Bits Nozzles

download Bits Nozzles

of 197

Transcript of Bits Nozzles

  • 8/17/2019 Bits Nozzles

    1/197

    Drilling Bits

     And Hydraulics Calculations

  • 8/17/2019 Bits Nozzles

    2/197

    Drilling Bits

  • 8/17/2019 Bits Nozzles

    3/197

    Types of bits

    • Drag Bits

    • Roller Cone Bits• Diamond Bits

  • 8/17/2019 Bits Nozzles

    4/197

    a) Shearing the formation as PDC and TSPdiamond bits do

    b) Ploughing / Grinding the formation, asnatural diamond do

    c) Crushing; by putting the rock in compressionas a roller bit

    Cutting Mechanisms

  • 8/17/2019 Bits Nozzles

    5/197

    The Ideal Bit *

    1. High drilling rate

    2. Long life

    3. Drill full-gauge, straight hole

    4. Moderate cost

    * (Low cost per ft drilled)

  • 8/17/2019 Bits Nozzles

    6/197

    Bit Selection

    Minimum Cost Per Unit length $/ft

    Bit cost + rig cost X (tripping time + Drilling time)C /L = -----------------------------------------------------------------

    Footage Progress

  • 8/17/2019 Bits Nozzles

    7/197

    $ Per Foot

  • 8/17/2019 Bits Nozzles

    8/197

    The Roller Cone Bits

    Two-cone bit (Milled tooth soft formation only)

    Three cone bit (milled tooth, Tungsten carbide inserts)

    Four-cone bit (milled tooth, for large hole size)

  • 8/17/2019 Bits Nozzles

    9/197

    Fluid flow through jets in the bit (nozzles)

  • 8/17/2019 Bits Nozzles

    10/197

    Tungsten

    Carbide Insert

    Bit

    Milled

    Tooth

    Bit

  • 8/17/2019 Bits Nozzles

    11/197

  • 8/17/2019 Bits Nozzles

    12/197

    Rotary Drill BitsRoller Cutter Bits - rock bits

    • First rock bit introduced in 1909 by

    Howard Hughes

    • 2 - cone bit

    • Not self-cleaning

  • 8/17/2019 Bits Nozzles

    13/197

    Rotary Drill Bits

    • Improvements

    • 3 - cone bit (straighter hole)

    • Intermeshing teeth (better cleaning)

    • Hard-facing on teeth and body• Change from water courses to jets

    • Tungsten carbide inserts• Sealed bearings

    • Journal bearings

  • 8/17/2019 Bits Nozzles

    14/197

    Rotary Drill Bits

    •  Advantages

    • For any type of formation there is asuitable design of rock bit

    • Can handle changes in formation

    • Acceptable life and drilling rate

    • Reasonable cost

  • 8/17/2019 Bits Nozzles

    15/197

    Fluid flow through water courses in bit

    Properbottomhole

    cleaning is veryimportant

  • 8/17/2019 Bits Nozzles

    16/197

    Fluid flow through jets in the bit (nozzles)

  • 8/17/2019 Bits Nozzles

    17/197

    Three Cone Bit

    Three equal sized cones

    Three Identical legs

    Each cone is mounted on bearings run on a pin from the leg

    The three legs are welded to make the pin connection

    Each leg is provided with an opening ( to fit Nozzle)

  • 8/17/2019 Bits Nozzles

    18/197

  • 8/17/2019 Bits Nozzles

    19/197

  • 8/17/2019 Bits Nozzles

    20/197

    Design Factors

    Dictated by the Hole size and Formation properties

  • 8/17/2019 Bits Nozzles

    21/197

    Angle formed by the axis of the

    Journal and the axis of the bitJOURNALANGLE

  • 8/17/2019 Bits Nozzles

    22/197

    The Angle of the Journal influence the size of the cone

    The smaller the Journal angle the greater the gouging andscrapping effect by the three cones

  • 8/17/2019 Bits Nozzles

    23/197

    Offset Cones

    HardSoft

    Medium

  • 8/17/2019 Bits Nozzles

    24/197

    Teeth

  • 8/17/2019 Bits Nozzles

    25/197

  • 8/17/2019 Bits Nozzles

    26/197

    Bearing

    Outer & Nose

    Bearings

    •Support Radial Loads

    Ball Bearing

    •Support axial loads

    •Secure the cons on

    the legs

  • 8/17/2019 Bits Nozzles

    27/197

    Rotary Drill Bits

    • Milled Tooth Bit (Steel Tooth)

    Long teeth for soft formations

    Shorter teeth for harder formations

    Cone off-set in soft-formation bit results inscraping gouging action

    Self-sharpening teeth by using hardfacing

    on one side High drilling rates - especially in softer

    rocks

  • 8/17/2019 Bits Nozzles

    28/197

    MilledTooth Bit

    (Steel

    Tooth)

  • 8/17/2019 Bits Nozzles

    29/197

    Rotary Bits

    • Tungsten Carbide Insert Bits

    • Long life cutting structure in hard rocks

    • Hemispherical inserts for very hard rocks

    • Larger and more pointed inserts for softer rock

    • Can handle high bit weights and high RPM

    • Inserts fail through breakage rather than wear 

    (Tungsten carbide is a very hard, brittle material)

  • 8/17/2019 Bits Nozzles

    30/197

    Tungsten

    CarbideInsert

    Bits

  • 8/17/2019 Bits Nozzles

    31/197

    Sealed Bearing

    Lubrication System

  • 8/17/2019 Bits Nozzles

    32/197

    Sealed, self-lubricated roller bit

     journal bearingdesign details

    INSERTS

    SILVER PLATED BUSHING

    RADIAL SEAL

    BALL BEARING

    GREASE RESERVOIR CAP

    BALL RETAINING

    PLUG

    BALL RACE

  • 8/17/2019 Bits Nozzles

    33/197

    Roller

    Cone

    Bearings

  • 8/17/2019 Bits Nozzles

    34/197

    Bearings

    • Ball Bearings (point contact)

    • Roller Bearings (line contact)

    • Journal bearing (area contact)

    • Lubrication by drilling fluid . . . or . . .

  • 8/17/2019 Bits Nozzles

    35/197

    Bearings

    • Journal Bearings (area contact)

    • Wear-resistant hard surface on journal

    • Solid lubricant inside cone journal race• O - ring seal

    • Grease

    • Sealed Bearings (since 1959)• Grease lubricant (much longer life)• Pressure surges can cause seal to leak!

    Compensate?

  • 8/17/2019 Bits Nozzles

    36/197

    Grading of Dull BitsHow do bits wear out?

    • Tooth wear or loss

    • Worn bearings

    • Gauge wear 

  • 8/17/2019 Bits Nozzles

    37/197

    Grading of Dull Bits

    How do bits wear out?

    • Steel teeth - graded in eights of original

    tooth height that has worn away

    e.g. T3 means that3/8 of the originaltooth height is worn

    away

  • 8/17/2019 Bits Nozzles

    38/197

    Grading of Dull Bits

    Broken or Lost Teeth

    • Tungsten Carbide Insert bit

    e.g. T3 means that 3/8 of the inserts

    are broken or lost

  • 8/17/2019 Bits Nozzles

    39/197

    Grading of Dull Bits

    How do bits fail?

    • Bearings: B3 means that an estimated

    3/8 of the bearing life is gone

    Balled up Bit Cracked Cone

    G di f D ll Bi

  • 8/17/2019 Bits Nozzles

    40/197

    Grading of Dull Bits

    How do bits fail?

    Washed out Bit Lost Cone

    G di f D ll Bit

  • 8/17/2019 Bits Nozzles

    41/197

    Grading of Dull Bits

    How do bits wear out?

