximately values for slow and medium speed diesels can be obtained from figure 2,

    the base parameter used in this plot is the maximum torque rating of the engines as

    represented by MCR/RPM, by the formula :

    Where, MCR (Maximum Continous Rating) can be found in EPM (Engine Propeller

    Matching) diagram in Design II. It means the engine power after seamargin and

    engine margine added value. Both margins 15% and 10%.

    Page5of10

  • 7/31/2019 BOOK 02 [ES]

    8/33

    Project

    Doc. No

    Rev.No

    Type

    b. Remainder

    Calculate by formula :

    Wr = K*MCR0.7

    (8)

    Where,

    Wr = Weight of remainder

    K = Constants noted

    0.19 for f ri gates and corvett es

    0.69 for bulk carr ier and general cargo ship

    0.72 for t ankers

    0.83 for passenger ship

    ploting to graph in figure 3 :

    Figure 3 - Weight Remainder

    DISPLACEMENT, LWT AND DWT

    : DESIGN IV

    : 02 - 42 09 050 - ES

    : 01

    : Philosophy

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    ploting data on figure 2, shown that the weight of maine engine is approximately 310

    kW, that value is close with the formula calculation above.

    Figure 5.2.2 - Main Engine Weight

    Page6of10

  • 7/31/2019 BOOK 02 [ES]

    9/33

    Project

    Doc. No

    Rev.No

    Type

    So the result of Machinery Weight is Wd+Wr,Wm = Wd+Wr

    2.4 Margin Merchant Ship

    for the result LWT :

    LWT = Ws+Wo+Wm (9)

    so, we can find the margin = 2%*LWT

    LWT total = LWT+Margin (10)

    5.3 Dead Weight Tonnage

    (Pract ical Ship Design, 4.6.5 Deadweight and Displacement - merchant ships, pages 115)

    DWT = - LWT (11)

    where,

    = Weight Displacement

    LWT = Light Weight Tonnage

    5.4 Payload

    Payload = DWT - Wtotal (12)

    where,

    DWT = Dead Weight Tonnage

    Wtotal = Weight of fuel oil, diesel oil, lubricating oil, crews and provision, fresh water

    i. HFO (Heavy Fuel Oil)a. HFO's weight

    The formula, as follows :

    WHFO = SFOC x BHP x time to voyage x constants addition of fuel . . . (13)

    Where,

    WHFO = weight of heavy fuel oil

    SFOC = specific fuel oil consumption (project guide)

    BHP = break horse power of main engine (project guide)

    constants addition of fuel = 1.3 - 1.5

    b. HFO's tank volume

    The formula, as follows :

    DISPLACEMENT, LWT AND DWT

    : DESIGN IV

    : 02 - 42 09 050 - ES

    : 01

    : Philosophy

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    If a total deadweight is stipulated the required full displacement is the sum of this and the

    lightweight.

    According to the figure 3 with plot diagram, show that the weight of remainder

    approximate 320 ton

    The purpose of having a margin is to ensure the attainment of the specified deadweight

    even if there has been an underestimate of the lightweight or an overestimate of the load

    The figure recommended for the margin for merchant ships was 2% of the lightweight.

    Subject to the qualifications made above this still seems as good advice as can be given.

    The load capacity that can be transported by ship. In designing, it should be kept to a maximal

    capacity of payload to gains the profit. But not out of the minimal requirements of the other

    parameters required by the ship. The relation between DWT (Dead Weight Tonnage) with Payload

    is shown in formula as follows:

    We should consider about the increasing temperature inside the tanks of HFO, so we

    add some alocation of expansion margins approximately 2% - 3%.

    Page7of10

  • 7/31/2019 BOOK 02 [ES]

    10/33

    Project

    Doc. No

    Rev.No

    Type

    VHFO = ((100%+3%)*WHFO)/ HFO (14)

    Where,

    VHFO = HFO's tanks volumeWHFO = weight of heavy fuel oil

    Alocation of expansion = 3%

    HFO = 0.991ton/m3

    ii. DO (Diesel Oil)

    a. DO's weight

    The estimation of diesel oil's weight is 10%-20% of heavy fuel oil's weight

    for the result :

    WDO = 20% x WHFO (15)

    b. DO's tanks volume

    The formula, as follows :

    VDO = ((100%+3%)*WDO)/ DO (16)

    Where,

    VDO = DO's tanks volume

    WDO = weight of heavy fuel oil

    Alocation of expansion = 3%

    DO = 0.85 ton/m

    iii. LO (Lubricating Oil)

    a. LO's weight

    The formula, as follows :

    WLO = SLOC x BHP x time to voyage x constant addition of fue(17)

    where,

    SLOC = Specific Lubricating Oil Consumption = 0.95 g/BHPh

    Constants of fuel = 1.3 - 1.5, take 1.4

    b. LO's tanks volume

    The formula, as follows :

    = WLO / LO (18)

    where,

    LO = 0.9 ton/m3

    iv. Fresh Water

    a. Consumption for crew

    fresh water needs estimation = kg/persons/day

    b. Bath and laundry needs

    fresh water needs estimation = kg/persons/dayc. Cooking needs

    fresh water needs estimation = kg/persons/day

    d. Machinery needs

    DISPLACEMENT, LWT AND DWT

    : DESIGN IV

    : 02 - 42 09 050 - ES

    : 01

    : Philosophy

    . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . .VLO

    We should consider about the increasing temperature inside the tanks of LO, so we add

    some alocation of expansion margins approximately 2% - 3%.

    200

    4

    20

    We should consider about the increasing temperature inside the tanks of DO, so we add

    some alocation of expansion margins approximately 2% - 3%.