    4 Examples:

    • T3 – B3 - I

    • T5 – B4 - 0 1/2

    • Gauge Wear:

    • Bit is either in-Gauge or out-of-Gauge

    • Measure wear on diameter (in inches),using a gauge ring

    BIT

    GAUGE RING

  • 8/17/2019 Bits Nozzles

    42/197

    Roller conebit wear

    problems

  • 8/17/2019 Bits Nozzles

    43/197

    IADC ROLLER CONE

    BIT CLASSIFICATIONSYSTEM

  • 8/17/2019 Bits Nozzles

    44/197

    IADC System• Operational since 1972

    • Provides a Method of Categorizing Roller Cone

    Rock Bits

    • Design and Application related coding• Most Recent Revision

    ‘The IADC Roller Bit Classification System’

    1992, IADC/SPE Drilling Conference

    Paper # 23937

  • 8/17/2019 Bits Nozzles

    45/197

    IADC Classification

    • 4-Character Design/Application Code

     – First 3 Characters are NUMERIC

     – 4th Character is ALPHABETIC

    135M or 447X or 637Y

  • 8/17/2019 Bits Nozzles

    46/197

    Examples

    637Y

    medium-hard insert

    bit;

    frict ion bearing withgage protection;

    conical inserts

    135Msoft formation

    Milled tooth bit ;

    roller bearings withgage protection;

    motor application

    447Xsoft formation insert bit;

    frict ion bearings

    with gage protection;chisel inserts

  • 8/17/2019 Bits Nozzles

    47/197

    Sequence

    • Numeric Characters are defined: – Series 1st

     – Type 2nd

     – Bearing & Gage 3rd

    • Alphabetic Character defined:

     – Features Available 4th

    135M135M or or  447X447X or or  637Y637Y

  • 8/17/2019 Bits Nozzles

    48/197

    Series

    • FIRST CHARACTER

    • General Formation Characteristics

    • Eight (8) Series or Categories

    • Series 1 to 3 Milled Tooth Bits

    • Series 4 to 8 Tungsten Carbide Insert BitsThe higher the series number,

    the harder/more abrasive the rock

    1135M35M or or  4447X47X or or  6637Y37Y

  • 8/17/2019 Bits Nozzles

    49/197

    Define Hardness

    Hardness UCS (psi) Examples

    Ultra Soft < 1,000 gumbo, clay

    Very Soft 1,000 - 4,000unconsolidated sands, chalk,

    salt, claystone

    Soft 4,000 - 8,000 coal, siltstone, schist, sands

    Medium 8,000 - 17,000sandstone, slate, shale,

    limestone, dolomite

    Hard 17,000 - 27,000

    quartzite, basalt, gabbro,

    limestone, dolomite

    Very Hard > 27,000 marble, granite, gneiss

    UCS = Uniaxial Unconfined Compressive Strength

    B i & G

  • 8/17/2019 Bits Nozzles

    50/197

    Bearing & Gage

    • THIRD CHARACTER• Bearing Design and Gage Protection

    • Seven (7) Categories

     – 1. Non-Sealed (Open) Roller Bearing – 2. Roller Bearing Air Cooled

     – 3. Non-Sealed (Open) Roller Bearing Gage Protected

     – 4. Sealed Roller Bearing

     – 5. Sealed Roller Bearing Gage Protected

     – 6. Sealed Friction Bearing

     – 7. Sealed Friction Bearing Gage Protected

    131355MM or or  444477XX or or  636377YY

    F t A il bl

  • 8/17/2019 Bits Nozzles

    51/197

    Features Available

    • FOURTH CHARACTER

    • Features Available (Optional)• Sixteen (16) Alphabetic Characters

    • Most Significant Feature Listed(i.e. only one alphabetic character should be selected).

    135135MM or or  447447XX or or  637637YY

    IADC F t A il bl

  • 8/17/2019 Bits Nozzles

    52/197

    IADC Features Available

    • A - Air Application

    • B - Special Bearing/Seal

    • C - Center Jet

    • D - Deviation Control

    • E - Extended Nozzles

    • G - Gage/Body Protection• H - Horizontal Application

    • J - Jet Deflection

    • L - Lug Pads

    • M - Motor Application

    • S - Standard MilledTooth

    • T - Two-Cone Bit

    • W - Enhanced C/S• X - Chisel Tooth Insert

    • Y - Conical Tooth Insert

    • Z - Other Shape Inserts

    135135MM or or  447447XX or or  637637YY

  • 8/17/2019 Bits Nozzles

    53/197

    Drag Bits

    Cutter may be made from:

    Steel

    Tungsten carbide

    Natural diamonds

    Polycrystalline diamonds (PDC)

    Drag bits have no moving parts, so it is less likelythat junk will be left in the hole.

  • 8/17/2019 Bits Nozzles

    54/197

    Fishtail type drag bit

    D Bit

  • 8/17/2019 Bits Nozzles

    55/197

    Drag Bits

    Drag bits drill by physically “plowing”

    or “machining” cuttings from the

    bottom of the hole.

  • 8/17/2019 Bits Nozzles

    56/197

    Natural Diamond Bits PDC Bits

    Nat ral

  • 8/17/2019 Bits Nozzles

    57/197

    Natural

    Diamondbit

     junk slotcuttings

    radial flow

    high pacross face

  • 8/17/2019 Bits Nozzles

    58/197

    SoftFormation

    Diamond bit

    Larger diamonds

    Fewer diamonds

    Pointed nose

  • 8/17/2019 Bits Nozzles

    59/197

    HardFormation

    Diamond bit

    Smaller diamonds

    More diamonds

    Flatter nose

    Natural Diamonds

  • 8/17/2019 Bits Nozzles

    60/197

    Natural Diamonds

    The size and spacing of diamonds on a

    bit determine its use.

    NOTE: One carat = 200 mg  precious stones

    What is 14 carat gold?

    Natural Diamonds

  • 8/17/2019 Bits Nozzles

    61/197

    Natural Diamonds

    • 2-5 carats - widely spaced diamondsare used for drilling soft formations such as

    soft sand and shale

    • 1/4 - 1 carat - diamonds are used for drillingsand, shale and limestone formations of

    varying (intermediate) hardness.

    •1/8 - 1/4 carat - diamonds, closely spaced, are

    used in hard and abrasive formations.

    When to Consider Using a Natural

  • 8/17/2019 Bits Nozzles

    62/197

    g

    Diamond Bit?

    1. Penetration rate of rock bit < 10 ft/hr.

    2. Hole diameter < 6 inches.3. When it is important to keep the bit and

    pipe in the hole.4. When bad weather precludes making trips.

    5. When starting a side-tracked hole.

    6. When coring.

    * 7. When a lower cost/ft would result

  • 8/17/2019 Bits Nozzles

    63/197

    Top view of diamond bit

  • 8/17/2019 Bits Nozzles

    64/197

    Side view ofdiamond bit

  • 8/17/2019 Bits Nozzles

    65/197

    PDCbits

    CourtesySmith Bits

    PDC Cutter 

  • 8/17/2019 Bits Nozzles

    66/197

  • 8/17/2019 Bits Nozzles

    67/197

  • 8/17/2019 Bits Nozzles

    68/197

    At about $10,000-150,000 apiece, PDC bits cost five to 15 times more

    than roller cone bits

    PDC Bits

  • 8/17/2019 Bits Nozzles

    69/197

    The Rise in Diamond Bit Market Share

    Coring

  • 8/17/2019 Bits Nozzles

    70/197

    Coring

    bit

    PDC +

    naturaldiamond

    Bi-Center bit

  • 8/17/2019 Bits Nozzles

    71/197

    Courtesy Smith Bits

    Relative Costs of Bits

  • 8/17/2019 Bits Nozzles

    72/197

    Diamond WC Insert MilledBits Bits Tooth Bits

    $/Bit

    • Diamond bits typically cost several times as much as tri-

    cone bits with tungsten carbide inserts (same bit diam.)

    • A TCI bit may cost several times as much as a

    milled tooth bit.

    PDC Bits

  • 8/17/2019 Bits Nozzles

    73/197

    PDC BitsRef: Oil & Gas Journal, Aug. 14, 1995, p.12

    • Increase penetration rates in oil and gaswells

    • Reduce drilling time and costs

    • Cost 5-15 times more than roller cone bits• 1.5 times faster than those 2 years earlier 

    • Work better in oil based muds; however,these areas are strictly regulated

    PDC Bits

  • 8/17/2019 Bits Nozzles

    74/197

    PDC Bits

    • Parameters for effective use

    include

    weight on bit

    mud pressure

    flow rate

    rotational speed

    PDC Bits

  • 8/17/2019 Bits Nozzles

    75/197

    • Economics

    • Cost per foot drilled measures Bitperformance economics

    • Bit Cost varies from 2%-3% of total cost, but

    bit affects up to 75% of total cost

    • Advantage comes when

    - the No. of trips is reduced, and when- the penetration rate increases

    PDC Bits

  • 8/17/2019 Bits Nozzles

    76/197

    Bit Demand

    U.S Companies sell > 4,000 diamond drillbits/year 

    Diamond bit Market is about $200million/year 

    Market is large and difficult to reform

    When bit design improves, bit drills longer 

    PDC Bits

  • 8/17/2019 Bits Nozzles

    77/197

     – Improvements in bit stability, hydraulics,and cutter design => increased footage per bit

     – Now, bits can drill both harder and softerformations

    Bit Demand, cont’d

    PDC Bits

  • 8/17/2019 Bits Nozzles

    78/197

    Bit Design,

    PDC bit diameter varies from 3.5 in to 17.5 in

    • Goals of hydraulics:

     – clean bit without eroding it

     – clean cuttings from bottom of hole

    PDC Bits

  • 8/17/2019 Bits Nozzles

    79/197

    • Factors that limit operating rangeand economics:

     – Lower life from cutter fractures

     – Slower ROP from bad cleaning

    Bit design, cont’d

    PDC Bits

  • 8/17/2019 Bits Nozzles

    80/197

    • Cutters

    • Consist of thin layer of bonded diamondparticles + a thicker layer of tungsten carbide

    • Diamond• 10x harder than steel

    • 2x harder than tungsten carbide

    • Most wear resistant materialbut is brittle and susceptible to damage

    PDC Bits

  • 8/17/2019 Bits Nozzles

    81/197

    • Diamond/Tungsten Interface

    • Bond between two layers on cutter iscritical

    • Consider difference in thermalexpansion coefficients and avoid

    overheating• Made with various geometric shapes to

    reduce stress on diamond

    Cutters, cont’d

    PDC Bits

  • 8/17/2019 Bits Nozzles

    82/197

    • Various Sizes

    • Experimental dome shape

    • Round with a buttress edge for highimpact loads

    • Polished with lower coefficient of friction

    4 Cutters, cont’d

    PDC Bits

  • 8/17/2019 Bits Nozzles

    83/197

    • Bit Whirl (bit instability)

    • Bit whirl = “any deviation of bit rotation

    from the bit’s geometric center”

    • Caused by cutter/rock interaction forces

    • PBC bit technology sometimesreinforces whirl

    • Can cause PDC cutters to chip and break

    PDC Bits

  • 8/17/2019 Bits Nozzles

    84/197

    Preventing Bit Whirl

    • Cutter force balancing• Bit asymmetry

    • Gauge design• Bit profile

    • Cutter configuration

    • Cutter layout

    PDC Bits

  • 8/17/2019 Bits Nozzles

    85/197

     Applications

    • PDC bits are used primarily in

    • Deep and/or expensive wells

    • Soft-medium hard formations

    PDC Bits

  • 8/17/2019 Bits Nozzles

    86/197

     Advances in metallurgy, hydraulicsand cutter geometry

    • Have not cut cost of individual bits

    • Have allowed PDC bits to drill longerand more effectively

    • Allowed bits to withstand harderformations

    4 Application, cont’d

    PDC Bits

  • 8/17/2019 Bits Nozzles

    87/197

    • Application, cont’d

    • PDC bits advantageous for high rotationalspeed drilling and in deviated hole sectiondrillings

    • Most effective: very weak, brittle formations(sands, silty claystone, siliceous shales)

    • Least effective: cemented abrasive sandstone,granites

    Grading of Worn PDC Bits

  • 8/17/2019 Bits Nozzles

    88/197

    CT - Chipped Cutter Less than 1/3 of cuttingelement is gone

    BT - Broken Cutter More than 1/3 of cuttingelement is broken to

    the substrate

    Grading of Worn PDC Bits – cont’d

  • 8/17/2019 Bits Nozzles

    89/197

    LT - Lost Cutter Bit is missing one ormore cutters

    LN - Lost NozzleBit is missing one ormore nozzles

    Diamond bit wear problems

  • 8/17/2019 Bits Nozzles

    90/197

    Best Penetration Rate

  • 8/17/2019 Bits Nozzles

    91/197

    • Approach A

    • Achieved by removingcuttings efficientlyfrom below the bit

    • Maximize thehydraulic power

    available at the bit

    • Approach B

    • Drilling fluid hitsbottom of the holewith greatest force

    • Maximize Jet ImpactForce

    Optimum bit hydraulics

  • 8/17/2019 Bits Nozzles

    92/197

    Find the flow rates for different pump pressures (before POOH)

    Use the values to calculate C and N

    Get the expression for optimum flow rate

    Establish optimum flow rate Q

    Find the system pressure drop

    Get the optimum system pressure drop (from either approach A or 

    Establish optimum Stand pipe pressure and check with pump capacity

    Calculate optimum P b

    Calculate optimum AT (TFA) and select jets

    Bit Nozzles

  • 8/17/2019 Bits Nozzles

    93/197

    Bit Nozzles

  • 8/17/2019 Bits Nozzles

    94/197

    Nozzle Velocity

  • 8/17/2019 Bits Nozzles

    95/197

    0.95toequalusually

    tcoefficiendischarge Nozzle

    10074.8 4

    =

    ×∆= −

    bd n

     pC v ρ 

    Bit Pressure Drop

  • 8/17/2019 Bits Nozzles

    96/197

    22

    251033.8

    t d 

    b AC 

    q p  ρ −×=∆

  • 8/17/2019 Bits Nozzles

    97/197

    Hydraulic Power 

  • 8/17/2019 Bits Nozzles

    98/197

     HPP

     pqP

     H 

     H 

    8.2721714

    4001169

    1714

    =

    ∆=

    Hydraulic Impact Force

  • 8/17/2019 Bits Nozzles

    99/197

    lbsF 

     pqC F 

     j

     j

    bd  j

    5.820

    11691240095.01823.0

    01823.0

    =

    ×××=∆=   ρ 

    Jet Bit Nozzle Size Selection

  • 8/17/2019 Bits Nozzles

    100/197

    • Proper bottom-hole cleaning

    • will eliminate excessive regrinding of drilledsolids, and

    • will result in improved penetration rates

    Bottom-hole cleaning efficiency

    • is achieved through proper selection of bitnozzle sizes

    Total Pump Pressure

  • 8/17/2019 Bits Nozzles

    101/197

    • Pressure loss in surf. equipment

    • Pressure loss in drill pipe

    • Pressure loss in drill collars

    • Pressure drop across the bit nozzles

    • Pressure loss in the annulus between the drillcollars and the hole wall

    • Pressure loss in the annulus between the drillpipe and the hole wall

    • Hydrostatic pressure difference (  varies)

    Jet Bit Nozzle Size Selection

    - Optimization -

  • 8/17/2019 Bits Nozzles

    102/197

    - Optimization -

    Through nozzle size selection,

    optimization may be based onmaximizing one of the following:

    Bit Nozzle Velocity

    Bit Hydraulic Horsepower 

    Jet impact force

    • There is no general agreement on which ofthese three parameters should be maximized.

    Maximum Nozzle Velocity

  • 8/17/2019 Bits Nozzles

    103/197

    Nozzle velocity may be maximized consistent withthe following two constraints:

    • 1. The annular fluid velocity needs to be high

    enough to lift the drill cuttings out of the hole.

    - This requirement sets the minimumfluid circulation rate.