    Page8of10

  • 7/31/2019 BOOK 02 [ES]

    11/33

    Project

    Doc. No

    Rev.No

    Type

    1. main engine

    fresh water needs estimation = 7 gr/kWh

    2. auxiliary enginefresh water needs estimation = 0.2 from main engine's fresh water

    Total fresh water machinery = fw main engine + fw auxiliary engine

    Total Weight of Fresh Water = consumption for crew + bath and laundy + cooking + machinery

    Total Volume of Fresh Water = divide the total weight of fresh water by its density.

    v. Crew and Provision

    a. crew's weight

    total crews = 12 persons

    average weight of crews = 80 kg

    b. provision's weight

    average provisions needs = 5 kg/person/day

    Weight Total of Ship Supplies

    W total = WHFO+WDO+WLO+Wfreshwater+Wcrews+Wprov

    PAYLOAD = DWT - W supplies total

    determining the type of load () = payload/cargo hold's volume

    6 SUMMARY

    NO

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    1112

    13

    14

    15

    16

    17

    18

    19

    20

    21

    22

    : 02 - 42 09 050 - ES

    : 01

    : Philosophy

    0.24Provision Weight

    m316.00

    0.96

    ton

    ton

    152.73

    29.39

    16184.29

    3935.46

    2479.38

    3991.04

    m3

    ton

    m3

    ton

    35.63

    0.81

    0.92

    ton

    E Range Number

    ton

    Weight Displacement

    Wr

    Wm

    margin

    E

    WSI

    CB'

    WS

    Wd

    1.05

    Steel weight for actual CB = 0.7

    Coefficient Block at Depth

    Steel weight for actual CB = 0.8 2523.14

    ton

    DWT

    WHFO

    DO tank volume

    Weight LO

    HFO tank volume

    Weight DO

    Light Weight Tonnage LWT

    VHFO

    WDO

    VDO

    WLO

    VLO

    Wfw

    LO tank volume

    15.85

    m3

    tonWeight of Fresh Water

    Volume Tanks Fresh Water

    Crew's Weight

    Vfw

    Displacement Volume

    SYMBOL

    m3

    15789.55

    CALCULATION RESULT

    DISPLACEMENT, LWT AND DWT

    : DESIGN IV

    Margin Merchant Ship

    Dead Weight Tonnage

    Weight HFO

    78.26

    12193.26

    146.95

    tonton

    ton

    Main Engine Weight

    Remainder Weight

    Machinery Weight

    316.99

    327.25

    644.24

    ton

    ton

    ton

    Page9of10

  • 7/31/2019 BOOK 02 [ES]

    12/33

  • 7/31/2019 BOOK 02 [ES]

    13/33

    DESIGN-IV: MACHINERY BASIC DESIGN

    ATTACHMENT NO. 01 - CALCULATIONDISPLACEMENT, LWT AND DWT

  • 7/31/2019 BOOK 02 [ES]

    14/33

    Project

    Doc. No

    Rev. No

    Type

    1. Displacement Calculation

    a. Displacement Volume

    = Lwl x B x T x Cb (1)where : = Displacement volume

    Lwl = Ships length on the water line

    B = Ship width in the middle of ship

    T = Draft on fully cargo

    Cb = Block coefficients

    for the result :

    = Lwl x B x T x Cb

    = 127.92 x 20.2 x 8.8 x 0.69438

    = m3

    b. Weight Displacement

    = x sea water (2)

    where : = ships displacement

    = ships displacement volume

    sea water = the density of sea water

    for the result :

    = x sea water

    = 15790 x 1.025

    = ton

    2. Light Weight Tonnage

    2.1 Structural Weight Approximations

    a.

    For those not familiar with the old E number, the formula for this is as follows:

    E = L ( B +T ) + 0.85 L ( D -T ) + 0.85 ( l 1 h1 ) + 0.75 ( l2 h2 ) (3)

    Where :

    L = legth between perpendicular

    B = breadth

    T = draft

    D = depthl1 = length of full width erectio = m

    h1 = height of full width erectio = m

    l2 = length of houses = m

    h2 = height of houses = m

    for the result :

    E = L ( B +T ) + 0.85 L ( D -T ) + 0.85 ( l 1 h1 ) + 0.75 ( l2 h2 )

    = 123(20.2+8.8)+0.85*123(11.5-8.8)+0.85(31.2*2.5)+0.75(10.6*2.5)

    =

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . .

    10.6

    3935.46

    DISPLACEMENT, LWT AND DWT

    : DESIGN IV

    : 02 - 42 09 050 - ES

    : 01

    : Attachment No. 01

    16184.3

    15789.5

    The formula to calculate the structural weight of our ship reffer to Practical Ship Design -

    Chapter 4 - 4.2 Structural Weight Approximations, 4.2.1 Lloyd's Equipment number method.

    31.2

    2.5

    2.5

    as the result that we found, we can know that value is suitable with our ship or not by the

    table 1 below:

    Page1of9

  • 7/31/2019 BOOK 02 [ES]

    15/33

    Project

    Doc. No

    Rev. No

    Type

    t able 1 - weight base design

    b. The effect of t he block coefficient on steel-weight

    The standard block was set at Cb' = 0.70 measured at 0.8D

    WS = WSI (1 + 0.05 ( CB' - 0.7 ) (4)

    Where :

    WS = Steel weight for actual CB at 0.8

    WSI = Steel weight for actual CB = 0.70 as plotted/lifted from graph

    WSI = K E1.36

    (5)

    Where :

    K = take from the table 1 - weight base design

    The relationship Between CB at moulded and CB at Depth

    CB' = CB + (1 - CB) (0.8D - T) / 3T (6)

    then, the calculation

    WSI = K E1.36

    = 0.032 * 3935.46^1.36

    =

    CB' = CB + (1 - CB) (0.8D - T) / 3T

    = 0.69438+(1-0.69438)*(0.8*(11.5)-8.8)/3*8.8)

    =

    . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . .

    2479.38

    : Attachment No. 01

    1.05297

    By the same token all steel-weights read from the graph must be corrected from the standard to

    the desired block coefficient.

    Corrections to the steel-weight for variations in Cb from the standard 0.70 value can be madeusing the following approximate relationship :

    0.032

    DISPLACEMENT, LWT AND DWT

    : DESIGN IV

    : 02 - 42 09 050 - ES

    : 01

    Page2of9

  • 7/31/2019 BOOK 02 [ES]

    16/33

    Project

    Doc. No

    Rev. No

    Type

    WS = WSI (1 + 0.05 ( CB' - 0.7 )

    = 2479.38(1+0.05*(1.05297-0.7)

    = ton

    2.2 Outfit Weight Calculation

    (Pract ical Ship Design - Chapter 4, 4.4 Out f i t Weight Calculat ions, page 99)

    Figure 1 - Outfit Weight Graph

    Figure 1, show the value of Wo/(LxB) is approximately 0.3

    and then the calculation :

    0.3 = Wo/(LxB) (7)

    0.3 = Wo/(123*20.2)

    0.3 = Wo/2484.6

    Wo = 0.3*2484.6

    = ton

    2.3 Machinery Weight

    Divided into two components: propulsion machinery and remainder.

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    745.4

    The traditional method of estimating the outfit weight for a new merchant ship was by

    proportioning the outfit weight of a similar ship on the basis of the relative square numbers,

    i.e., L x B, and then making corrections for any known differences in the specifications of the

    basis and new ships.

    Figure 1, this shows that even for a particular type of ship the ratio outfit weight/square

    number is not always constant, although near constant values do seem to apply to general cargo

    ships and container ships.

    To find the outfit weight value, as figure 1 above, I have drawn my estimation according to my

    ships length 123 meters, and then I expand a line throug the tanker line. Cross line between both

    of them show us the value of Wo/(LxB).

    2523.14

    DISPLACEMENT, LWT AND DWT

    : DESIGN IV

    : 02 - 42 09 050 - ES

    : 01

    : Attachment No. 01

    Page3of9

  • 7/31/2019 BOOK 02 [ES]

    17/33

    Project

    Doc. No

    Rev. No

    Type

    a. Propulsion Machinery Weight

    Wd = 12 (MCR/RPM)0.84

    (Practi cal Ship Design, 4.5.4 Propul sion machinery weight, pages 108)

    for the result :

    Wd = 12 (MCR/RPM)0.84

    (8)

    = 12*((6258.88/127) 0.84)

    = ton

    by ploting to the graph in figure 2 :

    Figure 2 - Main Engine Weight

    b. Remainder

    Calculate by formula :

    Wr = K*MCR0.7

    (9)

    Where,

    Wr = Weight of remainder

    K = Constants noted

    0.19 for f ri gates and corvet t es0.69 for bulk carrier and general cargo ship

    0.72 for t ankers

    0.83 for passenger ship

    for the result :

    . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    Where, MCR (Maximum Continous Rating) can be found in EPM (Engine Propeller

    Matching) diagram in Design II. It means the engine power after seamargin and engine

    margine added value. Both margins 15% and 10%.

    316.99

    Approximately values for slow and medium speed diesels can be obtained from figure 2, the

    base parameter used in this plot is the maximum torque rating of the engines as representedby MCR/RPM, by the formula :

    ploting data on figure 2, shown that the weight of maine engine is approximately 310 kW,

    that value is close with the formula calculation above.

    DISPLACEMENT, LWT AND DWT

    : DESIGN IV

    : 02 - 42 09 050 - ES

    : 01

    : Attachment No. 01

    Page4of9

  • 7/31/2019 BOOK 02 [ES]

    18/33

    Project

    Doc. No

    Rev. No

    Type

    Wr = K*MCR0.7

    = 0.72*(6258.88^0.7)

    = ton

    ploting to graph :

    Figure 3 - Weight Remainder

    So the result of Machinery Weight is Wd+Wr,

    Wm = Wd+Wr (10)

    = 316.99+327.25

    = ton

    2.4 Margin Merchant Ship

    for the result LWT :

    LWT = Ws+Wo+Wm (11)

    = 2523.14+745.4+644.24

    = ton

    so, we can find the margin = 2%*LWT

    = 2%*3912.78

    = ton

    LWT total = LWT+Margin (12)

    = 3912.78+78.2556

    = ton

    : 02 - 42 09 050 - ES

    : 01

    : Attachment No. 01

    According to the figure 3 with plot diagram, show that the weight of remainder approximate

    320 ton

    644.24

    3991.04

    327.25

    The purpose of having a margin is to ensure the attainment of the specified deadweight even if

    there has been an underestimate of the lightweight or an overestimate of the load displacement.The figure recommended for the margin for merchant ships was 2% of the lightweight. Subject

    to the qualifications made above this still seems as good advice as can be given.