    • 2. The surface pump pressure must stay within the

    maximum allowable pressure rating of thepump and the surface equipment.

  • 8/17/2019 Bits Nozzles

    104/197

    Maximum Nozzle Velocity

  • 8/17/2019 Bits Nozzles

    105/197

    This (maximization) will be achieved whenthe surface pressure is maximized and thefrictional pressure loss everywhere isminimized, i.e., when the flow rate is

    minimized.

    pressure.surfaceallowablemaximumtheandratencirculatiominimumtheat

     satisfied,areabove2&1whenmaximizedisvn∴

    Maximum Bit Hydraulic Horsepower 

  • 8/17/2019 Bits Nozzles

    106/197

    The hydraulic horsepower at the bit ismaximized when is maximized.q) p(  bit∆

    d pump bit  p p p   ∆−∆=∆

    where may be called the parasitic pressureloss in the system (friction).

    d p∆

    bitdpump ppp   ∆+∆=∆

    Maximum Bit Hydraulic Horsepower 

  • 8/17/2019 Bits Nozzles

    107/197

    .turbulentisflowtheif  

    cq p p p p p p 75.1dpadcadcdpsd   =∆+∆+∆+∆+∆=∆

    In general, wherem

    d cq p   =∆ 2m0   ≤≤

    The parasitic pressure loss in the system,

    Maximum Bit Hydraulic Horsepower 

  • 8/17/2019 Bits Nozzles

    108/197

    0)1( pwhen0

    17141714 

     pump

    1

    =+−∆=∴

    −∆=

    ∆=∴

    +

    m Hbit 

    m

     pumpbit  Hbit 

    qmcdq

    dP

    cqq pq pP

    d pump bit  p p p   ∆−∆=∆m

    d cq p   =∆

    Maximum Bit Hydraulic Horsepower 

    0)1(p =+−∆   mqmc

  • 8/17/2019 Bits Nozzles

    109/197

     whenmaximumis

    1

    1 pwhen.,.

    )1( pwhen.,.

    d

     pump

     Hbit 

     pump

    P

     pm

    ei

     pmei

    ∆⎟

     ⎠

     ⎞⎜

    ⎝ 

    ⎛ +

    =∆

    ∆+=∆

     pumpd    pm

     p   ∆⎟ ⎠

     ⎞⎜⎝ 

    ⎛ +

    =∆1

    1

    0)1( p pump   =+∆ qmc

    Maximum Bit Hydraulic Horsepower 

    - Examples -

  • 8/17/2019 Bits Nozzles

    110/197

    p

    In turbulent flow, m = 1.75

     pump bit

     pump

     pumpd

     pof %64 p

     pof 36% 

    %100* p175.1

    1 p

    ∆=∆∴

    ∆=

    ∆⎟ ⎠

     ⎞⎜⎝ 

    ⎛ +

    =∆∴

    pd p1m

    1p   ∆

    +=∆

    Maximum Bit Hydraulic Horsepower 

    Examples - cont’d

  • 8/17/2019 Bits Nozzles

    111/197

    In laminar flow, for Newtonian fluids, m = 1

     pump b

     pump

     pumpd

     pof %50 p

     pof 50% 

    %100* p11

    1 p

    ∆=∆∴

    ∆=

    ∆⎟ ⎠

     ⎞⎜⎝ 

    ⎛ +

    =∆∴

    p

    Maximum Bit Hydraulic Horsepower 

  • 8/17/2019 Bits Nozzles

    112/197

    • In general, the hydraulic horsepower is notoptimized at all times

    • It is usually more convenient to select apump liner size that will be suitable for

    the entire well

    • Note that at no time should the flow rate be

    allowed to drop below the minimumrequired for proper cuttings removal

    Maximum Jet Impact Force

  • 8/17/2019 Bits Nozzles

    113/197

    The jet impact force is given by Eq. 4.37:

    )(c0.01823 

    01823.0

    d   d  pump

    bit d  j

     p pq

     pqcF 

    ∆−∆=

    ∆=

     ρ 

     ρ 

    Maximum Jet Impact Force

  • 8/17/2019 Bits Nozzles

    114/197

    But parasitic pressure drop,

    2201823.0

     

    +−∆=∴

    =∆

    md  pd  j

    md 

    qcq pcF 

    cq p

     ρ  ρ 

    )(c0.01823 d   d  pump j   p pqF    ∆−∆=   ρ 

    Maximum Jet Impact Force

    Upon differentiating setting the first derivative

  • 8/17/2019 Bits Nozzles

    115/197

    Upon differentiating, setting the first derivativeto zero, and solving the resulting quadratic

    equation, it may be seen that the impactforce is maximized when,

     pd  p

    2m

    2 p   ∆

    +

    =∆

    Maximum Jet

    Impact Force- Examples -

     pd  p2m

    2 p   ∆

    +=∆

  • 8/17/2019 Bits Nozzles

    116/197

    Examples

     p b

     pd

     pof %47 p and 

     pof %53 p 1.75,mif ,

    ∆=∆

    ∆=∆=Thus

     p b

     pd

     pof 33% pand 

     pof %67 p 1.00mif  ,

    ∆=∆

    ∆=∆= Also

  • 8/17/2019 Bits Nozzles

    117/197

    Nozzle Size Selection

    - Graphical Approach -

  • 8/17/2019 Bits Nozzles

    118/197

  • 8/17/2019 Bits Nozzles

    119/197

    1. Show opt. hydraulic path

    2. Plot ∆ pd

    vs q

    3. From Plot, determine

  • 8/17/2019 Bits Nozzles

    120/197

    optimum q and ∆ pd

    4. Calculate

    5. Calculate

    Total Nozzle Area:(TFA)

    6. Calculate Nozzle Diameter 

    d pump bit  p p p   ∆−∆=∆

    opt bd 

    opt opt t 

     pC 

    q A

    )(

    10*311.8)( 2

    25

    ∆=

    − ρ 

    With 3 nozzles:π 3

    A4d tot N =

    Example 4.31

    Determine the proper pump operating

  • 8/17/2019 Bits Nozzles

    121/197

    Determine the proper pump operatingconditions and bit nozzle sizes for max.

     jet impact force for the next bit run.

    Current nozzle sizes: 3 EA 12/32”

    Mud Density = 9.6 lbm.gal

     At 485 gal/min, Ppump = 2,800 psi

     At 247 gal/min, Ppump = 900 psi

    Example 4.31 - given data:

    Max pump HP (Mech ) = 1 250 hp

  • 8/17/2019 Bits Nozzles

    122/197

    Max pump HP (Mech.) = 1,250 hp

    Pump Efficiency = 0.91

    Max pump pressure = 3,000 psig

    Minimum flow rate

    to lift cuttings = 225 gal/min

    Example 4.31 - 1(a), 485 gpm

    Calculate pressure drop through bit nozzles:2

  • 8/17/2019 Bits Nozzles

    123/197

    22

    2510*311.8:)34.4.( 

    t d b  Ac

    q p Eq

     ρ −

    =∆

    psi9061,894-2,800losspressureparasitic

    psi1,894

    32

    12

    43(0.95)

    )485)(6.9)(8.311(10

    p  222

    2-5

    b

    ==∴

    =

    ⎥⎥⎦

    ⎢⎢⎣

    ⎡⎟ ⎠

     ⎞⎜⎝ 

    ⎛ π=∆

    Example 4.31 - 1(b), 247 gpm

    )247)(69)(10(3118 25−

  • 8/17/2019 Bits Nozzles

    124/197

     psi p b 491

    32

    12

    43)95.0(

    )247)(6.9)(10(311.82

    22

    25

    =

    ⎥⎥⎦⎤

    ⎢⎢⎣⎡ ⎟

     ⎠ ⎞⎜

    ⎝ ⎛ 

    =∆π 

    psi 409491-900losspressureparasitic ==∴

    Plot these twopoints in Fig. 4.36

    (q1, p1) = (485, 906)(q2, p2) = (247, 409)

  • 8/17/2019 Bits Nozzles

    125/197

    Example 4.31 - cont’d

    2. For optimum hydraulics:1Interval)a(

    32

    1

  • 8/17/2019 Bits Nozzles

    126/197

     

    gal/min650000,3

    )91.0)(250,1(714,1714,1qmax

    max   ===P

     E P Hp

    1, Interval)a(

    gal/min225q 

     psi875,1 

    )000,3(22.1

    22

    2 p 

    min

    maxd

    ==

    ⎟ ⎠ ⎞⎜

    ⎝ ⎛ 

    +=⎟

     ⎠ ⎞⎜

    ⎝ ⎛ 

    +=∆   P

    m 2,Interval(b)

    3,Interval(c)

    1

    Example 4.31

    3. From graph, optimum point is at

    l

  • 8/17/2019 Bits Nozzles

    127/197

     )(

    10*311.8

    )( 2

    25

    opt bd 

    opt 

    opt t   pC 

    q

     A ∆=∴

    − ρ 

    )700,1(*)95.0(

    )650(*6.9*10*8.311

      2

    2-5

    =

    ( )   ind  opt  N  nds2opt 3214in0.47A   =⇒=

     psi p psigal

    q b 700,1300,1 p ,

    min

    650 d   =∆⇒=∆=

  • 8/17/2019 Bits Nozzles

    128/197

     psi p psigal

    q b 700,1300,1 p ,min

    650 d   =∆⇒=∆=

    Example 4.32

    Well Planning

  • 8/17/2019 Bits Nozzles

    129/197

    It is desired to estimate the proper pumpoperating conditions and bit nozzle sizes formaximum bit horsepower at 1,000-ftincrements for an interval of the wellbetween surface casing at 4,000 ft and

    intermediate casing at 9,000 ft. The wellplan calls for the following conditions:

    Example 4.32

    Pump: 3,423 psi maximum surface pressure

  • 8/17/2019 Bits Nozzles

    130/197

    1,600 hp maximum input

    0.85 pump efficiency

    Drillstring: 4.5-in., 16.6-lbm/ft drillpipe(3.826-in. I.D.)

    600 ft of 7.5-in.-O.D. x 2.75-in.-I.D. drill collars

    Example 4.32

    Surface Equipment: Equivalent to 340

  • 8/17/2019 Bits Nozzles

    131/197

    Surface Equipment: Equivalent to 340ft. of drillpipe

    Hole Size: 9.857 in. washed out to 10.05 in.

    10.05-in.-I.D. casing

    Minimum Annular Velocity: 120 ft/min

    Mud Program

    Mud Plastic YieldDepth Density Viscosity Point

  • 8/17/2019 Bits Nozzles

    132/197

    Depth Density Viscosity Point

    (ft) (lbm/gal) (cp) (lbf/100 sq ft)

    5,000 9.5 15 5

    6,000 9.5 15 57,000 9.5 15 5

    8,000 12.0 25 99,000 13.0 30 12

    Solution

    The path of optimum hydraulics is asfollows:

  • 8/17/2019 Bits Nozzles

    133/197

    follows:

    Interval 1

    gal/min.681 

    423,3

    )85.0)(600,1(714,1

     p

    EP714,1

    qmax

    Hp

    max

    =

    ==

    Solution

    Interval 2

    Si d d t t

  • 8/17/2019 Bits Nozzles

    134/197

    Since measured pump pressure data are not

    available and a simplified solution techniqueis desired, a theoretical m value of 1.75 isused. For maximum bit horsepower,

    ( )

     psia1,245 

    423,3175.1

    1

    1

    1max

    =

    ⎟ ⎠

     ⎞⎜⎝ 

    ⎛ +

    =⎟ ⎠

     ⎞⎜⎝ 

    ⎛ +

    =∆   pm

     pd 

    Solution

    Interval 3

  • 8/17/2019 Bits Nozzles

    135/197

    For a minimum annular velocity of120 ft/min opposite the drillpipe,

    ( )

    gal/min395 

    601205.405.10448.2 22min

    =

    ⎟ ⎠ ⎞⎜

    ⎝ ⎛ −=q

    Table

    The frictional pressure loss in othersections is computed following a

  • 8/17/2019 Bits Nozzles

    136/197

    sections is computed following a

    procedure similar to that outlined above forthe sections of drillpipe. The entireprocedure then can be repeated to

    determine the total parasitic losses atdepths of 6,000, 7,000, 8,000 and 9,000 ft.The results of these computations aresummarized in the following table:

    Table

    ddpadcadcdps  p  p p  p  p  p Depth   ∆∆∆∆∆∆

  • 8/17/2019 Bits Nozzles

    137/197

    5,000 38 490 320 20 20 8886,000 38 601 320 20 25 1,0047,000 38 713 320 20 29 1,120

    8,000 51 1,116 433 28 75* 1,7039,000 57 1,407 482 27* 111* 2,084

    * Laminar flow pattern indicated byHedstrom number criteria.

    pp

    Table

    The proper pump operating conditionsand nozzle areas, are as follows:

  • 8/17/2019 Bits Nozzles

    138/197

    5,000 600 1,245 2,178 0.3806,000 570 1,245 2,178 0.361

    7,000 533 1,245 2,178 0.338

    8,000 420 1,245 2,178 0.2999,000 395 1,370 2,053 0.302

    in.)(sq (psi) (psi) (gal/min) )ft( 

    (5)A  p(4)  p(3) Rate(2)Flow Depth)l(  t bd   ∆∆

    Table

    The first three columns were read directlyfrom Fig 4 37 (depth flow rate and ∆p )

  • 8/17/2019 Bits Nozzles

    139/197

    from Fig. 4.37. (depth, flow rate and ∆pd)

    Col. 4 (∆pb) was obtained by subtracting

    shown in Col.3 from the maximum pumppressure of 3,423 psi.

    Col.5 (Atot) was obtained using Eq. 4.85

    d p∆

  • 8/17/2019 Bits Nozzles

    140/197

    Surge Pressure due to Pipe Movement

    When a string of pipe isbeing lowered into the

  • 8/17/2019 Bits Nozzles

    141/197

    being lowered into the

    wellbore, drilling fluid isbeing displaced and forcedout of the wellbore.

    The pressure required toforce the displaced fluid out

    of the wellbore is called thesurge pressure.

    Surge Pressure due to Pipe Movement

     An excessively high surge pressure canresult in breakdown of a formation

  • 8/17/2019 Bits Nozzles

    142/197

    result in breakdown of a formation.

    When pipe is being withdrawn a similarreduction is pressure is experienced. Thisis called a swab pressure, and may behigh enough to suck fluids into the wellbore,resulting in a kick.

    swabsurge   PP  ,vfixedFor  pipe   =

    Figure 4.40B

  • 8/17/2019 Bits Nozzles

    143/197

    - Velocity profile for laminar flow pattern when closedpipe is being run into hole

    The Hydraulics Parameters

    Pump Volumetric output and circulation pressure Pt

  • 8/17/2019 Bits Nozzles

    144/197

    Flow rateBit nozzle jet velocity

    Annular velocity

    Pressure losses in the system

    Pump Hydraulic power output

    Pressure drop across the bit nozzlesHydraulic Power at the bit

    Jet impact force

    Pump volumetric output and circulating pressure

    Q= K L(2D2 d2) spm η /100 for double acting pump

  • 8/17/2019 Bits Nozzles

    145/197

    Q= K.L(2D2-d2).spm.ηv/100 for double acting pump

    Q= K.L.D2.spm.ηv/100 for single acting pump

    Q in GPM if K=.00679

    Q in BPM if K=.000126

    Circulating Pressure = Total Pressure loss (except at the bit)

    + Pressure drop across the bit nozzle

    Flow rate Q

  • 8/17/2019 Bits Nozzles

    146/197

    Can be measure directly (flow-meter)

    Can be calculated

     Average Velocity in Drillpipe

  • 8/17/2019 Bits Nozzles

    147/197

    Assuming the total string is DP;

    24.51 x Q

    Velocity Vdp = ------------------ ft/minID p2

     Annular Average Velocity

    Assuming the total string is DP;

  • 8/17/2019 Bits Nozzles

    148/197

    Minimum velocity govern by the lifting capacity of the drilling fluid

    Maximum velocity in sensitive formation 100 ft/min.