    3912.78

    78.2556

    DISPLACEMENT, LWT AND DWT

    : DESIGN IV

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    Page5of9

  • 7/31/2019 BOOK 02 [ES]

    19/33

    Project

    Doc. No

    Rev. No

    Type

    3. Dead Weight Tonnage

    (Pract ical Ship Design, 4.6.5 Deadweight and Displacement - merchant ships, pages 115)

    DWT = - LWT (13)

    where,

    = Weight Displacement

    LWT = Light Weight Tonnage

    DWT = - LWT

    = 16184.3-3991.04

    = ton

    4. Payload

    Payload = DWT - Wtotal (14)

    where,

    DWT = Dead Weight Tonnage

    Wtotal = Weight of fuel oil, diesel oil, lubricating oil, crews and provision, fresh water

    4.1 HFO (Heavy Fuel Oil)a. HFO's weight

    The formula, as follows :

    WHFO = SFOC x BHP x time to voyage x constants addition of fuel . . . (15)

    Where,

    WHFO = weight of heavy fuel oil

    SFOC = specific fuel oil consumption (project guide)

    BHP = break horse power of main engine (project guide)

    constants addition of fuel = 1.3 - 1.5

    for the result :WHFO = SFOC x BHP x time to voyage x constants addition of fuel

    = 173*6320*96*1.4

    = gram

    = ton

    b. HFO's tank volume

    The formula, as follows :

    VHFO = ((100%+3%)*WHFO)/ HFO (16)

    Where,VHFO = HFO's tanks volume

    WHFO = weight of heavy fuel oil

    Alocation of expansion = 3%

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . .

    146947584

    146.95

    We should consider about the increasing temperature inside the tanks of HFO, so we add

    some alocation of expansion margins approximately 2% - 3%.

    DISPLACEMENT, LWT AND DWT

    : DESIGN IV

    : 02 - 42 09 050 - ES

    : 01

    : Attachment No. 01

    The load capacity that can be transported by ship. In designing, it should be kept to a maximal

    capacity of payload to gains the profit. But not out of the minimal requirements of the other

    parameters required by the ship. The relation between DWT (Dead Weight Tonnage) with Payload is

    shown in formula as follows:

    12193.3

    If a total deadweight is stipulated the required full displacement is the sum of this and the

    lightweight.

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    Page6of9

  • 7/31/2019 BOOK 02 [ES]

    20/33

    Project

    Doc. No

    Rev. No

    Type

    HFO = 0.991ton/m3

    for the result :

    VHFO = ((100%+3%)*WHFO)/ HFO

    = ((100%+3%)*146.95)/0.991

    = m3

    4.2 DO (Diesel Oil)

    a. DO's weight

    The estimation of diesel oil's weight is 10%-20% of heavy fuel oil's weight

    for the result :

    WDO = 20% x WHFO (17)

    = 20%*146.95

    = tonb. DO's tanks volume

    The formula, as follows :

    VDO = ((100%+3%)*WDO)/ DO (18)

    Where,

    VDO = DO's tanks volume

    WDO = weight of heavy fuel oil

    Alocation of expansion = 3%

    DO = 0.85 ton/m3

    for the result :

    VDO = ((100%+3%)*WDO)/ DO

    = ((100%+3%)*29.4)/0.85

    = m3

    4.3 LO (Lubricating Oil)

    a. LO's weight

    The formula, as follows :

    WLO = SLOC x BHP x time to voyage x constant addition of fu (19)

    where,SLOC = Specific Lubricating Oil Consumption = 0.95 g/BHPh

    Constants of fuel = 1.3 - 1.5, take 1.4

    for the result :

    WLO = SLOC x BHP x time to voyage x constant addition of fuel

    = 0.95*6320*96*1.4

    = gram

    = 0.8 ton

    b. LO's tanks volume

    The formula, as follows :

    = WLO / LO (20)

    where,

    . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . .

    We should consider about the increasing temperature inside the tanks of LO, so we add some

    alocation of expansion margins approximately 2% - 3%.

    VLO

    : DESIGN IV

    : 02 - 42 09 050 - ES

    : 01

    : Attachment No. 01

    806938

    35.63

    29.4

    We should consider about the increasing temperature inside the tanks of DO, so we add

    some alocation of expansion margins approximately 2% - 3%.

    152.73

    DISPLACEMENT, LWT AND DWT

    Page7of9

  • 7/31/2019 BOOK 02 [ES]

    21/33

    Project

    Doc. No

    Rev. No

    Type

    LO = 0.9 ton/m3

    for the result :

    = ((100%+3%)*WLO) / LO

    = ((100%+3%)*0.8)/0.9

    = m3

    4.4 Fresh Water

    a. Consumption for crew

    fresh water needs estimation = 20 kg/persons/day

    fresh water total (1trip) = 20*12*4

    = kg

    = ton

    b. Bath and laundry needsfresh water needs estimation = kg/persons/day

    fresh water total (1trip) = 200*12*4

    = kg

    = ton

    c. Cooking needs

    fresh water needs estimation = kg/persons/day

    fresh water total (1trip) = 4*12*4

    = kg

    = ton

    d. Machinery needs

    1. main engine

    fresh water needs estimation = 7 gr/kWh

    fresh water total (1trip) = 7 gr/kWh*6320 kW*96 hours

    = gram

    = ton

    2. auxiliary engine

    fresh water needs estimation = 0.2 from main engine's fresh water

    fresh water total (1trip) = 0.2*4.247

    = ton

    Total fresh water machinery = fw main engine + fw auxiliary engine

    = 4.247 + 0.85= ton

    Total Weight of Fresh Water = consumption for crew + bath and laundy + cooking + machinery

    = 0.96+9.6+0.192+5.097

    = ton

    Total Volume of Fresh Water = 15849 kg / 1000 kg/m3

    = m3

    ~ m4

    4.5 Crew and Provision

    a. crew's weight

    total crews = 12 persons

    average weight of crews = 80 kg

    total weight = 12*80

    4247040

    4.24704

    0.85

    5.097

    15.849

    0.92

    960

    0.96

    200

    16

    15.849

    4

    192

    0.192

    9600

    9.6

    VLO

    DISPLACEMENT, LWT AND DWT

    : DESIGN IV

    : 02 - 42 09 050 - ES

    : 01

    : Attachment No. 01

    Page8of9

  • 7/31/2019 BOOK 02 [ES]