    Optimum Annular Velocity is at the minimum flow rate requiredto efficiently remove cuttings from the hole

    24.51 x QAnnular Velocity Vann = ------------------ ft/min

    Dh2 - OD p

    2

    Nozzle Jet Velocity

  • 8/17/2019 Bits Nozzles

    149/197

    Vn = 0.321 (Q/A) ft/s

    Minimum 350 ft/s or 100 m/s

    Fluid Flow

     Newtonian fluid

    Non Newtonian fluid

  • 8/17/2019 Bits Nozzles

    150/197

    Laminar Flow Re < 2000

    Turbulent Flow Re > 4000

    Re = 15.46 ρ DV / µ

     Non Newtonian fluid

    Bingham Plastic Fluid

    Power-Law Fluid

    Bingham Plastic Model

    At the wall zero Fluid velocity

  • 8/17/2019 Bits Nozzles

    151/197

    Viscosity independent of time

    Particles travel parallel to the

     pipe axe (max. velocity at the

    center).

    Critical Velocity Vc

  • 8/17/2019 Bits Nozzles

    152/197

    Vc D YP

     D

    =  + +97 97 8 22 2 pv pv .   ρ 

     ρ 

    ft/min

    V > Vc Turbulent flow

    V < Vc Laminar flow

  • 8/17/2019 Bits Nozzles

    153/197

    Pressure Drop

    Pressure Loss in the System

  • 8/17/2019 Bits Nozzles

    154/197

    Pressure losses in the surface equipment

    Pressure loses in the drilling string

    Pressure loses in the annulus

    Pressure drop in the surface

    equipment

  • 8/17/2019 Bits Nozzles

    155/197

    P1 = E ρ N-1 (PV)2-N Q N  N=1.8 or can be measures

    Pressure Drop in Drillpipe

    P2 = f ρ V2 L / 25.8 d

  • 8/17/2019 Bits Nozzles

    156/197

    P2 = c . Q N

    8.91 x 10-5 ρ N-1 PV2-N . Lc = -------------------------------------

    ID p N+3

    8.91 x 10-5 ρ N-1 Q N PV2-N . LP2 = -----------------------------------------ID p

     N+3

    f is a friction factor depends on the type of flow

    Pressure Drop in annulus

    P3 = f ρ V2 L / 21.1 (Dh - OD p)

  • 8/17/2019 Bits Nozzles

    157/197

    P3 = c . Q N

    c = 8.91 x 10-5 ρ N-1 PV2-N L / (Dh - OD p)3 (Dh + OD p) N+3

    8.91 x 10-5

    ρ N-1

    Q N

    PV2-N

    . LP3 = -------------------------------------(Dh - OD p)

    3 (Dh + OD p) N+3

    f is a friction factor depends on the type of flow

    Pressure drop across the bit

  • 8/17/2019 Bits Nozzles

    158/197

    P b = Pstandpipe - (P1+P2+P3)

    ρ Q2

    P b = ---------------------12,032 Cn2 AT

    2

    Cn = Nozzle Coefficient (~ 0.95)

    Nozzle Velocity Vn ft/s

  • 8/17/2019 Bits Nozzles

    159/197

    V   P

    nb

    = 3336. ρ 

    Best Penetration Rate

    • Approach A

    • Achieved by removing

    • Approach B

    • Drilling fluid hits

  • 8/17/2019 Bits Nozzles

    160/197

    cuttings efficientlyfrom below the bit

    • Maximize thehydraulic poweravailable at the bit

    bottom of the holewith greatest force

    • Maximize Jet ImpactForce

    Optimum bit hydraulics

    Find the flow rates for different pump pressures (before POOH)

    Use the values to calculate C and N

  • 8/17/2019 Bits Nozzles

    161/197

    Use the values to calculate C and N

    Get the expression for optimum flow rate

    Establish optimum flow rate Q

    Find the system pressure drop

    Get the optimum system pressure drop (from either approach A or 

    Establish optimum Stand pipe pressure and check with pump capacity

    Calculate optimum P b

    Calculate optimum AT (TFA) and select jets

    Max. Hydraulic Power at the bit

    P b . Q / 1714 hp

     N

  • 8/17/2019 Bits Nozzles

    162/197

    Jet Impact Force below the bitIF = Q/58 (ρ P b)0.5 Max IF when P b = [N/(N+2)] Psp

    61.6 x 10-3 ρ Q2 / AT

    P b = (Psp - PCS) Pcs = c QHHP b = (Psp Q - c Q

     N+1 )/1714 Differentiate wrt Q = 0

    P b = (N/N+1) Psp

    Nozzle Selection

  • 8/17/2019 Bits Nozzles

    163/197

    AT = 0.0096 Q (ρ /P b)0.5 = .32 Q/Vn

    dn = 32 (4 AT /3π)0.5

    Total Pump Pressure

    • Pressure loss in surf. equipment

    • Pressure loss in drill pipe

  • 8/17/2019 Bits Nozzles

    164/197

    • Pressure loss in drill collars• Pressure drop across the bit nozzles

    • Pressure loss in the annulus between the drill

    collars and the hole wall

    • Pressure loss in the annulus between the drillpipe and the hole wall

    • Hydrostatic pressure difference (  varies)

    Types of flow

    Laminar Turbulent

  • 8/17/2019 Bits Nozzles

    165/197

    Fig. 4-30. Laminar and turbulent flow patterns in a circular pipe: (a) laminar

    flow, (b) transition between laminar and turbulent flow and (c) turbulent flow

    Turbulent Flow -Newtonian Fluid

    lbm/galdensity,fluidρ where =

    µ

    dvρ928 N

     _ 

    Re =

  • 8/17/2019 Bits Nozzles

    166/197

    We often assume that fluid flow is

    turbulent if  Nre > 2100

    cp.fluid,of viscosityµ 

    inI.D., piped 

    ft/svelocity,fluidavg. v  _ 

    =

    =

    =

    Turbulent Flow -Newtonian Fluid

    75.1 _

    Turbulent Flow -Bingham Plastic Fluid

    75.1 _

    In Pipe

  • 8/17/2019 Bits Nozzles

    167/197

    25.1

    25.0_

    75.0f 

    d1800

    v

    dL

    dp   µρ=25.1

    25.0p

    75.0f 

    d1800

    v

    dL

    dp   µρ=

    ( ) 25.112

    25.0

    p

    75.1 _75.0

    dd396,1v

    dLdp

    −µρ=( ) 25.112

    25.075.1 _

    75.0

    dd396,1v

    dLdp

    −µρ=

    In Annulus

     API Power Law Model

    K = consistency indexn = flow behaviour index

    τ = K γ n

     API RP 13D

  • 8/17/2019 Bits Nozzles

    168/197

    SHEARSTRESS

    τ psi

    SHEAR RATE, γ , sec-10

    Rotating Sleeve Viscometer 

    VISCOMETERRPM

    (RPM * 1.703)

    SHEAR RATE

    sec -1

  • 8/17/2019 Bits Nozzles

    169/197

    3100

    300600

    5.11170.3

    5111022

    BOB

    SLEEVE

     ANNULUS

    DRILLSTRING

    Pressure Drop Calculations

    • Example Calculate the pump pressure inthe wellbore shown on the next page, using the API method.