    22/33

    Project

    Doc. No

    Rev. No

    Type

    = kg

    = ton

    b. provision's weightaverage provisions needs = 5 kg/person/day

    time of 1 trip = 4 days

    total weight of provision = 12 persons x 5 kg/person/day x 4 days

    = 240 kg

    = ton

    Weight Total of Ship Supplies

    W total = WHFO+WDO+WLO+Wfreshwater+Wcrews+Wprov (21)

    = 146.95+29.4+0.8+15.849+0.96+0.24

    = ton

    PAYLOAD = DWT - W supplies total (22)

    = 12193.3 -194.199

    = ton

    determining the type of load ( = payload/cargo hold's volume

    where,

    cargo hold's volume = m3

    (the calculation reffers to the attachment)

    for the result,

    determining the type of load ( = payload/cargo hold's volum (23)

    = 11999.101/12265.43

    =

    the closest density of liquid for the ship's load is =Crude Oil, Mexican, with = 0.973

    . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . .

    . . . . . .

    11999.1

    12265.43

    0.978

    so, we know the density of the load type according to our calculation, and then for the best

    load that has the closest value, we can find in the attachment about " the density of liquid".

    0.24

    194.199

    0.96

    960

    DISPLACEMENT, LWT AND DWT

    : DESIGN IV

    : 02 - 42 09 050 - ES

    : 01

    : Attachment No. 01

    Page9of9

  • 7/31/2019 BOOK 02 [ES]

    23/33

    DESIGN-IV: MACHINERY BASIC DESIGN

    ATTACHMENT NO. 02 - CARGO HOLDS

    VOLUMEDISPLACEMENT, LWT AND DWT

  • 7/31/2019 BOOK 02 [ES]

    24/33

    Project

    Doc. No

    Rev. No

    Type

    CARGO HOLD'S VOLUME BY SIMPSON METHOD

    CARGO HOLD 1 h= 3.5

    no frame y S.Factor y x S. Factor no frame y S.Factor y x S. Factor

    45 15.1055 1 15.1055 45 16.9945 1 16.9945

    50 16.2111 4 64.8444 50 17.8342 4 71.3368

    55 17.1159 2 34.2318 55 18.5112 2 37.0224

    60 17.8113 4 71.2452 60 19.0361 4 76.1444

    65 18.2491 1 18.2491 65 19.2117 1 19.2117

    y x s 203.676 y x s 220.7098

    luas = 1/3 h y x s (m2) 237.622 luas = 1/3 h y x s (m2) 257.494767

    no frame y S.Factor y x S. Factor no frame y S.Factor y x S. Factor

    45 18.1237 1 18.1237 45 18.9873 1 18.9873

    50 18.7804 4 75.1216 50 19.1343 4 76.5372

    55 19.1312 2 38.2624 55 19.25 2 38.5

    60 19.2167 4 76.8668 60 19.25 4 77

    65 19.25 1 19.25 65 19.25 1 19.25

    y x s 227.6245 y x s 230.2745

    luas = 1/3 h y x s (m2) 265.5619167 luas = 1/3 h y x s (m2) 268.653583

    no frame y S.Factor y x S. Factor

    45 19.2188 1 19.2188

    50 19.2431 4 76.9724

    55 19.25 2 38.5

    60 19.25 4 77

    65 19.25 1 19.25

    y x s 230.9412

    luas = 1/3 h y x s (m2) 269.4314

    cargo hold 1 PS & SB h = 2.155

    WL Area (m^2 S.Factor Area x S. Factor1.4 237.622 1 237.622

    3.6 257.4948 4 1029.979067

    5.7 265.5619 2 531.1238333

    7.9 268.6536 4 1074.614333

    10.0 269.4314 1 269.4314

    Area x S. Factor 3142.770633

    DISPLACEMENT, LWT AND DWT

    WL 1.4 m WL 3.575 m

    WL 5.73 WL 7.885

    WL 10.04 m

    : DESIGN IV

    : 02 - 42 09 050 - ES

    : 01

    : Attachment No. 02

    Page1of6

  • 7/31/2019 BOOK 02 [ES]

    25/33

    Project

    Doc. No

    Rev. No

    Type

    Volume = 1/3 h x (Area x S.Factor)

    Volume = 2257.56 m^3

    CARGO HOLD 2 h= 3.5

    no frame y S.Factor y x S. Factor no frame y S.Factor y x S. Factor

    65 18.2491 1 18.2491 65 19.2117 1 19.2117

    70 18.4876 4 73.9504 70 19.2426 4 76.9704

    75 18.5208 2 37.0416 75 19.2473 2 38.4946

    80 18.5208 4 74.0832 80 19.25 4 77

    85 18.5208 1 18.5208 85 19.25 1 19.25

    y x s 221.8451 y x s 230.9267

    luas = 1/3 h y x s (m2) 258.8192833 luas = 1/3 h y x s (m2) 269.414483

    no frame y S.Factor y x S. Factor no frame y S.Factor y x S. Factor

    65 19.25 1 19.25 65 19.25 1 19.25

    70 19.25 4 77 70 19.25 4 77

    75 19.25 2 38.5 75 19.25 2 38.5

    80 19.25 4 77 80 19.25 4 77

    85 19.25 1 19.25 85 19.25 1 19.25

    y x s 231 y x s 231

    luas = 1/3 h y x s (m2) 269.5 luas = 1/3 h y x s (m2) 269.5

    no frame y S.Factor y x S. Factor

    65 19.25 1 19.25

    70 19.25 4 77

    75 19.25 2 38.5

    80 19.25 4 77

    85 19.25 1 19.25

    y x s 231

    luas = 1/3 h y x s (m2) 269.5

    cargo hold 2 PS & SB h = 2.155

    WL Area (m^2 S.Factor Area x S. Factor

    1.4 258.8193 1 258.8192833

    3.6 269.4145 4 1077.657933

    5.7 269.5 2 539

    7.9 269.5 4 1078

    10.0 269.5 1 269.5

    Area x S. Factor 3222.977217

    DISPLACEMENT, LWT AND DWT

    : DESIGN IV

    : 02 - 42 09 050 - ES

    : 01

    : Attachment No. 02

    WL 1.4 m WL 3.575 m

    WL 5.73 WL 7.885

    WL 10.04 m

    Page2of6

  • 7/31/2019 BOOK 02 [ES]