  • 8/17/2019 Bits Nozzles

    170/197

    • The relevant rotational viscometer readingsare as follows:

    • R3 = 3 (at 3 RPM)• R100 = 20 (at 100 RPM)

    • R300 = 39 (at 300 RPM)• R600 = 65 (at 600 RPM)

    Q = 280 gal/min

    Pressure Drop

    Calculations

    PPUMP

  • 8/17/2019 Bits Nozzles

    171/197

    PPUMP = ∆PDP + ∆PDC

    + ∆PBIT NOZZLES

    + ∆PDC/ANN + ∆PDP/ANN

    + ∆PHYD

      = 12.5 lb/gal

    Power-Law Constant (n):

    Pressure Drop In Drill Pipe OD = 4.5 inID = 3.78 inL = 11,400 ft

    737.039

    65log32.3

    R

    Rlog32.3n

    300

    600 =⎟ ⎠

     ⎞⎜⎝ 

    ⎛ =⎟⎟ ⎠

     ⎞⎜⎜⎝ 

    ⎛ =

  • 8/17/2019 Bits Nozzles

    172/197

    Fluid Consistency Index (K):

     Average Bulk Velocity in Pipe (V):

    2737.0

    600 sec017.2

    022,1

    65*11.5

    022,1

    11.5

    cm

    dyne RK 

    n

    n  ===

    secft00.8

    78.3280*408.0

    DQ408.0V

    22  ===

    Effective Viscosity in Pipe ( e):

    Pressure Drop In Drill Pipe OD = 4.5 inID = 3.78 inL = 11,400 ft

    n1n

    e

    4

    1n3

    D

    V96K100 ⎟

     ⎞⎜⎜

    ⎛    +⎟⎟

     ⎞⎜⎜

    ⎛ =µ

  • 8/17/2019 Bits Nozzles

    173/197

    Reynolds Number in Pipe (NRe):

    n4D  ⎠⎝  ⎠⎝ 

    cP53

    737.0*4

    1737.0*3

    78.3

    8*96017.2*100

    737.01737.0

    e   =⎟

     ⎠

     ⎞⎜

    ⎝ 

    ⎛    +⎟

     ⎠

     ⎞⎜

    ⎝ 

    ⎛ =µ

    616,653

    5.12*00.8*78.3*928VD928Ne

    Re   ==µρ=

    NOTE: NRe > 2,100, soFriction Factor in Pipe (f):

    Pressure Drop In Drill Pipe OD = 4.5 inID = 3.78 inL = 11,400 ft

    b

    ReN

    af   =

    933l

  • 8/17/2019 Bits Nozzles

    174/197

    So,

    0759.050

    93.3737.0log

    50

    93.3nloga   =

    +=

    +=

    2690.07

    737.0log75.17

    nlog75.1b   =−=−=

    007126.0616,6

    0759.0N

    af  2690.0bRe

    ===

    Friction Pressure Gradient (dP/dL) :

    Pressure Drop In Drill Pipe OD = 4.5 inID = 3.78 inL = 11,400 ft

    ft

    psi05837.0

    783*8125

    5.12*8*007126.0

    D8125

    Vf 

    dL

    dP 22

    ==ρ

    =⎟⎠

     ⎞⎜⎝

    ⎛ 

  • 8/17/2019 Bits Nozzles

    175/197

    Friction Pressure Drop in Dril l Pipe :

    400,11*05837.0LdL

    dPP   =∆⎟

     ⎠

     ⎞⎜⎝ 

    ⎛ =∆

     Pdp = 665 psi

    ft78.3*81.25D81.25dL ⎠⎝ 

    Power-Law Constant (n):

    Pressure Drop In Drill Collars OD = 6.5 inID = 2.5 inL = 600 ft

    737.039

    65log32.3

    R

    Rlog32.3n

    300

    600 =⎟ ⎠

     ⎞⎜⎝ 

    ⎛ =⎟⎟ ⎠

     ⎞⎜⎜⎝ 

    ⎛ =

  • 8/17/2019 Bits Nozzles

    176/197

    Fluid Consistency Index (K):

     Average Bulk Velocity inside Drill Collars (V):

    2

    n

    737.0n

    600

    cm

    secdyne017.2

    022,1

    65*11.5

    022,1

    R11.5K   ===

    secft28.18

    5.2280*408.0

    DQ408.0V

    22  ===

    Effective Viscosity in Collars( e):

    OD = 6.5 inID = 2.5 inL = 600 ft

    Pressure Drop In Drill Collars

    n1n

    e

    n4

    1n3

    D

    V96K100   ⎟

     ⎞⎜

    ⎛    +⎟

     ⎞⎜

    ⎛ =µ

  • 8/17/2019 Bits Nozzles

    177/197

    Reynolds Number in Collars (NRe):

    n4D  ⎠⎝  ⎠⎝ 

    cP21.38737.0*4

    1737.0*3

    5.2

    28.18*96017.2*100

    737.01737.0

    e   =⎟

     ⎠

     ⎞⎜

    ⎝ 

    ⎛    +⎟

     ⎠

     ⎞⎜

    ⎝ 

    ⎛ =µ

    870,1321.38

    5.12*28.18*5.2*928VD928Ne

    Re   ==µρ=

    OD = 6.5 inID = 2.5 inL = 600 ft

    Pressure Drop In Drill Collars

    NOTE: NRe > 2,100, soFriction Factor in DC (f): b

    ReN

    af   =

    9337370log933nlog

  • 8/17/2019 Bits Nozzles

    178/197

    So,

    0759.050

    93.3737.0log

    50

    93.3nloga   =+=+=

    2690.07

    737.0log75.17

    nlog75.1b   =−=−=

    005840.0870,130759.0

    Naf  2690.0bRe

    ===

    Friction Pressure Gradient (dP/dL) :

    OD = 6.5 inID = 2.5 inL = 600 ft

    Pressure Drop In Drill Collars

    ft

    psi3780.0

    52*8125

    5.12*28.18*005840.0

    D8125

    Vf 

    dL

    dP 22

    ==ρ

    =⎟

     ⎞⎜

    ⎛ 

  • 8/17/2019 Bits Nozzles

    179/197

    Friction Pressure Drop in Dril l Collars :

    ft5.281.25D81.25dL ⎠⎝ 

    600*3780.0LdL

    dPP   =∆⎟

     ⎠

     ⎞⎜⎝ 

    ⎛ =∆

     Pdc = 227 psi

    Pressure Drop across Nozzles

    DN1 = 11 32nds (in)DN2 = 11 32nds (in)

    DN3 = 12 32nds (in)( )2

    2

    3N

    2

    2N

    2

    1N

    2

    DDD

    Q156P

    ++

    ρ=∆

  • 8/17/2019 Bits Nozzles

    180/197

    DN3 = 12 32nds (in)

    ( )2222

    2

    121111

    280*5.12*156P

    ++=∆

     PNozzles = 1,026 psi

    (   )DDD ++

    Pressure Dropin DC/HOLE

     Annulus

    Q = 280 gal/min

  • 8/17/2019 Bits Nozzles

    181/197

    DHOLE = 8.5 inODDC = 6.5 in

    L = 600 ft

    Q 280 gal/min

      = 12.5 lb/gal 8.5 in

    Power-Law Constant (n):

    DHOLE = 8.5 inODDC = 6.5 inL = 600 ft

    Pressure Dropin DC/HOLE Annulus

    5413.03

    20log657.0

    R

    Rlog657.0n

    3

    100 =⎟ ⎠

     ⎞⎜⎝ 

    ⎛ =⎟⎟ ⎠

     ⎞⎜⎜⎝ 

    ⎛ =

  • 8/17/2019 Bits Nozzles

    182/197

    Fluid Consistency Index (K):

     Average Bulk Velocity in DC/HOLE Annulus (V):

    2

    n

    5413.0n100 cm

    secdyne336.62.170

    20*11.5

    2.170

    R11.5K   ===

    secft808.3

    5.65.8280*408.0

    DDQ408.0V

    222

    1

    2

    2

    =−

    =−

    =

    Effective Viscosity in Annulus ( e):