    26/33

    Project

    Doc. No

    Rev. No

    Type

    Volume = 1/3 h x (Area x S.Factor)

    Volume = 2315.17 m^3

    CARGO HOLD 3 h= 3.325

    no frame y S.Factor y x S. Factor no frame y S.Factor y x S. Factor

    85 18.5208 1 18.5208 85 19.25 1 19.25

    89.75 18.5208 4 74.0832 89.75 19.25 4 77

    95 18.5208 2 37.0416 95 19.25 2 38.5

    99.25 18.5208 4 74.0832 99.25 19.25 4 77

    104 18.5208 1 18.5208 104 19.25 1 19.25

    y x s 222.2496 y x s 231

    luas = 1/3 h y x s (m2) 246.32664 luas = 1/3 h y x s (m2) 256.025

    no frame y S.Factor y x S. Factor no frame y S.Factor y x S. Factor

    85 19.25 1 19.25 85 19.25 1 19.25

    89.75 19.25 4 77 89.75 19.25 4 77

    95 19.25 2 38.5 95 19.25 2 38.5

    99.25 19.25 4 77 99.25 19.25 4 77

    104 19.25 1 19.25 104 19.25 1 19.25

    y x s 231 y x s 231

    luas = 1/3 h y x s (m2) 256.025 luas = 1/3 h y x s (m2) 256.025

    no frame y S.Factor y x S. Factor

    85 19.25 1 19.25

    89.75 19.25 4 77

    95 19.25 2 38.5

    99.25 19.25 4 77

    104 19.25 1 19.25

    y x s 231

    luas = 1/3 h y x s (m2) 256.025

    cargo hold 3 PS & SB h = 2.155

    WL Area (m^2 S.Factor Area x S. Factor

    1.4 246.3266 1 246.32664

    3.6 256.025 4 1024.1

    5.7 256.025 2 512.05

    7.9 256.025 4 1024.1

    10.0 256.025 1 256.025

    Area x S. Factor 3062.60164

    WL 1.4 m WL 3.575 m

    WL 5.73 WL 7.885

    WL 10.04 m

    DISPLACEMENT, LWT AND DWT

    : DESIGN IV

    : 02 - 42 09 050 - ES

    : 01

    : Attachment No. 02

    Page3of6

  • 7/31/2019 BOOK 02 [ES]

    27/33

    Project

    Doc. No

    Rev. No

    Type

    Volume = 1/3 h x (Area x S.Factor)

    Volume = 2199.97 m^3

    CARGO HOLD 4 h= 3.325

    no frame y S.Factor y x S. Factor no frame y S.Factor y x S. Factor

    104 18.5208 1 18.5208 104 19.25 1 19.25

    108.75 18.5208 4 74.0832 108.75 19.25 4 77

    114 18.5233 2 37.0466 114 19.2454 2 38.4908

    118.25 18.4635 4 73.854 118.25 19.232 4 76.928

    123 18.1327 1 18.1327 123 19.0446 1 19.0446

    y x s 221.6373 y x s 230.7134

    luas = 1/3 h y x s (m2) 245.6480075 luas = 1/3 h y x s (m2) 255.707352

    no frame y S.Factor y x S. Factor no frame y S.Factor y x S. Factor

    104 19.25 1 19.25 104 19.25 1 19.25

    108.75 19.25 4 77 108.75 19.25 4 77

    114 19.25 2 38.5 114 19.25 2 38.5

    118.25 19.25 4 77 118.25 19.25 4 77

    123 19.1121 1 19.1121 123 19.1352 1 19.1352

    y x s 230.8621 y x s 230.8852

    luas = 1/3 h y x s (m2) 255.8721608 luas = 1/3 h y x s (m2) 255.897763

    no frame y S.Factor y x S. Factor

    104 19.25 1 19.25

    108.75 19.25 4 77

    114 19.25 2 38.5

    118.25 19.25 4 77

    123 19.2459 1 19.2459

    y x s 230.9959

    luas = 1/3 h y x s (m2) 256.0204558

    cargo hold 4 PS & SB h = 2.155

    WL Area (m^2 S.Factor Area x S. Factor

    1.4 245.648 1 245.6480075

    3.6 255.7074 4 1022.829407

    5.7 255.8722 2 511.7443217

    7.9 255.8978 4 1023.591053

    10.0 256.0205 1 256.0204558

    Area x S. Factor 3059.833245

    : 02 - 42 09 050 - ES

    : 01

    : Attachment No. 02

    WL 5.73 WL 7.885

    WL 10.04 m

    WL 1.4 m WL 3.575 m

    DISPLACEMENT, LWT AND DWT

    : DESIGN IV

    Page4of6

  • 7/31/2019 BOOK 02 [ES]

    28/33

    Project

    Doc. No

    Rev. No

    Type

    Volume = 1/3 h x (Area x S.Factor)