    DHOLE = 8.5 inODDC = 6.5 inL = 600 ft

    n1n

    12e n3

    1n2

    DD

    V144

    K100 ⎟⎟⎠

     ⎞

    ⎜⎜⎝

    ⎛    +

    ⎟⎟⎠

     ⎞

    ⎜⎜⎝

    ⎛ 

    −=µ

    Pressure Dropin DC/HOLE Annulus

  • 8/17/2019 Bits Nozzles

    183/197

    Reynolds Number in Annulus (NRe):

    cP20.555413.0*3

    15413.0*2

    5.65.8

    808.3*144336.6*100

    5413.015413.0

    e

      =⎟ ⎠

     ⎞

    ⎜⎝ 

    ⎛    +

    ⎟ ⎠

     ⎞

    ⎜⎝ 

    ⎛ 

    −=µ

    ( )   ( ) 600,120.55

    5.12*808.3*5.65.8928VDD928Ne

    12

    Re   =−=µρ−=

    12 ⎟ ⎠⎜⎝ ⎟⎟ ⎠⎜⎜⎝ µ

    DHOLE = 8.5 inODDC = 6.5 inL = 600 ft

    NOTE: NRe < 2,100

    Friction Factor in Annulus (f):

    01500.06001

    24

    N

    24f 

    R===

    Pressure Dropin DC/HOLE Annulus

  • 8/17/2019 Bits Nozzles

    184/197

    So,

    600,1NRe

    ( ) ( ) ft

    psi05266.0

    5.65.881.25

    5.12*808.3*01500.0

    DD81.25

    Vf 

    dL

    dP 2

    12

    2

    =

    =

    ρ=⎟

     ⎠

     ⎞⎜

    ⎝ 

    ⎛ 

    600*05266.0LdL

    dPP   =∆⎟

     ⎠

     ⎞⎜⎝ 

    ⎛ =∆

     Pdc/hole = 31.6 psi

    q = 280 gal/min

    Pressure Dropin DP/HOLE Annulus

  • 8/17/2019 Bits Nozzles

    185/197

      = 12.5 lb/gal

    DHOLE = 8.5 inODDP = 4.5 inL = 11,400 ft

    Power-Law Constant (n):

    Pressure Dropin DP/HOLE Annulus

    DHOLE = 8.5 inODDP = 4.5 inL = 11,400 ft

    5413.03

    20log657.0

    R

    Rlog657.0n

    3

    100 =⎟ ⎠

     ⎞⎜⎝ 

    ⎛ =⎟⎟ ⎠

     ⎞⎜⎜⎝ 

    ⎛ =

  • 8/17/2019 Bits Nozzles

    186/197

    Fluid Consistency Index (K):

     Average Bulk Velocity in Annulus (Va):

    2

    n

    5413.0n100

    cm

    secdyne336.62.170

    20*11.5

    2.170

    R11.5K   ===

    secft197.2

    5.45.8280*408.0

    DDQ408.0V

    222

    1

    2

    2

    =−

    =−

    =

    Effective Viscosity in Annulus ( e):

    Pressure Dropin DP/HOLE Annulus

    n1n

    12

    e

    n3

    1n2

    DD

    V144K100 ⎟⎟

     ⎞⎜⎜

    ⎛    +⎟⎟

     ⎞⎜⎜

    ⎛ 

    =µ−

  • 8/17/2019 Bits Nozzles

    187/197

    Reynolds Number in Annulus (NRe):

     ⎠⎝  ⎠⎝ 

    cP64.975413.0*3

    15413.0*2

    5.45.8

    197.2*144336.6*100

    5413.015413.0

    e   =⎟ ⎠

     ⎞⎜⎝ 

    ⎛    +⎟ ⎠

     ⎞⎜⎝ 

    ⎛ −

    =µ−

    ( )   ( ) 044,164.97

    5.12*197.2*5.45.8928VDD928Ne

    12Re   =−=µ

    ρ−=

    Pressure Dropin DP/HOLE Annulus

    NOTE: NRe < 2,100

    Friction Factor in Annulus (f):

    02299.0044,1

    24

    N

    24

    f Re ===

  • 8/17/2019 Bits Nozzles

    188/197

    So, psi

    e

    ( ) ( ) ft

    psi01343.0

    5.45.881.25

    5.12*197.2*02299.0

    DD81.25

    Vf 

    dL

    dP 2

    12

    2

    =

    =

    ρ=⎟

     ⎠

     ⎞⎜

    ⎝ 

    ⎛ 

    400,11*01343.0LdL

    dPP   =∆⎟

     ⎠

     ⎞⎜⎝ 

    ⎛ =∆

     Pdp/hole = 153.2 psi

    Pressure Drop Calcs.

    - SUMMARY -

    PPUMP = ∆PDP + ∆PDC + ∆PBIT NOZZLES

    + ∆P + ∆P + ∆P

  • 8/17/2019 Bits Nozzles

    189/197

    + ∆PDC/ANN + ∆PDP/ANN + ∆PHYD

    PPUMP = 665 + 227 + 1,026

    + 32 + 153 + 0

    PPUMP = 1,918 + 185 = 2,103 psi

    PPUMP = ∆PDS + ∆PANN + ∆PHYD

    ∆PDS = ∆PDP + ∆PDC + ∆PBIT NOZZLES

    = 665 + 227 + 1,026 = 1,918 psi

    ∆PANN = ∆PDC/ANN + ∆PDP/ANN

    2,103 psi

    P=0

  • 8/17/2019 Bits Nozzles

    190/197

    PPUMP = 1,918 + 185= 2,103 psi

    ∆PHYD = 0

    ANN DC/ANN DP/ANN

    = 32 + 153 = 185

    " Friction" Pressures

    1,500

    2,000

    2,500

    e   s   s

       u   r   e ,

       p   s   i DRILLPIPE

    DRILL COLLARS

  • 8/17/2019 Bits Nozzles

    191/197

    0

    500

    1,000

    0 5,000 10,000 15,000 20,000 25,000

    Cumulative Distance from Standpipe, ft

       "   F   r   i   c   t

       i   o   n   "

       P   r   e

    BIT NOZZLES

     ANNULUS

    Hydrostatic Pressures in the Wellbore

    5,000

    6,000

    7,000

    8,000

    9,000

       r   e   s

       s   u   r   e ,

       p   s   i BHP

    DRILLSTRING ANNULUS

  • 8/17/2019 Bits Nozzles

    192/197

    0

    1,000

    2,000

    3,000

    4,000

    0 5,000 10,000 15,000 20,000 25,000

    Cumulative Distance from Standpipe, ft

       H

       y   d   r   o   s   t   a   t   i   c

       P

    Pressures in the Wellbore

    5 000

    6,000

    7,000

    8,000

    9,000

    10,000

       e   s ,

       p   s   i CIRCULATING

  • 8/17/2019 Bits Nozzles

    193/197

    0

    1,000

    2,0003,000

    4,000

    5,000

    0 5,000 10,000 15,000 20,000 25,000

    Cumulative Distance from Standpipe, ft

       P

       r   e   s   s  u   r

    STATIC

    Wellbore Pressure Profile

    0

    2,000

    4,000

    6,000h ,

       f   t

    DRILLSTRING

  • 8/17/2019 Bits Nozzles

    194/197

    8,000

    10,000

    12,000

    14,000

    0 2,000 4,000 6,000 8,000 10,000

    Pressure, psi

       D  e  p   t   h  ANNULUS

    (Static)

    BIT

    Pipe Flow - Laminar 

    In the above example the flow down thedrillpipe was turbulent.

    Under conditions of very high viscosity,the flow may very well be laminar

  • 8/17/2019 Bits Nozzles

    195/197

    y g ythe flow may very well be laminar.

    NOTE: if NRe < 2,100, thenFriction Factor in Pipe (f):

    ReN

    16

    f   = D81.25

    Vf 

    dL

    dP2ρ

    =⎟ ⎠

     ⎞

    ⎜⎝ 

    ⎛ 

    Then and

  • 8/17/2019 Bits Nozzles

    196/197

    n = 1.0

  • 8/17/2019 Bits Nozzles

    197/197

    d8.25

    vf 

    dL

    dp _

    2ρ=