    Volume = 2197.98 m^3

    CARGO HOLD 5 h= 3.5

    no frame y S.Factor y x S. Factor no frame y S.Factor y x S. Factor

    123 18.1327 1 18.1327 123 19.0446 1 19.0446

    129 17.3518 4 69.4072 129 18.4656 4 73.8624

    134 15.9905 2 31.981 134 17.5231 2 35.0462

    139 14.1092 4 56.4368 139 16.1097 4 64.4388

    143 11.8546 1 11.8546 143 14.0978 1 14.0978

    y x s 187.8123 y x s 206.4898

    luas = 1/3 h y x s (m2) 219.11435 luas = 1/3 h y x s (m2) 240.904767

    no frame y S.Factor y x S. Factor no frame y S.Factor y x S. Factor

    123 19.1121 1 19.1121 123 19.1352 1 19.1352

    129 18.7918 4 75.1672 129 18.9612 4 75.8448

    134 17.99 2 35.98 134 18.2331 2 36.4662

    139 16.6665 4 66.666 139 17.0688 4 68.2752

    143 14.8981 1 14.8981 143 15.248 1 15.248

    y x s 211.8234 y x s 214.9694

    luas = 1/3 h y x s (m2) 247.1273 luas = 1/3 h y x s (m2) 250.797633

    no frame y S.Factor y x S. Factor

    123 19.2459 1 19.2459

    129 18.9405 4 75.762

    134 18.4021 2 36.8042

    139 17.3309 4 69.3236

    143 15.4972 1 15.4972

    y x s 216.6329

    luas = 1/3 h y x s (m2) 252.7383833

    cargo hold 5 PS & SB h = 2.155

    WL Area (m^2 S.Factor Area x S. Factor

    1.4 219.1144 1 219.11435

    3.6 240.9048 4 963.6190667

    5.7 247.1273 2 494.2546

    7.9 250.7976 4 1003.190533

    10.0 252.7384 1 252.7383833

    Area x S. Factor 2932.916933

    DISPLACEMENT, LWT AND DWT

    : DESIGN IV

    : 02 - 42 09 050 - ES

    : 01

    : Attachment No. 02

    WL 10.04 m

    WL 1.4 m WL 3.575 m

    WL 5.73 WL 7.885

    Page5of6

  • 7/31/2019 BOOK 02 [ES]

    29/33

    Project

    Doc. No

    Rev. No

    Type

    Volume = 1/3 h x (Area x S.Factor)

    Volume = 2106.81 m^3

    CARGO HOLD 6 h= 4.67

    no frme y S.Factor y x S. Factor no frme y S.Factor y x S. Factor

    143 11.8546 1 11.8546 143 14.0978 1 14.0978

    149.7 8.8536 3 26.5608 149.7 10.9495 3 32.8485

    156.3 5.6388 3 16.9164 156.3 7.3898 3 22.1694

    163 2.2345 1 2.2345 163 3.9478 1 3.9478

    y x s 57.5663 y x s 73.0635

    luas = 3/8 h y x s (m2) 100.741025 luas = 3/8 h y x s (m2) 127.861125

    no frme y S.Factor y x S. Factor no frme y S.Factor y x S. Factor

    143 14.8981 1 14.8981 143 15.248 1 15.248

    149.7 11.9523 3 35.8569 149.7 12.4315 3 37.2945

    156.3 8.3358 3 25.0074 156.3 9.2005 3 27.6015

    163 4.7537 1 4.7537 163 5.6885 1 5.6885

    y x s 80.5161 y x s 85.8325

    luas = 3/8 h y x s (m2) 140.903175 luas = 3/8 h y x s (m2) 150.206875

    no frme y S.Factor y x S. Factor

    143 15.508 1 15.508149.7 12.8324 3 38.4972

    156.3 10.0148 3 30.0444

    163 6.7638 1 6.7638

    y x s 90.8134

    luas = 3/8 h y x s (m2) 158.92345

    cargo hold 6 PS & SB h = 2.155

    WL Area (m^2 S.Factor Area x S. Factor

    1.4 100.741 1 100.741025

    3.6 127.8611 4 511.4445

    5.7 140.9032 2 281.80635

    7.9 150.2069 4 600.8275

    10.0 158.9235 1 158.92345

    Area x S. Factor 1653.742825

    Volume = 1/3 h x (Area x S.Factor)

    Volume = 1187.94 m^3

    volume ruang muat t ot al

    Volume ruang muat total = V rm 1 + Vrm 2 + Vrm 3 + Vrm 4 + Vrm 5 + Vrm 6

    Volume ruang muat total = 12265. 429 m^ 3

    WL 10.04 m

    WL 1.4 m WL 3.575 m

    WL 5.73 WL 7.885

    DISPLACEMENT, LWT AND DWT

    : DESIGN IV

    : 02 - 42 09 050 - ES

    : 01

    : Attachment No. 02

    Page6of6

  • 7/31/2019 BOOK 02 [ES]

    30/33

    DESIGN-IV: MACHINERY BASIC DESIGN

    ATTACHMENT NO. 03 - LIQUID

    CHARACTERISTICDISPLACEMENT, LWT AND DWT

  • 7/31/2019 BOOK 02 [ES]

    31/33

    Temperat

    ureDensity

    t

    (o

    C) (kg/m3) (

    oF) (

    oC)

    CentiStoke

    s(cSt)

    Seconds

    Saybolt

    Universal

    (SSU)

    AceticAcid 25 1049 61 16.1 0.305

    Acetone 25 784.6 68 20 0.295

    Acetonitrile 20 782Aceticacid vinegar 10%

    CH3COOH59 15 1.35 31.7

    Alcohol,ethyl

    (ethanol)25 785.1 Aceticacid 50% 59 15 2.27 33

    Alcohol,

    methyl

    (methanol)

    25 786.5 Aceticacid 80% 59 15 2.85 35

    Alcohol,

    propyl

    25 800Aceticacid concentrated

    glacial

    59 15 1.34 31.7

    Ammonia

    (aqua)25 823.5

    Aceticacidanhydride

    (CH3COO)2O59 15 0.88

    Aniline 25 1019 AcetoneCH3COCH3 68 20 0.41

    Automobile

    oils15 880940 68 20 1.6

    Beer(varies) 10 1010 104 40 0.90cp

    Benzene 25 873.8 Alcohol butyln 68 20 3.64 38

    Benzil 15 1230 68 20 1.52 31.7

    Brine 15 1230 100 37.8 1.2 31.5

    Bromine 25 3120 59 15 0.74

    ButyricAcid 20 959 32 0 1.04

    Butane 25 599 68 20 2.8 35

    nButyl

    Acetate20 880 122 50 1.4 31.7

    nButyl

    Alcohol20 810

    Aluminumsulfate 36%

    solution68 20 1.41 31.7

    n

    Butylhloride20 886 Ammonia 0 17.8 0.3

    Caproicacid 25 921 68 20 4.37 40

    Carbolicacid 15 956 50 10 6.4 46.4

    Carbondisulfide

    25 1261 77 25 159324 737

    1.5M

    Carbon

    tetrachloride25 1584 100 37.8 60108 280500

    Carene 25 857Automaticcrankcaseoil

    SAE10W0 17.8 1295max 6Mmax

    Castoroil 25 956.1Automaticcrankcaseoil

    SAE10W0 17.8 12952590 6M12M

    Chloride 25 1560Automaticcrankcaseoil

    SAE20W0 17.8

    2590

    1035012M48M

    Chlorobenzen

    e20 1106

    Automaticcrankcaseoil

    SAE20

    210 98.9 5.79.6 4558

    Densityofliquid Kinematicviscosityofliquid

    Aniline

    AsphaltRC0,MC0,SC0

    Alcohol allyl 31.8

    Alcohol ethyl(grain)

    C2H5OH

    Alcohol methyl(wood)

    CH3OH

    Alcohol propyl

    Liquid Liquid

    Temperature KinematicViscosity

    AcetaldehydeCH3CHO 36

    Page1of3

  • 7/31/2019 BOOK 02 [ES]

    32/33

    Temperat

    ureDensity

    t

    (o

    C) (kg/m3) (

    oF) (

    oC)

    CentiStoke

    s(cSt)

    Seconds

    Saybolt

    Universal

    (SSU)

    Chloroform 20 1489 AutomaticcrankcaseoilSAE30

    210 98.9 9.612.9 5870

    Chloroform 25 1465Automaticcrankcaseoil

    SAE40210 98.9 12.916.8 7085

    Citricacid 25 1660Automaticcrankcaseoil

    SAE50210 98.9 16.822.7 85110

    Coconutoil 15 924AutomotivegearoilSAE

    75W210 98.9 4.2min 40min

    Cottonseed

    oil15 926

    AutomotivegearoilSAE

    80W210 98.9 7.0min 49min

    Cresol 25 1024AutomotivegearoilSAE

    85W210 98.9 11.0min 63min

    Creosote 15 1067 AutomotivegearoilSAE90W

    210 98.9 1425 74120

    Crudeoil,48o

    API60

    oF 790

    AutomotivegearoilSAE

    140210 98.9 2543 120200

    Crudeoil,40o

    API60

    oF 825

    Automotivegearoil

    SAE150210 98.9 43 min 200min

    Crudeoil,

    35.6oAPI

    60o

    F 847 Beer 68 20 1.8 32

    Crudeoil,

    32.6oAPI

    60o

    F 862 32 0 1

    Crude

    oil,alifornia60

    oF 915 68 20 0.74

    Crudeoil,Mexican

    60o

    F 973 130 54.4 47.5 220

    Crudeoil,

    Texas60

    oF 873 212 100 11.6 65

    Cumene 25 860 Bromine 68 20 0.34

    Cyclohexane 20 779 50 0.52

    Cyclopentane 20 745 30 0.35

    Decane 25 726.3 68 20 1.61

    Dieselfueloil

    20

    to

    60

    15 820950 32 0 2.3cp

    Diethylether 20 714 Calciumchloride5% 65 18.3 1.156

    o

    Dichlorobenz

    ene

    20 1306 Calciumchloride25% 60 15.6 4 39

    Dichlorometh

    ane20 1326 65 18.3 11.83

    Diethylene

    glycol15 1120 194 90 1.26cp

    Dichlorometh

    ane20 1326 68 20 0.612

    Dimethyl

    Acetamide20 942 100 37.8 0.53

    Densityofliquid Kinematicviscosityofliquid

    Liquid Liquid

    Temperature KinematicViscosity

    Benzene(Benzol)C6H6 31

    Boneoil

    Butanen 1.1

    Butyricacidn 31.6

    Carbolicacid(phenol) 65

    CarbontetrachlorideCCl4

    Page2of3

  • 7/31/2019 BOOK 02 [ES]

    33/33

    Temperat

    ureDensity

    t

    (o

    C) (kg/m3)

    N,N

    Dimethylform

    amide

    20 949 32 0 0.33

    Dimethyl

    Sulfoxide20 1100 68 20 0.298

    Dodecane 25 754.6 100 37.8 259325 12001500

    Ethane 89 570 130 54.4 98130 450600

    Ether 25 713.5 69 20.6 308.5 1425

    Ethylamine 16 681 100 37.8 125.5 580

    Densityofliquid Kinematicviscosityofliquid

    Liquid Liquid

    Temperature KinematicViscosity

    CarbondisulfideCS2

    Castoroil

    Chinawoodoil

    Seconds

    Saybolt

    Universal

    (SSU)

    CentiStoke

    s(cSt)(

    oC)(

    oF)